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Topic Modeling: Introduction

d How to effectively & efficiently comprehend a large text corpus?
d Knowing what important topics are there is a good starting point!
d Topic discovery facilitates a wide spectrum of applications

d Document classification/organization
aJ Document retrieval/ranking
O Text summarization

What are important
topics in the corpusZ
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Topic Modeling: Overview

d How to discover topics automatically from the corpus?

d By modeling the corpus statistics!

J
J

Each document has a latent topic distribution

Each topic is described by a different word distribution

Topics
gene 0.04
DNA  0.02

genetic  0.01

7

life 0.02
evolve  0.01
organism 0.01

| 7

data 0.02
number  0.02
computer 0.01

4

Documents

Topic Assignment

COLD SPRING HARBOR, NEW
YORK- How many  genes does an
organism need to survive; Last w

researchers with radically differ
approaches presented complementary

One research team, using computer
analyses to compare known genomes,
concluded that today's organism -
be sustained with just 250 genes, and
that the earliest life forms required a
mere 128 genes! The other researcher
mapped genes in a simple parasite and
estimated that for this organism, 800
genes are plenty to do the job-but that
anything short of 100 wouldn't be
enough.

Although the mnumbers don't
match precisely, those predictions

I

the|genome meeting here;™wagenome|

views of the basic genes|needed for life.

Seeking Life's Bare (Genetic) Necessities

Genome Mapping and | Sequencing/ =N
Cold Spring Harbor, New York, May 8 A
) p d O a o &4 .
apart,“ especially_jn-eofparison to the

75.000 [genesTn the human [genome] .
noteS™~Jjv  Andgj of
Upivesstty Tn-Swegden, who arrived at
the 800 number. Srt-cOming-up el 3 .

consensus answer may e morety

just a |genetic numbcrs I
particularly 2 and more jgenomes [
are completely mapped and sequenced= .
"It may be a way of organizing any
newly |sequenced, genomes explains
Arcady Mushegian,~a~gomputations
molecular biologist at the >
Center for Biotechnology” Informatio
(NCBI) in__Btthesda, Maryland.
Compgeng an ...

Word-Topic Matrix

Word 1 0.09 0.06

Wordn 0.08 0.01

Document-Topic Matrix

Doc 1 0.23 0.33

Doc n 0.15 0.28



Latent Dirichlet Allocation (LDA): Overview

d Each document is represented as a mixture of various topics

d  Ex. A news document may be 40% on politics, 50% on economics, and 10% on sports

d Each topic is represented as a probability distribution over words
d  Ex. The distribution of “politics” vs. “sports” might be like:

Topic “politics” Topic “Sports”

a Dirichlet priors are imposed to enforce sparse distributions:
- Documents cover only a small set of topics (sparse document-topic distribution)
O Topics use only a small set of words frequently (sparse topic-word distribution)



LDA: Generative Model

d Formulating the statistical relationship between words, documents and
latent topics as a generative process describing how documents are
created:

O For the ith document, choose 6; ~ Dir(«)  document’s topic distribution
0 For the kth topic, choose; ¢ i~ Dir(3)

ad For the jth word in the ith document,

____________________________




LDA: Inference

Q Learning the LDA model (Inference)
d What need to be learned

0 Document topic distribution @ (for assigning topics to documents)
O Topic-word distribution ¢ (for topic interpretation)
d  Words’ latent topic z

d How to learn the latent variables? — complicated due to intractable
posterior

. . i (8 )—b(o)
2 Monte Carlo simulation provided 153
d  Gibbs sampling ol P = .
O Variational inference | | .
4

latent observed
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Issues with LDA

Q LDA is completely unsupervised (i.e., users only input number of topics)

ad Cannot take user supervision

d

Ex. What if a user is specifically interested in some topics but LDA doesn’t discover

them?

Topic 1

Weight

Topic 2

Weight

Topic 3

Weight

Topic 4

Weight

Topic 5

life

man

.018076

father

graduate

son

mrs

daughter

mother

receive

degree

offici
force

military
war

government

al=

soldier

)
U

017620

law
court

Laws

state

judge

legal
rule

decision

file

0.021908
0.020658

0.019967

116935
0.014501
.012487
0.011141
).009854
0.009261

).008289

art

house

building

Topic 6

Topic 7

Topic 8

Weight

Topic 9

Weight

(1 I S Y]

o

=]

group

member

official
support
leader
organization
meet

effort

market

stock

share

company

investor

serve
add
minute
pepper
oil
cook
food
cup
sauce

small

.010918
0185

change
system
problem

power

0.007661

W

).00683
).005400

0.0050

0.0047

004574

0.004447
0.004280
0.004166

Topic 10
city
area
build

building
home

resident

community

live

project

Weight
0.021776

0.0148865

10 topics generated by LDA on The New York Times dataset




Supervised LDA (sLDA)

a Allow users to provide document annotations/labels

d Incorporate document labels into the generative process
2 Forthe ith document, choose 6; ~ Dir(a)  document’s topic distribution
a For thejth word in the ith document,

