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Overview of Text Representation Development

❑ Texts need to be represented as numbers/vectors so that computer 
programs can process them

❑ How were texts represented in history?

Figure from: Liu Z., Lin Y., Sun M. (2020) Representation Learning and NLP. In: Representation Learning for Natural Language Processing. Springer, Singapore.
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symbol-based representations distributed representations



Symbol-Based Text Representations

❑ One-to-one correspondence between text units and representation 
elements

❑ e.g., “dogs” = [1, 0, 0, 0, 0]; “cats” = [0, 1, 0, 0, 0]; “cars” = [0, 0, 1, 0, 0]; 
“like” = [0, 0, 0, 1, 0]; “I” = [0, 0, 0, 0, 1]

❑ Bag-of-words representation of documents: Describe a document 
according to which words are present, ignoring word ordering

❑ e.g., “I like dogs” may be represented as [1, 0, 0, 1, 1]
❑ Can further weigh words with Term Frequency (TF) and/or Inverse Document 

Frequency (IDF)
❑ Issues: Many dimensions needed (curse of dimensionality!); vectors do not 

reflect semantic similarity
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Distributed Text Representations

❑ The Distributional Hypothesis: “a word is characterized by the company it 
keeps”

❑ words that are used and occur in the same contexts tend to purport similar meanings

❑ Distributed representations (i.e., embeddings)
❑ The representation of any text unit is distributed over all vector dimensions as 

continuous values (instead of 0/1s)
❑ Advantage: Vectors are dense and lower-dimensional, better at capturing semantic 

similarity

❑ Distributed representations are usually learned based on the distributional 
hypothesis—vector space similarity reflects semantic similarity 

❑ We focus on distributed representations in this tutorial
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Introduction to Text Embeddings
❑ Unsupervised/Self-supervised learning of text representations—No annotation needed

❑ Embed one-hot vectors into lower-dimensional space—Address “curse of 
dimensionality”

❑ Word embedding captures useful properties of word semantics

❑ Word similarity: Words with similar meanings are embedded closer

❑ Word analogy: Linear relationships between words (e.g., king - queen = man -
woman)

Word AnalogyWord Similarity



Applications of Text Embeddings

❑ Text embeddings can be used in a lot of downstream applications
❑ Word/token/entity-level tasks
❑ Keyword extraction/clustering
❑ Taxonomy construction

❑ Document/paragraph-level tasks
❑ Document classification/clustering/retrieval
❑ Question answering/text summarization

Taxonomy Construction Document Classification
8
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Word2Vec

❑ Many text embeddings are learned in the Euclidean space (without constraints on vectors)
❑ Word2Vec maximizes the probability of observing a word based on its local contexts
❑ As a result, semantically coherent terms are more likely to have close embeddings

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their 
Compositionality. NIPS.
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GloVe

❑ GloVe factorizes a global co-occurrence matrix derived from the entire corpus
❑ Low-dimensional representations are obtained by solving a least-squares problem to “recover” 

the co-occurrence matrix

Sparse, high dimensional Low dimensional representation

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.
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fastText

❑ fastText improves upon Word2Vec by incorporating subword information into word embedding

❑ fastText allows sharing subword representations across words, since words are represented by 
the aggregation of their n-grams

Represent a word by the sum of the
vector representations of its n-grams

N-gram embedding

Word2Vec probability expression

Tri-gram extraction

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association 
for Computational Linguistics, 5, 135-146.
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Hyperbolic Embedding: Poincaré embedding 
❑ Why non-Euclidean embedding space?
❑ Data can have specific structures that Euclidean-space 

models struggle to capture

❑ The hyperbolic space
❑ Continuous version of trees
❑ Naturally equipped to model hierarchical structures

❑ Poincaré embedding
❑ Learn hierarchical representations by pushing general 

terms to the origin of the Poincaré ball, and specific 
terms to the boundary

Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.
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Texts in Hyperbolic Space: Poincaré GloVe

❑ GloVe in hyperbolic space
❑ Motivation: latent hierarchical structure of words exists among text
❑ Hypernym-hyponym
❑ Textual entailment

❑ Approach: use hyperbolic kernels!
❑ Effectively model generality/specificity

Tifrea, A., Bécigneul, G., & Ganea, O. (2019). Poincaré GloVe: Hyperbolic Word Embeddings. ICLR.

