Spherical Text Embedding

Introduction

- Text Embedding is a milestone in NLP and ML
- Directional (cosine) similarity is more effective for embedding applications

Embedding Training in Euclidean Space | Post-processing |
| :---: |
| (Normalization) |

- The objective optimized is not really the one we use
Embedding dot product is optimized
- Inconsistency between training and usage

	Metrics	A: lover-quarrel	B: rock-jazz	
Training	Dot Product	5.284	$<$	6.287
sage	Cosine Similarity	0.637	$>$	0.628

- Spherical Text Embedding

- Train embeddings on the unit sphere
- Jointly learn word and document/paragraph embeddings
- State-of-the-art on various embedding applications

Model \& Optimization

- Spherical Generative Model (two-step generation)

- The generative probability is characterized by vMF distribution (Theorem 1) - Objective: $\mathcal{L}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{d})=\max \left(0, m-\log \left(c_{p}(1) \exp (\cos (\boldsymbol{v}, \boldsymbol{u})) \cdot c_{p}(1) \exp (\cos (\boldsymbol{u}, \boldsymbol{d}))\right)\right.$

$$
\left.+\log \left(c_{p}(1) \exp \left(\cos \left(\boldsymbol{v}, \boldsymbol{u}^{\prime}\right)\right) \cdot c_{p}(1) \exp \left(\cos \left(\boldsymbol{u}^{\prime}, \boldsymbol{d}\right)\right)\right)\right)
$$

$$
=\max \left(0, m-\cos (\boldsymbol{v}, \boldsymbol{u})-\cos (\boldsymbol{u}, \boldsymbol{d})+\cos \left(\boldsymbol{v}, \boldsymbol{u}^{\prime}\right)+\cos \left(\boldsymbol{u}^{\prime}, \boldsymbol{d}\right)\right)
$$

- Riemannian optimization with angular distance

$$
\boldsymbol{x}_{t+1}=R_{\boldsymbol{x}_{t}}\left(-\eta_{t}\left(1+\frac{\boldsymbol{x}_{t}^{\top} \nabla f\left(\boldsymbol{x}_{t}\right)}{\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|}\right)\left(I-\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}\right) \nabla f\left(\boldsymbol{x}_{t}\right)\right)
$$

Evaluations
-Word Similarity:

Table 1: Spearman rank correlation on word similarity evaluation.				
Embedding Space	Model	WordSim353	MEN	SimLex999
	Word2Vec	0.711	0.726	0.311
	GloVe	0.598	0.690	0.321
Euclidean	fastext	0.697	0.722	0.303
	BERT	0.477	0.594	0.287
Poincaré	Poincaré GloVe	0.623	0.652	0.321
Spherical	JoSE	$\mathbf{0 . 7 3 9}$	$\mathbf{0 . 7 4 8}$	$\mathbf{0 . 3 3 9}$

- Document Clustering:

Embedding	Clus. Alg.	MI	NMI	ARI	Purity
Avg. W2v	K-Means	1.299 ± 0.031	0,445 0.009	0.247 00.008	0.408 0.419
SIF		${ }^{0.893} \pm 0.028$	${ }^{0.308 \pm 0.009}$	0.137 ± 0.006	0.285 ± 0.011
Bert	SK-Mea	$\begin{aligned} & 0.719 \pm 0.0 \\ & 0.854 \pm 0.0 \end{aligned}$	$\begin{aligned} & 0.248 \pm 0.004 \\ & 0.289 \pm 0.008 \end{aligned}$	$\begin{aligned} & 0.100 \pm 0.003 \\ & 0.127 \pm 0.003 \end{aligned}$	$\begin{aligned} & 0.233 \pm 0.005 \\ & 0.281 \pm 0.010 \end{aligned}$
Doc2Vec		1.855 ± 0.020	0.626 ± 0.006	0.469 ± 0.015	0.640 ± 0.016
Ve	SK-Means	1.8	0.6	0.494 ± 0.012	0.648 ± 0.017
Jose	SK-Means	1.975 ± 0.0	0.663 ± 0.008	0.556 ± 0.018	

- Document Classification:

Embedding	20 Newsgroup		Movie Review	
	Macro-F1	Micro-Fl	Macro-F1	Micro-F1
Avg. W2V	0.630	0.631	0.712	0.713
SIF	0.552	0.549	0.650	0.656
BERT	0.380	0.371	0.664	0.665
Doc2Vec	0.648	0.645	0.674	0.678
JoSE	0.703	0.707	0.764	0.765

- Training Efficiency:

$$
\begin{aligned}
& \text { Table 4: Training time (per iteration) on the latest Wikipedia dump. } \\
& 0.8 \text { Gove fastext BERT Poincare Giove Jose }
\end{aligned}
$$