____________________________

---------------------- oo 1 L
For the ith document choose yz ~ N(77 Zi,0°) 4 %= 7 Zzw

____________________________________ j=1
(O L
OO @O e |
o Oa | Zan\ Wan Br ke ' generate document’s label !
o O
Yy D ] o’
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Seeded LDA: Guided Topic-Word Distribution

ad Another form of user supervision: several seed words for each topic

1. Foreach k=1---T,
(a) Choose regular topic ¢;. ~ Dir(/3,).
(b) Choose seed topic ¢; ~ Dir(f;).
(c) Choose 73, ~ Beta(1,1).

2. Foreachseedsets=1---8,

(a) Choose group-topic distribution s ~
Dir(o). Ty
- Seed topics used to improve the

1
| |
1 1
(a) Choose a binary vectorgoflength S. i tOpIC-WOFd distribution: i

+ Each word comes from either i
1 . . 1
i “regular topics” with a |
: distribution over all word like in
| |
1 1
i i
i i

3. For each document d,

(b) Choose a document-group distribution
¢ ~ Dir(rb).

(c) Choose a group variable g ~ Mult(¢%).

(d) Choose 64 ~ Dir(yg). //oflength T

(¢) Forcachiokeni = 1:::Not ________

i. Select a topic z; ~ Mult(6,). i
ii. Select an indicator z; ~ Bern(7, ).

o

LDA, or “seed topics” which only
' generate words from the seed set

. ifz; 1s 0

e Select a word w; ~ Mult(¢? ).
iv. if z; 1s 1

e Select a word w; ~ Mult(¢3, ).
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Seeded LDA: Guided Document-Topic Distribution

ad Another form of user supervision: several seed words for each topic

1. Foreach k=1---T,
(a) Choose regular topic ¢;. ~ Dir(/3,).
(b) Choose seed topic ¢; ~ Dir(f;).
(c) Choose 73, ~ Beta(1,1).

2.'Foreach seedset s=1---8,
(a) Choose group-topic distribution s ~
Dir(c).
3. For each document d,
(a) Choose a binary vector bof length S.
(b) Choose a document-group distribution
¢ ~ Dir(rb).
(c) Choose a group variable g ~ Mult(¢%).
(d) Choose 64 ~ Dir(pg). //oflength T
(e) Foreachtokeni =1--- Ny:
i. Select a topic z; ~ Mult(6,).
ii. Select an indicator z; ~ Bern(7, ).
. ifz; 1s 0
e Select a word w; ~ Mult(¢? ).
iv. if z; 1s 1
e Select a word w; ~ Mult(¢3, ).

Seed topics used to improve the
document-topic distribution:
Group-topic distribution = seed
set distribution over regular topics
Group-topic distribution used as
prior to draw document-topic
distribution

¥

QO
O~
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Motivations

d What are the limitations of topic models?

A Failure to incorporate user guidance: Topic models tend to retrieve the most general
and prominent topics from a text collection

2 may not be of a user’s particular interest

O provide a skewed and biased summarization of the corpus

Q Failure to enforce distinctiveness among retrieved topics: Topic models do not impose
discriminative constraints

0 concepts are most effectively interpreted via their uniquely defining features

 e.g. Egypt is known for pyramids and China is known for the Great Wall



Motivations

Q (Cont’d) Failure to enforce distinctiveness among retrieved topics: Topic models do not
impose discriminative constraints

d three retrieved topics from the New York Times annotated corpus via LDA:

Table 1: LDA retrieved topics on NYT dataset. The meanings
of the retrieved topics have overlap with each other.

Topic 1 Topic 2 Topic 3

canada, united states | sports, united states united states, iraq
canadian, economy olympic, games | government, president

- it is difficult to clearly define the meaning of the three topics due to an overlap of
their semantics (e.g., the term “united states” appears in all three topics)
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Introduction

ad A New Task: Discriminative Topic Mining

O Given a text corpus and a set of category names, discriminative topic mining aims to retrieve a
set of terms that exclusively belong to each category

O Ex. Given c¢q: “The United States”, ¢,: “France”,

3 correct to retrieve under -: Ontario is a province in Canada and exclusively
belongs to Canada

O incorrect to retrieve “North America” under «.: North America is a continent and does not
belong to any countries (reversed belonging relationship)

