1

Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding

Yu Meng^{1*}, Yunyi Zhang^{1*}, Jiaxin Huang¹, Yu Zhang¹, Chao Zhang², Jiawei Han¹ ¹University of Illinois at Urbana-Champaign ²Georgia Institute of Technology

Outline

Motivation & Introduction

Spherical Text and Tree Embedding

Optimization

Experiments

Conclusions

Motivation

- Mining a set of meaningful topics organized into a hierarchy is intuitively appealing and has broad applications
 - Coarse-to-fine topic understanding
 - Hierarchical corpus summarization
 - Hierarchical text classification

• ...

Hierarchical topic models discover topic structures from text corpora via modeling the text generative process with a latent hierarchy

I

Motivation

- □ What are the limitations of (hierarchical) topic models?
- □ Failure to incorporate user guidance: (Hierarchical) topic models tend to retrieve the most general and prominent topics from a text collection
 - may not be of a user's particular interest
 - provide a superficial summarization of the corpus
- Lack of stability and consistency: The inference algorithm of (hierarchical) topic models yield local optimum solutions
 - different hierarchy & topic results across different runs
 - this issue even worsens when a larger number of topics and their correlation need to be modeled

Introduction

□ A New Task: Hierarchical Topic Mining

- Given a text corpus and a tree-structured hierarchy described by category names, hierarchical topic mining aims to retrieve a set of terms that provide a clear description of each category
- e.g. a user may provide a hierarchy of interested concepts along with a corpus and rely on hierarchical topic mining to retrieve a set of representative terms from a text corpus

I

Introduction

□ A New Task: Hierarchical Topic Mining

- Connection and difference between hierarchical topic modeling
 - both account for the hierarchical correlations among topics (e.g. "sports" is a super-topic of "soccer")
 - hierarchical topic modeling is purely unsupervised; hierarchical topic mining is weaklysupervised (requires the names of the hierarchy categories)

I

Outline

- Motivation & Introduction
- Spherical Text and Tree Embedding
- Optimization
- **Experiments**
- Conclusions

7

JoSH Embedding

□ Motivation:

- Directional similarity of text embeddings has proven most effective on estimation of semantic similarity (e.g. cosine similarity between embeddings)
- Spherical space is a natural choice for modeling directional similarity
- Jointly learn text and tree embedding in the spherical space for hierarchical topic mining (JoSH)
- Difference from hyperbolic models (e.g. Poincare, Lorentz)
 - hyperbolic embeddings preserve absolute tree distance (similar embedding distance => similar tree distance)
 - we do not aim to preserve the absolute tree distance, but rather use it as a relative measure

JoSH Embedding

□ (cont'd) Difference from hyperbolic models (e.g. Poincare, Lorentz)

- hyperbolic embeddings preserve absolute tree distance (similar embedding distance => similar tree distance)
- we do not aim to preserve the absolute tree distance, but rather use it as a relative measure

JoSH Tree Embedding

Intra-Category Coherence: Representative terms of each category should be highly semantically relevant to each other, reflected by high directional similarity in the spherical space

$$\mathcal{L}_{\text{intra}} = \sum_{c_i \in \mathcal{T}} \sum_{w_j \in C_i} \min(0, \boldsymbol{u}_{w_j}^{\top} \boldsymbol{c}_i - m_{\text{intra}}),$$

Inter-Category Distinctiveness: Encourage distinctiveness across different categories to avoid semantic overlaps so that the retrieved terms provide a clear and distinctive description

$$\mathcal{L}_{\text{inter}} = \sum_{c_i \in \mathcal{T}} \sum_{c_j \in \mathcal{T} \setminus \{c_i\}} \min(0, 1 - c_i^{\top} c_j - m_{\text{inter}}).$$

11

JoSH Tree Embedding

- Recursive Local Tree Embedding: Recursively embed local structures of the category tree onto the sphere
- □ Local tree: A local tree T_r rooted at node $c_r \in T$ consists of node c_r and all its direct children nodes

I

JoSH Tree Embedding

Preserving Relative Tree Distance Within Local Trees: A category should be closer to its parent category than to its sibling categories in the embedding space

I

JoSH Text Embedding

Modeling Text Generation Conditioned on the Category Tree

A three-step process:

1. a document d_i is generated conditioned on one of the n categories 1. Topic assignment

$$p(d_i \mid c_i) = \text{vMF}(d_i; c_i, \kappa_{c_i}) = n_p(\kappa_{c_i}) \exp\left(\kappa_{c_i} \cdot \cos(d_i, c_i)\right)$$

2. each word w_i is generated conditioned on the semantics of the document d_i

 $p(w_i \mid d_i) \propto \exp(\cos(\boldsymbol{u}_{w_i}, \boldsymbol{d}_i))$

2. Global context

3. surrounding words w_{i+k} in the local context window of w_i are generated conditioned on the semantics of the center word w_i 3. Local context