GloVe

Poincaré GloVe

Hyperbolic metric

Specific

General
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Directional Analysis for Text Embeddings

❑ How to use text embeddings? Mostly directional similarity (i.e., cosine 
similarity)

❑ Word similarity is derived using cosine similarity

❑ Better clustering performances when embeddings are normalized, and spherical clustering algorithms 
are used (Spherical K-means)

❑ Vector direction is what actually matters! 
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Issues with Previous Embedding Frameworks
❑ Although directional similarity has shown effective for various applications, previous 

embeddings (e.g., Word2Vec, GloVe, fastText) are trained in the Euclidean space

❑ A gap between training space and usage space: Trained in Euclidean space but used on 
sphere

Embedding Training in Euclidean Space Embedding Usage on the Sphere 
(Similarity, Clustering, etc.)

Post-processing 
(Normalization)
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Inconsistency Between Training and Usage

❑ The objective we optimize during training is not really the one we use

❑ Regardless of the different training objective, Word2Vec, GloVe and fastText all 
optimize the embedding dot product during training, but cosine similarity is what used 
in applications

Word2Vec GloVe fastText

Embedding dot product is optimized during training 
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Spherical Text Embedding: Generative Model

❑ We design a generative model on the sphere that follows how humans 
write articles:

❑ We first have a general idea of the paragraph/document, and then start to write down each word in 
consistent with not only the paragraph/document, but also the surrounding words

❑ Assume a two-step generation process: 

Document/
Paragraph (𝑑)

Center Word 
(𝑢)

Surrounding Word 
(𝑣)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text 
Embedding. NeurIPS.



❑ Understanding the spherical generative model
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Spherical Text Embedding: Illustration



❑ The final generation probability:

❑ Maximize the log-probability of a real co-occurred tuple (𝑣, 𝑢, 𝑑), while minimize that 
of a negative sample (𝑣, 𝑢′, 𝑑), with a max-margin loss:

22

Spherical Text Embedding: Objective

Positive Sample

Negative Sample



❑ Riemannian optimization with Riemannian SGD:
❑ Riemannian gradient:

❑ Exponential mapping (maps from the tangent plane to the sphere):

❑ Riemannian SGD:

❑ Retraction (first-order approximation of the exponential mapping):

23

Optimization on the Sphere



❑ Training details:
❑ Incorporate angular distances into Riemannian optimization

❑ Multiply the Euclidean gradient with its angular distance from the current point
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Optimization on the Sphere



❑ Word similarity results:

❑ Why does BERT fall behind on this task?

❑ BERT learns contextualized representations, but word similarity is conducted in a context-free 
manner 

❑ BERT is optimized on specific pre-training tasks like predicting masked words and sentence 
relationships, which have no direct relation to word similarity

25

Experiments



❑ Document clustering results:

❑ Embedding quality is generally more important than clustering algorithms: 

❑ Using spherical K-Means only gives marginal performance boost over K-Means

❑ JoSE embedding remains optimal regardless of clustering algorithms

26

Experiments
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From Context-Free Embedding to Contextualized Embedding

❑ Previous unsupervised word embeddings like Word2Vec and GloVe learn context-
free word embedding
❑ Each word has one representation regardless of specific contexts it appears in
❑ E.g., “bank” is a polysemy, but only has one representation

❑ Deep neural language models overcome this problem by learning contextualized
word semantics

“Open a bank account” “On the river bank”

28

Share representation
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Pre-Training Deep Language Models

❑ The “pretrain-finetune” paradigm has become the prominent practice in a
wide variety of text applications

❑ First pre-train language models (PLMs, often based on the Transformer
architecture) via self-supervised objectives on large-scale general-domain
corpora, then fine-tune them on task-specific data

❑ Based on the pre-training objective/task, PLMs can be generally
categorized into two types:

❑ Unidirectional (or autoregressive) PLM: Predict the next token based on all previous
tokens, leveraging single-directional (left-to-right) contexts (e.g., GPT)