3 incorrect to retrieve “English” under - : English is also the national language of the United
States (not discriminative)
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Discriminative Topic Mining

ad A New Task: Discriminative Topic Mining
 Difference from topic modeling

3 requires a set of user provided category names and only focuses on retrieving terms
belonging to the given categories

O imposes strong discriminative requirements that each retrieved term under the
corresponding category must belong to and only belong to that category semantically
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CatE Embedding: Overview

a Motivation:

2 Topic models use document-topic and topic-word distributions to model the text generation
process

O able to discover hidden topic semantics
O bag-of-words generation assumption
O Word embeddings capture word semantic correlations via the distributional hypothesis
O captures local context similarity
d not exploit document-level statistics (global context)

d not model topics

d Take advantage of both frameworks!
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CatE Embedding: Text Generation Modeling

O Modeling text generation under user guidance
Q A three-step process:
1. A document d is generated conditioned on one of the n categories 1. Topic assignment

2. Each word w; is generated conditioned on the semantics of the
document d 2. Global context

3. Surrounding words w; ; in the local context window of w; are
generated conditioned on the semantics of the center word w;

3. Local context

Q Likelihood of corpus generation conditioned on user-given categories
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CatE Embedding: Objective

a Objective: negative log-likelihood

P010r= [T o ea [ posi 10} [T | oy 1)

deD w; €d l Wit €d i

__________________

~h<j<h,j#0
2. Global context 3. Local context

__________________

p(d | cq) o pleq | dp(d) « pleg | d) e | | plea | w),

wed

ad How do we know which word belongs to which category (word-topic distribution)?



23

Category Representative Word Retrieval

d As a starting point, we propose to retrieve representative words by jointly considering
two separate aspects:

0 Relatedness: measured by embedding cosine similarity
O Specificity: category representative words should be more specific than the category name

a Ex. “Ontario” can be selected as a category representative word of “Canada” since it is
related to “Canada” and more specific than “Canada”.

d How do we know the specificity of words?
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Word Semantic Specificity

A Word distributional specificity:

Definition 2 (Word Distributional Specificity). We assume there
is a scalar k,, > 0 correlated with each word w indicating how
specific the word meaning is. The bigger «,, is, the more specific
meaning word w has, and the less varying contexts w appears in.

a Ex. “seafood” has a higher word distributional specificity than “food”, because seafood
is a specific type of food
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Interpreting The Model

a Preliminary: The vMF distribution — A distribution defined on unit sphere

Tl ) = cp(izc__i) eXp(KxTEE),
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Interpreting The Model

A (Theorem) Our model essentially learns both word embedding and word distributional
specificity that maximize the probability of the context vectors getting generated by the
center word’s vVMF distribution

- an an o A GL G) OGP GD G) G) GE G G G Gn an e r ----------------
A T : L ARG
KR food = 0.615 Rseafood = 0.728
“food” “seafood’ .,
% " 7\ prawn
~ = e 4 “seafood” Crat,> = 3

2 ‘oyster”
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Category Representative Word Retrieval

ad Ranking Measure for Selecting Class Representative Words:

O We find a representative word of category ¢; and add it to the set S by

-------------------------------------- 255
E _ _ _ i I Prefer words with low distributional E
i P.refer.wc.)rd.s hav-lng high embedding L E specificity (more general) i
| cosine similarity with the category name | ™ R S )
I | S 7

~

-
- ~
-~ ~
- ~
- ~
-
- ~
- ~
- ~
P
- ~
- ~
- ~
- ~

1
i w hasn’t been a
1
1

|
i w must be more specific
representative word !

than the category name
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Experiment Settings

O Datasets

A New York Times annotated corpus (Sandhaus,
2008)

 topic
O location

d Recently released Yelp Dataset Challenge
d food type

O sentiment

NYT - Topic

10000

8000

6000

# of Docs

4000

2000

Business

Politics

Sports

Health

Education
Real Estate

Yelp - Food

Arts

Science

Technology

4000
3500
3000
g 2500
%5 2000
* 1500
1000
500

burgers

pizza

salad

sushi bars
steakhouses

seafood

noodles

desserts

NYT - Location

10000

8000

6000

# of Docs

4000

2000

United States

Iraq

Japan

China

=<
L8
o

Britain

Russia
Germany
Canada

- Sentiment

France

Italy

16000
14000
12000

[y
o
o
o
o

8000

# of Docs

6000
4000
2000

good

Figure 2: Dataset statistics.