 $p(w_{i+k} \mid w_j) \propto \exp(\cos(v_{w_{i+k}}, u_{w_i}))$

Outline

- Motivation & Introduction
- Spherical Text and Tree Embedding

Optimization

- **Experiments**
- Conclusions

I

Optimization

Overall objective: Maximum likelihood estimation

$$\mathcal{L} = \mathcal{L}_{\text{tree}} + \mathcal{L}_{\text{text}},$$

$$\mathcal{L}_{\text{tree}} = \sum_{c_r \in \mathcal{T}} \sum_{c_i \in \mathcal{T}_r} \sum_{c_j \in \mathcal{T}_r \setminus \{c_r, c_i\}} \min(0, c_i^{\top} c_r - c_i^{\top} c_j - m_{\text{inter}}). \quad (9)$$

$$\mathcal{L}_{\text{text}} = \sum_{d_i \in \mathcal{D}} \sum_{w_j \in d_i} \sum_{\substack{w_{j+k} \in d_i \\ -h \le k \le h, k \ne 0}} \min\left(0, v_{w_{j+k}}^{\top} u_{w_j} + u_{w_j}^{\top} d_i - v_{w_{j+k}}^{\top} u_{w_j'} - u_{w_j'}^{\top} d_i - m\right)$$

$$+ \sum_{c_i \in \mathcal{T}} \sum_{w_j \in C_i} \left(\log\left(n_p(\kappa_{c_i})\right) + \kappa_{c_i} u_{w_j}^{\top} c_i\right) \mathbb{1}(u_{w_j}^{\top} c_i < m_{\text{intra}}).$$

$$(10)$$

$$s.t. \quad \forall w, d, c, \quad \|u_w\| = \|v_w\| = \|d\| = \|c\| = 1,$$

- □ An EM-based algorithm for optimizing the objectives
 - Our objective contains latent variables, i.e., the latent category of words
 - □ At first, we only know that the category name provided by the user belongs to the corresponding category (e.g. the word "sports" belongs to the category "sports")
 - Iterates between the estimation of the latent category assignment of words (i.e., E-Step) and maximization of the embedding training objectives (i.e., M-Step)

I

An EM-based algorithm for optimizing the objectives

E-Step: Update the estimation of words assigned to each category

 $C_i^{(t)} \leftarrow \operatorname{Top}_t(\{w\}; \boldsymbol{u}_w^{(t)}, \boldsymbol{c}_i^{(t)}, \kappa_{c_i}^{(t)}),$

the set of terms ranked at the top t positions via $\mathrm{vMF}(m{u}_{m{w}};m{c}_i,\kappa_{m{c}_i})$

M-Step:

$$\Theta^{(t+1)} \leftarrow \arg \max \left(\mathcal{L}_{\text{text}} \left(\Theta^{(t)} \right) + \mathcal{L}_{\text{tree}} \left(\Theta^{(t)} \right) \right), \quad \Theta^{(t)} = \left\{ \boldsymbol{u}_{w}^{(t)}, \boldsymbol{v}_{w}^{(t)}, \boldsymbol{d}^{(t)}, \boldsymbol{c}^{(t)} \right\}$$

Require stochastic optimization technique

- Riemannian optimization
 - Euclidean optimization methods like SGD cannot be directly applied to our case, because the Euclidean gradient provides update directions in a non-curvature space, while the embeddings in our model must be updated on the spherical surface
 - Riemannian optimization method in the spherical space:

Riemannian gradient $\operatorname{grad} \mathcal{L}(\theta) \coloneqq (I - \theta \theta^{\top}) \nabla \mathcal{L}(\theta)$, Euclidean gradient

Riemannian stochastic optimization

$$\boldsymbol{\theta}^{(t+1)} \leftarrow R_{\boldsymbol{\theta}^{(t)}} \left(\alpha \cdot \operatorname{grad} \mathcal{L} \left(\boldsymbol{\theta}^{(t)} \right) \right)$$

$$R_{\boldsymbol{x}}(\boldsymbol{z}) \coloneqq \frac{\boldsymbol{x} + \boldsymbol{z}}{\|\boldsymbol{x} + \boldsymbol{z}\|}$$
 --- approximated exponential mapping

Overall algorithm

- □ Complexity w.r.t. tree size *n*:
 - \Box $O(nB^2)$ for tree embedding
 - \Box O(nK) for text embedding
- □ Scales linearly w.r.t tree size

Algorithm 1: Hierarchical Topic Mining.