❑ Bidirectional (or autoencoding) PLM: Predict masked/corrupted tokens based on all
other (uncorrupted) tokens, leveraging bidirectional contexts (e.g., BERT, XLNet,
ELECTRA)

30



GPT-Style Pre-Training: Introduction
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❑ Generative Pre-Training (GPT [1], GPT-2 [2], GPT-3 [3]): 
❑ Leverage unidirectional context (usually left-to-right) for 

next token prediction (i.e., language modeling)

❑ The Transformer uses unidirectional attention masks 
(i.e., every token can only attend to previous tokens)

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding 
by generative pre-training. OpenAI blog
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are 
unsupervised multitask learners. OpenAI blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). 
Language models are few-shot learners. NeurIPS.

𝑘 previous tokens as context



GPT-Style Pre-Training: Text Generation

32

❑ Unidirectional LMs are commonly used for text generation tasks (e.g., 
summarization, translation, …)

❑ They can be very, very large (GPT-3 has 175 Billion parameters!) and have 
very strong text generation abilities (e.g., generated articles make human 
evaluators difficult to distinguish from articles written by humans)

❑ A demo of real articles vs. generated texts by GPT-2 trained on 10K Nature 
Papers: https://stefanzukin.com/enigma/

https://stefanzukin.com/enigma/


❑ Word representations are learned functions of the internal states of a deep bi-
directional LSTMs

❑ Results in a pre-trained network that benefits several downstream tasks (e.g., Sentiment 
analysis, Named entity extraction, Question answering)

❑ However, left-to-right and right-to-left LSTMs are independently trained and 
concatenated

ELMo: Deep contextualized word representations

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M.P., Clark, C., Lee, K., & Zettlemoyer, L.S. (2018). Deep contextualized word 
representations. NAACL.

33



BERT: Masked Language Modeling
❑ Bidirectional: BERT leverages a Masked LM learning to introduce real 

bidirectionality training
❑ Masked LM: With 15% words randomly masked, the model learns bidirectional

contextual information to predict the masked words

34
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).



BERT: Next Sentence Prediction
❑ Next Sentence Prediction: learn to predict if the second sentence in the pair is the 

subsequent sentence in the original document

35



RoBERTa

❑ Several simple modifications that make BERT more effective:
❑ train the model longer, with bigger batches over more data
❑ remove the next sentence prediction objective
❑ train on longer sequences
❑ dynamically change the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A 
robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.



ALBERT

❑ Simple modifications that make BERT more efficient:
❑ Factorized embedding parameterization: use lower-dimensional token embeddings; 

project token embeddings to hidden layer dimension
❑ Cross-layer parameter sharing: Share feed-forward network parameters/attention 

parameters across layers
❑ Inter-sentence coherence loss: change the next sentence prediction task to sentence 

order prediction

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite BERT for 
self-supervised learning of language representations. ICLR.



XLNet: Autoregressive Language Modeling
❑ Issues with BERT: Masked tokens are predicted independently, and [MASK] token 

brings discrepancy between pre-training and fine-tuning
❑ XLNet uses Permutation Language Modeling 

38

q Permutes the text sequence 
and predicts the target word 
using the remaining words in 
the sequence

q Since words in the original 
sequence are permuted, 
both forward direction 
information and backward 
direction information are 
leveraged

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive 
Pretraining for Language Understanding. NeurIPS.



XLNet: Two-Stream Self-Attention
❑ Content representation: Encodes both token position as well as content
❑ Query representation: Encodes only token position

39

Content representation

Query representation



ELECTRA
❑ Change masked language modeling to a more sample-efficient pre-training task, 

replaced token detection
❑ Why more efficient:
❑ Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
❑ The generator trained with MLM is small (parameter size is ~1/10 of discriminator)
❑ The discriminator is trained with a binary classification task, instead of MLM (classification over the 

entire vocabulary)

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training text encoders as 
discriminators rather than generators. ICLR.40



ELECTRA

❑ Better GLUE (General Language Understanding Evaluation) test 
performance than previous MLM-based models under the same compute 
(measured by Floating Point Operations)

41



Challenges with ELECTRA-Style Pre-Training
❑ What are the potential issues with ELECTRA-style pretraining?
❑ The main model (i.e., discriminator) in ELECTRA is trained via a binary classification task,

which is simpler than language modeling tasks (usually over-30,000-way classification
tasks), but raises two challenges:

❑ Lack of the language modeling capability of the main model which is a necessity in some tasks (e.g.,
prompt-based fine-tuning)

❑ The binary classification task may not be fine-grained enough to capture certain word-level semantics 
that are critical for token-level tasks

42

Prompt-based fine-tuning transfers the PLMs’ language modeling ability to downstream tasks



Challenges with ELECTRA-Style Pre-Training
❑ What are the potential issues with ELECTRA-style pretraining?
❑ Representations from Transformer-based language models often reside in a narrow 

cone in the embedding space, which raises the risk of degeneration and requires post-
adjustment for meaningful sequence representations

❑ Two random sentences have high similarity scores (lack of uniformity)
❑ Two closely related sentences may have more different representations (lack of alignment)

❑ Plots: Distribution of cosine similarities between sequence pairs using their [CLS] 
embeddings from pretrained models

❑ random: random sentence pairs from pretraining corpus
❑ similar: semantically similar pairs annotated with maximum similarity from STS-B

43

RoBERTa sequence
embedding space:

ELECTRA sequence
embedding space:



COCO-LM: Method
❑ COCO-LM has two new pre-training tasks upon the corrupted sequences that address 

the challenges in ELECTRA-style pretraining
❑ Corrective Language Modeling (CLM)
❑ Sequence Contrastive Learning (SCL)

Meng, Y., Xiong, C., Bajaj, P., Bennett, P., Han, J., & Song, X. (2021). COCO-LM: Correcting and contrasting text 
sequences for language model pretraining. NeurIPS.
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COCO-LM: Method
❑ Corrective Language Modeling (CLM) trains the main Transformer to recover the 

original tokens
❑ The main Transformer needs to not only detect replaced tokens, but also output the original ones if

the tokens are replaced

❑ Sequence Contrastive Learning (SCL) trains the sequence embeddings (i.e., [CLS]
embedding) of a positive pair to be close and negative pairs to be apart

❑ Using token replaced sequence and cropped sequence as the positive pair
❑ Making the sequence representations robust to token-level and sequence-level alterations

45



COCO-LM: Results
❑ Outperforming previous PLMs on GLUE and SQuAD 2.0 dev sets
❑ One of the state-of-the-art PLMs for NLU tasks (Blog Post by Microsoft)

46

https://www.microsoft.com/en-us/research/blog/efficiently-and-effectively-scaling-up-language-model-pretraining-for-best-language-representation-model-on-glue-and-superglue/


AMOS: Adversarial Curriculum for Pre-Training

❑ Use a multi-layer MLM generator to create training signals (i.e., replaced tokens) of
different levels of difficulty

❑ Automatically learn a mixture of the multi-layer MLM generator’s outputs to construct
the most difficult signals for the discriminator learning for better sample efficiency

Meng, Y., Xiong, C., Bajaj, P., Bennett, P. N., Han, J., & Song, X. (2022). Pretraining Text Encoders with Adversarial 
Mixture of Training Signal Generators. ICLR.

47



AMOS: Results

48

❑ Further improvements over COCO-LM on GLUE
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Deployment of Pre-Trained Language Models

❑ Pre-trained language models (PLMs) are usually trained on large-scale 
general domain corpora to learn generic linguistic features that can be 
transferred to downstream tasks

❑ Common usages of PLMs in downstream tasks
❑ Fine-tuning: Update all parameters in the PLM encoder and task-specific layers

(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

❑ Parameter-efficient tuning: Only update a small portion of PLM parameters and keep
other (majority) parameters unchanged

❑ Prompt-based inference: Directly use PLMs to make predictions on cloze-type token
prediction tasks without parameter updates

50



Standard Fine-Tuning of PLMs

❑ Add task-specific layers (usually one or two linear layers) on top of the 
embeddings produced by the PLMs (sequence-level tasks use [CLS] token 
embeddings; token-level tasks use real token embeddings)

❑ Task-specific layers and the PLMs are jointly fine-tuned with task-specific 
training data

51



Prompt-Based Fine-Tuning of PLMs
❑ Task descriptions are created to convert 

training examples to cloze questions
❑ Highly resemble the pre-training tasks 

(MLM) so that pre-training knowledge could 
be better leveraged

❑ Better than standard fine-tuning especially 
for few-shot settings

52

Schick, T., & Schütze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.
Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.