°
©
Qo
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Qualitative Results

NYT-Location NYT-Topic Yelp-Food Yelp-Sentiment
Methods - : »
britain canada education politics burger desserts good bad
company (X) percent (X) school campaign fatburger ice cream great valet (X)
companies (X) economy (X) students clinton dos (X) chocolate place (X) peter (X)
LDA british canadian city (x) mayor liar (X) gelato love aid (X)
shares (X) united states (X) state (X) election cheeseburgers tea (X) friendly relief (X)
great britain trade (X) schools political bearing (X) sweet breakfast rowdy
british city (x) state (X) republican like (X) great (X) place (X)  service (X)
industry (X) building (X) school political fries like (X) great did (x)
Seeded . . .
LDA deal (X) street (X) students senator just (X) ice cream service (X)  order (X)
billion (X) buildings (x) city (X) president great (X) delicious (X) just (X) time (X)
business (X) york (X) board (x) democrats time (X) just (X) ordered (X) ordered (X)
germany (X) toronto arts (X) religion burgers chocolate tasty subpar
spain (X) osaka (X) fourth graders race fries complimentary (X) decent positive (X)
TWE manufacturing (X) booming (X) musicians (X) attraction (X) hamburger green tea (X) darned (x) awful
south korea (X) asia (X) advisors era (X) cheeseburger sundae great crappy
markets (X) alberta regents tale (X) patty whipped cream | suffered (X) honest (X)
moscow (X) sports (X) republican (X) military (X) order (X) make (X) selection (X) did (X)
british games (X) senator (X) war (X) know (X) chocolate prices (X) just (X)
Anchored .
CorFx london players (x) democratic (X) troops (X) called (x) people (X) great came (X)
german (X) canadian school baghdad (x) fries right (X) reasonable  asked (X)
russian (X) coach schools iraq (X) going (X) want (X) mac (X) table (X)
france (X) canadian higher education political hamburger pana decent horrible
germany (X) british columbia educational expediency (X) cheeseburger gelato great terrible
Labeled o . .
ETM canada (X) britain (X) school perceptions (X) burgers tiramisu tasty good (X)
british quebec schools foreign affairs patty cheesecake bad (x) awful
europe (X) north america (X) regents ideology steak (X) ice cream delicious  appallingly
england ontario educational political burgers dessert delicious sickening
london toronto schools international politics | cheeseburger pastries mindful nasty
CatE britons quebec higher education liberalism hamburger cheesecakes excellent dreadful
scottish montreal secondary education political philosophy | burger king scones wonderful freaks
great britain ottawa teachers geopolitics smash burger ice cream faithful cheapskates




Quantitative Results

NYT-Location| NYT-Topic | Yelp-Food |Yelp-Sentiment

Methods TC MACC| TC MACC| TC MACC| TC MACC
LDA 0.007 0.489 |0.027 0744 |-0.033 0.213 |-0.197 0.350
Seeded LDA |0.024 0.168 |0.031 0456 | 0.016 0.188 | 0.049 0.223
TWE 0.002 0.171 |-0.011 0.289 | 0.004 0.688 |-0.077 0.748

Anchored CorEx | 0.029 0.190 | 0.035 0.533 | 0.025 0.313 | 0.067 0.250
Labeled ETM |0.032 0.493 | 0.025 0.889 | 0.012 0.775 | 0.026  0.852
CatE 0.049 0.972 |0.048 0.967 | 0.034 0.913 [ 0.086 1.000
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Case Study

A Discriminative Embedding Space

“
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. *Tge - ~ o .’
Russia, "¢, , Y :.-:. [ Peee '.o .A!rac.|'
Canada

<ltaly., s

Brit;in§° ?ﬁ&t

° ’.France

Germany

-600

—400

-200 0 200

(@) Epoch 1

400 600

100

& .;OI it 75 *
raq
Japan "‘ o 50 Canada chinXe
[talv. ®® o : . Peopli ina
Germany *a Yo , ”ta"t\. 4 : Britain .’. ‘\Q
K oy N o *‘ *.Iiussm . 8 7ot
Canada%fk u.s. ;‘ ] *. italy u.S. q Japan*..
cnniy | Vrance gl P 2
ot . Russia™ o,
France
German
‘ol ¥ v
(b) Epoch 3 (c) Epoch 5




Case Study

A Coarse-to-Fine Topic Presentation

Range of k

Science (k. = 0.539)

Technology (k. = 0.566)

Health (k. = 0.527)