Input: A text corpus \mathcal{D} ; a category tree $\mathcal{T} = \{c_i\}|_{i=1}^n$; number of terms K to retrieve per category. **Output:** Hierarchical Topic Mining results $C_i|_{i=1}^n$. $u_w, v_w, d, c \leftarrow$ random initialization on \mathbb{S}^{p-1} ; $t \leftarrow 1;$ $C_i^{(1)} \leftarrow w_{c_i}|_{i=1}^n \qquad \triangleright$ initialize with category names; while t < K + 1 do $t \leftarrow t + 1;$ // Representative term retrieval; $C_i^{(t)}|_{i=1}^n \leftarrow \text{Eq.} (10)$ ▶ E-Step; // Embedding training; $\boldsymbol{u}_{w}, \boldsymbol{v}_{w}, \boldsymbol{d}, \boldsymbol{c} \leftarrow \text{Eq.} (11)$ ▶ M-Step; for $i \leftarrow 1$ to n do $C_i^{(t)} \leftarrow C_i^{(t)} \setminus \{w_{c_i}\}$ \triangleright exclude category names; Return $C_i^{(t)}|_{i=1}^n$;

Outline

- Motivation & Introduction
- Spherical Text and Tree Embedding
- Optimization
- Experiments
- Conclusions

Experiments: Datasets

Datasets

- New York Times annotated corpus (Sandhaus, 2008)
- ArXiv paper abstracts

Table 1: Dataset statistics.

Corpus	# super-categories	<pre># sub-categories</pre>	# documents
NYT	8	12	89,768
arXiv	3	29	230,105

Baselines

- hLDA (NIPS 2003) Manual select
- □ hPAM (ICML 2007) Manual select
- □ JoSE (NeurIPS 2019) Spherical embedding
- Poincare GloVe (ICLR 2019) Hyperbolic embedding
- □ Anchored CorEx (TACL 2017) Seed guided
- □ CatE (WWW 2020) Seed guided + embedding

Metrics:

- Averaged topic coherence: how coherent the mined topics are
- Mean accuracy: how accurately the retrieved terms belong to the category

I

Quantitative results

Madala	NYT		arXiv	
Models	TC	MACC	TC	MACC
hLDA	-0.0070	0.1636	-0.0124	0.1471
hPAM	0.0074	0.3091	0.0037	0.1824
JoSE	0.0140	0.6818	0.0051	0.7412
Poincaré GloVe	0.0092	0.6182	-0.0050	0.5588
Anchored CorEx	0.0117	0.3909	0.0060	0.4941
CatE	0.0149	0.9000	0.0066	0.8176
JoSH	0.0166	0.9091	0.0074	0.8324

 Table 2: Quantitative evaluation: hierarchical topic mining.

Qualitative results

Figure 3: Hierarchical Topic Mining results on NYT.

Experiments: Hierarchical Topic Mining

Qualitative results

(b) "Physics" subtree.

(a) "Math" subtree.

(c) "Computer Science" subtree.

Run Time

- □ JoSH enjoys high efficiency
- CatE needs to be run recursively on each set of sibling nodes since it requires all the input categories to be mutually semantically exclusive

Table 3: Run time (in minutes) on NYT. Models are run on a machine with 20 cores of Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz.

hLDA	hPAM	JoSE	Poincaré GloVe	Anchored CorEx	CatE	JoSH
53	22	5	16	61	52	6

Experiments: Weakly-Supervised Hierarchical Text Classification

- □ JoSH can be either directly used as a generative classifier, i.e., $y_d = \underset{c}{\arg \max vMF(d; c, \kappa_c)}$, or its text embedding can be used as features to existing classifiers (e.g. WeSHClass)
- Compared methods:
 - WeSHClass (AAAI 2019)
 - JoSH
 - WeSHClass + CatE (WWW 2020)
 - WeSHClass + JoSH
- Metrics: Micro-F1 and Macro-F1

Experiments: Weakly-Supervised Hierarchical Text Classification

Quantitative evaluation:

Table 4: Quantitative evaluation: weakly-supervised hierar-chical classification.

Madala	NYT		arXiv		
Models	Macro-F1	Micro-F1	Macro-F1	Micro-F1	
WeSHClass	0.425	0.581	0.320	0.542	
JoSH	0.429	0.600	0.367	0.610	
WeSHClass + CatE	0.503	0.679	0.401	0.622	
WeSHClass + JoSH	0.582	0.703	0.412	0.673	

Experiments: Joint Embedding Space Visualization

□ T-SNE visualization (stars=category embeddings; dots=representative word embeddings)

Experiments: Joint Embedding Space Visualization

□ T-SNE visualization (stars=category embeddings; dots=representative word embeddings)

Outline

- Motivation & Introduction
- Spherical Text and Tree Embedding
- Optimization
- **Experiments**

Conclusions

□ In this work, we introduce

- □ A new task for topic discovery: **Hierarchical topic mining**
- A joint text and tree embedding framework JoSH
- A principled optimization method to train JoSH

G Future work:

- Discover new categories in the hierarchy
- Taxonomy expansion and enrichment
- Embedding graph structure jointly with text

Thanks!

I