Prompt-Based Fine-Tuning of PLMs

❑ Further improve prompt-based few-shot fine-tuning:
❑ Prompt templates and label words can be automatically generated
❑ Demonstrations can be concatenated with target sequences to provide hints

53
Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL



Zero-Shot Fine-Tuning of PLMs

54

❑ Prompt-based approaches have remarkable few-shot fine-tuning
performance, but their zero-shot performance is significantly worse

❑ Without any task-specific samples, it is challenging for PLMs to interpret 
the prompts that come in different formats and are unseen in the 
pretraining data

❑ The current mainstream of zero-shot learning is based on transfer 
learning

❑ Train PLMs on a large variety of different tasks with abundant annotations, and
transfer to unseen tasks

❑ Require many cross-task annotations and gigantic model sizes which are not
practical for common application scenarios



Zero-Shot Fine-Tuning of PLMs

55

❑ Can we do fully zero-shot learning, without any task-related or cross-
task annotations?

❑ When there are no training data, we can create them from scratch using
PLMs!

❑ Humans can generate training data pertaining to a specific label upon
given a label-descriptive prompt (e.g., “write a negative review:”)

❑ We can leverage the strong text generation power of PLMs to do the
same job



Generating Training Data with PLMs

56

❑ SuperGen: A Supervision Generation approach
❑ Use a unidirectional PLM to generate class-conditioned texts guided by prompts
❑ Fine-tune a bidirectional PLM on the generated data for the corresponding task

Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models: 
Towards Zero-Shot Language Understanding. arXiv preprint arXiv:2202.04538.



Zero-Shot Fine-Tuning Results

57

❑ Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned
on generated training data) is comparable or even better than strong few-shot
methods (fine-tuned on 32 manually annotated training samples per class)



Parameter-Efficient Tuning of PLMs

58

❑ Fine-tuning updates all PLM parameters at the same time
❑ Large PLMs can have an enormous amount of parameters that are

costly to optimize
❑ Can we optimize only a small set of parameters in PLMs while still

achieving comparable performance to fine-tuning?
❑ A few strategies:
❑ Adapter: Insert small bottleneck modules and only update adapter + layer norm

parameters
❑ Prefix Tuning: Prepend tunable prefix vectors to every Transformer layer and keep

other parameters unchanged
❑ Low-Rank Adaptation: Use trainable low-rank matrices to approximate weight 

updates



Adapter for Parameter-Efficient Tuning

59

❑ Adapters are added twice to each 
Transformer layer

❑ Consist of a bottleneck structure
(down-project + up-project)

❑ Only adapter parameters + layer
norm parameters are updated
during tuning

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019). 
Parameter-efficient transfer learning for NLP. ICML



Prefix Tuning

60

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.

❑ Prefix tuning prepends trainable vectors to each Transformer layer
❑ Only update prefix vectors and keep other pretrained parameters

unchanged
❑ Similar to prompt-based fine-tuning except that the prefix vectors are

continuous parameters instead of natural language words



Low-Rank Adaptation

61

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank 
adaptation of large language models. ICLR.

❑ Inject trainable low-rank matrices into transformer layers to approximate 
the weight updates

❑ Since low-rank matrices have far less parameters than full-rank ones,
training them is much more efficient than standard fine-tuning

A and B are low-rank matrices



Prompt-Based Inference Without Tuning

62

❑ Even without any training, knowledge can be 
extracted from PLMs through cloze patterns

❑ PLMs can serve as knowledge bases
❑ Pros: require no schema engineering, and support an 

open set of queries
❑ Cons: retrieved answers are not guaranteed to be 

accurate

❑ Could be used for unsupervised open-domain QA 
systems

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models 
as knowledge bases? EMNLP.



Prompt-Based Inference Without Tuning

63

❑ Large PLMs (e.g., GPT-3) 
have strong few-shot 
learning ability without any
tuning on large task-specific 
training sets

❑ Generate answers based on 
natural language 
descriptions and prompts
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