Ke < Kk < 1.25k,

scientist, academic, research, laboratory

machine, equipment, devices, engineering

medical, hospitals, patients, treatment

1.25k. < Kk < 1.5k,

physics, sociology,
biology, astronomy

information technology, computing,
telecommunication, biotechnology

mental hygiene, infectious diseases,
hospitalizations, immunizations

1.5k, < k < 1.75k,

microbiology, anthropology,
physiology, cosmology

wireless technology, nanotechnology,
semiconductor industry, microelectronics

dental care, chronic illnesses,
cardiovascular disease, diabetes

Kk > 1.75k,

national science foundation,
george washington university,
hong kong university,
american academy

integrated circuits,
assemblers,
circuit board,
advanced micro devices

juvenile diabetes,
high blood pressure,
family violence,
kidney failure

32




33

Outline

d Unsupervised Topic Modeling
d Supervised & Seed-Guided Topic Modeling
Q Discriminative Topic Mining
2 Introduction of the Task
0 CatE: Discriminative Topic Mining via Category-Name Guided Text

Embedding [WWW’20]
- JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text @

Embedding [KDD’20]
d Clustering-based Topic Discovery



34

Motivation

ad Mining a set of meaningful topics organized into a hierarchy is intuitively appealing and
has broad applications

0 Coarse-to-fine topic understanding
2 Hierarchical corpus summarization
O Hierarchical text classification

a ..

a Hierarchical topic models discover topic structures from text corpora via modeling the
text generative process with a latent hierarchy



JoSH Embedding

A Difference from hyperbolic models (e.g., Poincare, Lorentz)

O Hyperbolic embeddings preserve absolute tree distance (similar embedding distance =>
similar tree distance)

2 We do not aim to preserve the absolute tree distance, but rather use it as a relative measure
ROOT

Tree distance = 2 Q/O\\

sports

R‘arts
r == -~ ___-I ’
Tree distance =2 ! df \CD : O O

baseball __soccér music dance

____________________________________________________________________________________________________________________________________________________

Although diree(Sports, arts) = di..e (baseball, soccer), “baseball” and “soccer” should be
| embedded closer than “sports” and “arts” to reflect semantic similarity.

Use tree distance in a relative manner: Since diree(Sports, baseball) < di .. (baseball, soccer),
“baseball” and “soccer” should be embedded closer than “baseball” and “soccer”.

35
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JoSH Tree Embedding

d Intra-Category Coherence: Representative terms of
each category should be highly semantically relevant
to each other, reflected by high directional similarity
in the spherical space

: i
Lintra = Z Z mm(O, uchi - mintra)a

CiETWj €C;

O Inter-Category Distinctiveness: Encourage
distinctiveness across different categories to avoid
semantic overlaps so that the retrieved terms
provide a clear and distinctive description

Linter = Z Z min(0, 1 — C;rcj — Minter)-

CiGTCjET\{Ci}

()i ntra S arccos ( Mintra )

Ointer = 8.1'CCOS(1 — "n'intcr)

Hintra

Hint,or

(a) Intra- & Inter-Category Configuration.



JoSH Tree Embedding

d Recursive Local Tree Embedding: Recursively embed local structures of the category
tree onto the sphere

Q Local tree: A local tree T;- rooted at node ¢, € T consists of node c¢,- and all of its direct
children nodes

<)
pm §
.

sports i |
Local tree (sports) i : d ‘O i Local tree (arts)
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JoSH Tree Embedding

d Preserving Relative Tree Distance Within Local Trees: A category should be closer to
its parent category than to its sibling categories in the embedding space

ROOT ROOT
O O
spo% art;/Q\ /quence sports O arts /quence
O 000 000 OO0 O 0 OO0 00 00 O 0
baseball soccer tennisdance music film biology physics chemistry baseball soccer tennisdance music film biology physics chemistry

_ : T 1 .
Linter = Z Z min (0, C;Cr—¢C; Cj — Minter)»
Ci€7; CjE(];\{Cr,Ci}

physics

(b) Embed First-Level Local Tree. (c) Embed Second-Level Local Trees.
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JoSH Text Embedding

d Modeling Text Generation Conditioned on the Category Tree (Similar to CatE)

Q A three-step process:
1. A document d; is generated conditioned on one of the n categories 1. topic assignment
p(dl | Ci) = VMF(db Ci, KCZ') — np<KCi) eXp (KC,' ) COS(dl’, Ci))
2. Each word wj is generated conditioned on the semantics of the document

d; 2. Global context

p(wj | di) o« exp(cos(uw,;, di))

3. Surrounding words w; . in the local context window of w; are generated

conditioned on the semantics of the center word w;
3. Local context

p(Wj+k | wj) o eXp(COS(Uu{Hk,uw,-))



Experiments: Quantitative results

Table 2: Quantitative evaluation: hierarchical topic mining.

40

Models NYT arXiv
" i & MACC i 6 MACC
hLDA -0.0070 0.1636 | -0.0124 0.1471
hPAM 0.0074  0.3091 | 0.0037 0.1824
JoSE 0.0140 0.6818 | 0.0051 0.7412
Poincaré GloVe 0.0092 0.6182 | -0.0050 0.5588
Anchored CorEx | 0.0117  0.3909 | 0.0060 0.4941
CatE 0.0149  0.9000 | 0.0066 0.8176
JoSH 0.0166 0.9091 | 0.0074 0.8324




Experiments:

ualitative Results

ROOT
sports science education health business politics technology arts
tournament physics curriculum aids corporations ideology software theater
championship biology school-based | [ health-care employees partisan chip artist
team chemistry educational mental health jobs political electronics contemporary
finals \ scientist elementary patients industries conservatism | | technologies classics
basketball astronomy instruction pediatric wholesaling liberal computer / studio \
/ 4 N ! | S —— W : i
hockey golf baseball soccer markets media small business music dance movies design theater
n.h.l golf club dodgers soccer federation stocks television small businesses songs modern-dance films architects playhouse
canucks nine-hole pitching striker currency columnists self-employed tunes dancers hollywood building shubert
lindros tiger woods yankees cup trading newspapers low-wage guitar choreographer comedies designers broadway
mogilny golf courses outfielder finals investors broadcast low-income melody ballet film maker modernist mccarter
defenseman sawgrass ballplayers champion traders radio minimum-wage jazz troupe blockbusters sculptor lortel
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Figure 3: Hierarchical Topic Mining results on NYT.
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Experiments: Qualitative Results

math
numbers
polynomials
scalars
mathematicians
‘// planes \
v
numerical analysis geometry probability pde optimization
random matrix spheres random variable integral equations minimization
spectral analysis hypersurfaces markov chain hamilton-jacobi maximization
fourier analysis geodesics conditional fully nonlinear stochastic optimization
asymptotic analysis foliations random walk fokker-planck non-convex
convex analysis submanifolds marginal heat equation objective function

(a) “Math” subtree.

L

physics

particle physics
black holes
dark matter
neutrino
photons

N

optics atomic accelerator || fluid dynamics plasma
invisibility excited states lhc aps-dfd electrostatic
cloaks molecule fermilab liquid tokamak
lenses helium collider fluid motion heating
metamaterials ionization linac droplet magnetized
electromagnetic metastable storage ring supersonic space charge

computer science

computer
machine learning
artificial intelligence

(b) “Physics” subtree.

data mining
/ robotics \
/ v

natural language processing pattern recognition networking programming languages game theory
machine translation image processing cloud computing libraries decision problems
parsing computer vision p2p python influence diagrams

question answering image segmentation iot java two-player
information extraction object recognition sdn C++ incomplete information
summarization vision tasks virtualization compiler nash equilibria

(c) “Computer Science” subtree.




Experiments: Joint Embedding $pace Visualization

A T-SNE visualization (stars=category embeddings; dots=representative word embeddings)
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(a) NYT joint embedding space.



Experiments: Joint Embedding $pace Visualization

A T-SNE visualization (stars=category embeddings; dots=representative word embeddings)
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Outline

d Unsupervised Topic Modeling
d Supervised & Seed-Guided Topic Modeling

Q Discriminative Topic Mining

TopClus: Topic Discovery via Latent Space Clustering of Pretrained
Language Model Representations [WWW’22]

d Clustering-Based Topic Discovery
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Clustering-Based Topic Discovery

Topic modeling frameworks use bag-of-words features (i.e., only word
counts in documents matter; word ordering is ignored)

In Part | of the tutorial, we introduced distributed text representations

(text embeddings and language models) that better model sequential
information in text

Can we take advantage of those advanced text representations for the
topic discovery task, as an alternative to topic modeling?
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Word Embedding + Clustering

d

d

Cast “topics” as clusters of word types — similar to taking the top-ranked
words from each topic’s distribution in topic modeling

How to obtain word clusters? Run clustering algorithms on word
embeddings

Since the text embedding space captures word semantic similarity (i.e.,
high vector similarity implies high semantic similarity), using distance-
based clustering algorithms (like K-means) will naturally group
semantically similar words into the same cluster
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Clustering-Based Topic Discovery: A benchmark study

d Clustering algorithms:

d  k-means (KM)

d  Gaussian Mixture Models (GMM)
d Embeddings:

Word2Vec

GloVe

fastText

Spherical text embedding
ELMo
BERT

O 0O 0 0 0O O

Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of Topic Models? Clusters of Pretrained Word
Embeddings Make for Fast and Good Topics too! EMNLP
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Clustering-Based Topic Discovery: Word Frequency

d One thing to consider is that text embeddings do not explicitly encode
frequency information, which is important for topic discovery (i.e., more
frequent words in the corpus may be more representative)

d Two ways to incorporate frequency information

d  Weighted clustering: Frequent words weigh more when computing cluster centroids

Rerank words in clusters: Rerank terms by frequency in each cluster when selecting
representative terms



Clustering-Based Topic Discovery: Results

Using k-means (KM)/Gaussian Mixture Models (GMM) as clustering algorithm and
using Spherical text embedding/BERT as representations leads to comparable results
with LDA

Future work
0 More advanced clustering algorithms?
d  Joint modeling of document-topic distribution via clustering?

.l . . 1
weighted clustering + reranking
Reuters 20-Newsgroups i
KM GMM‘ KM GMM KM GMM KM GMM KM GMM KM GMM | KM GMM ; KM GMM
1 019 020
ELMo (| -0.73 -0.55 -0.43 0.00 -0.10 -0.08% -0.02 0.06 -056 -0.13 | -038 0.18| 0.13 0.14! 0.16 0.19

GloVe || -0.67 -0.59 -0.04 0.01 -0.27 -0.03
Fasttext [l -068 __-0.70. . -0.46._ _-0.08__ (.00 0.00
Spherical | -0.53 -0.65 -0.07 0.09 0.01 -0.05
BERT | -043 -0.19 -0.07 0.12  0.00 -0.01

-0.06  -0.03
0.12 0.03

006 0114 -032__-020.1-0.18 021 _[BOBAE " N9 HNENGS 0.24
0.10 0.2 -005 -024| 024 023 | 025 022! 026 0.24
0.12 oSS 004 0.14 | 0.25 025 | 0.17 0.19 1 0:25 0.25

0.05 0.10 §| -0.21  -0.11 | -0.02 0.21 | 0.20 0.20 ! 0.23 0.23
0.05 0.04 0.21 0.13 0.25 0.05 | 0.04 0.04 1 0.04 0.02

I
I
I

Word2vec | -0.39 -047 -0.21 -0.09 0.02 0.01i 0.03 0.08 y| -0.21 -0.10 | -0.11 0.13 | 0.18 0.16

I
I
I
I
I
I
I
I
I
I
I
I
I

0.01 005y -0.18 -0.12| 0.06 = 024 | 022 023! 023 023 |
I
I
I
I
I
I
i
I
I
I
I

average || -0.57 -0.52 | -0.21 0.01
std. dev. 0.14  0.18

0.19 0.09

Table 1: NPMI Results (higher is better) for pre-trained word embeddings and k-means (KM), and Gaussian
Mixture Models (GMM). <" indicates weighted and <, indicates reranking of top words. For Reuters (left table),
LDA has an NPMI score of 0.12, while GMM}” BERT achieves 0.15. For 20NG (right), both LDA and KM}’
Spherical achieve a score of 0.26. All results are averaged across 5 random seeds.
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Outline

d Unsupervised Topic Modeling
d Supervised & Seed-Guided Topic Modeling
Q Discriminative Topic Mining

d Clustering-Based Topic Discovery

TopClus: Topic Discovery via Latent Space Clustering of Pretrained @
Language Model Representations [WWW’22]
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Motivation

Q Recently, pre-trained language models (LMs) have achieved enormous
success in lots of tasks

O  They employ Transformer as the backbone architecture for capturing the long-range, high-order
semantic dependency in text sequences, yielding superior representations

O They are pre-trained on large-scale text corpora like Wikipedia, they carry generic linguistic features
that can be generalized to almost any text-related applications

Q Given the strong representation power of the contextualized embeddings,
it is natural to consider simply clustering them as an alternative to topic
models

d Topics are essentially interpreted via clusters of semantically coherent and
meaningful words

d Interestingly, such an attempt has not been reported successful yet
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The Challenges

ad Why not naively cluster pre-trained embeddings?

d Visualization: The embedding spaces do not exhibit clearly separated clusters

Q Applying K-means with a typical K (e.g., K=100) to these spaces leads to low-
qguality and unstable clusters

—100 0 100 —100 0 100

(a) New York Times. (b) Yelp Review.

Figure 1: Visualization using t-SNE of 10, 000 randomly sam-
pled contextualized word embeddings of BERT on (a) NYT
and (b) Yelp datasets, respectively. The embedding spaces do
not have clearly separated clusters.
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The Challenges

J
J

d

d

d

Theoretically, such embedding space structure is due to too many clusters

Theorem: The MLM pre-training objective of BERT assumes that the
learned contextualized embeddings are generated from a Gaussian
Mixture Model (GMM) with |V| mixture components where |V] is the
vocabulary size of BERT.

Mismatch between the number of clusters in the pre-trained LM
embedding space and the number of topics to be discovered

If a smaller K (K << |V]) is used, the resulting partition will not fit the
original data well, resulting in unstable and low-quality clusters

If a bigger K (K= |V]) is used, most clusters will contain only one unique
term, which is meaningless for topic discovery



55

The Latent Space Model

d We propose to project the original embedding space into a latent space
with K clusters of words corresponding to K latent topics

d We assume that the latent space is lower-dimensional and spherical, with
the following preferable properties:

2 Spherical latent space employs angular similarity between vectors to capture word semantic
correlations, which works better than Euclidean metrics

O  Lower-dimensional space mitigates the “curse of dimensionality”

O  Projection from high-dimension to lower-dimension space forces the model to discard the
information that is not helpful for forming topic clusters (e.g., syntactic features, “play”, “plays” and
“playing” should not represent different topics)
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Latent Topic $Space

We propose a generative model for the joint learning
tr ~ Uniform(K), z; ~ VMFy (tr, k), hi = g(zi).
A topic t is sampled from a uniform distribution over the K topics

A latent embedding z is generated from the vMF distribution associated
with topic t

A function g maps the latent embedding z to the original embedding
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The Latent Space Model

d We propose to jointly learn the latent space projection and cluster in the
latent space

0 The latent representation learning is guided by the clustering objective
d  The cluster quality benefits from the well-separated structure of the latent space

a  Achieve a mutually-enhanced effect
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The Latent Space Model

d How to train the generative model?

O A preservation loss that encourages the latent space to preserve the semantics of the original pre-
trained LM induced embedding space (preservation of original PLM embeddings)

0 Areconstruction loss to ensure the learned latent topics are meaningful summaries
of the documents (Topic reconstruction of documents)

d  Aclustering loss that enforces separable cluster structures in the latent space for distinctive topic
learning (clustering)
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Preservation of Original PLM Embeddings

Motivated by the general idea of generative model training that optimizes
the model to faithfully generate the original data

We encourage the output of the autoencoder to recover the structure of
the original embedding space by minimizing the cosine distance between

the generated and the original embedding

N
L= 2 o (1)



Topic Reconstruction of Documents

d We aim to reconstruct document semantics with topic representations so
that the learned latent topics are meaningful summaries of the documents.

d We require the reconstructed document embedding to be a good
approximation of the original content by minimizing the following
reconstruction loss:

rec — E'

reconstructed document embedding

il(d) B ’-l(d)”Z

K average of original word
,jl(d) _ ZP (tk‘z(d)) iks ik — g(tk), embeddings in the document
k=1
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The Clustering Loss

ad An EM algorithm, analogous to K-means

d The E-step estimates a new cluster assignment of each word based on the current

parameters

d  The M-step updates the model parameters given the cluster assignments

......................................................

Start of EM Algorithm
£ [ 2
. w 2
29 @ 4 le’ ® 2. ) t«%& (@]
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(a) Start of EM Algorithm.
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Clustering EM

ad E-step:
d Use the current posterior to derive a new posterior as the new cluster
assignment
p(zilti)p ()
21 <k <k P(Ziltp ) p(txr)

\ 4

tr ~ Uniform(K), z; ~ vMFy (g, k), hi = g(z;).

\

p(tx) =1/K p(zilty) = VMFEg (tg, k) = ng (x) exp (k - cos(zi, tx))

$

exp (k - cos(zi, t))
D1<k <K €xp (k - cos(zj, tr))

p(trlzi) =

p(telzi) =
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Clustering EM

a E-step:

O Use the current posterior to derive a new posterior as the new cluster assignment
p(zilt)p(tk)
21 <k <Kk P(ziltg ) p(txr)

$

2
p(tilzi)*/sk
B 7' :
21<k <k Ptk |zi)? [k 1<i<N

p(trlzi) =

q(trlzi) =

A Such a new posterior has the following advantages:

O Distinctive topic learning: Squaring-then-normalizing the current posterior distribution has a
sharpening effect that skews the distribution towards its most confident cluster assignment

O Topic prior regularization: Dividing by the soft cluster frequency s, encodes the uniform topic prior
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Clustering EM

M-step:
Update the model parameters according to the new cluster assighnment

Laws=- ), ), qltclzi)logp(tlzi).

1<i<N 1<k<K
Both the topic center vectors and latent representations are updated to fit
the new estimate

This is the joint learning of latent space mapping functions and cluster
structures



Experiments

Q Topic Discovery

Qualitative

Quantitative
NYT Yelp
Methods | ;v UCI Int. Div.|UMass UCI Int Div.
LDA -3.75 -1.76 053 0.78 | -4.71 -2.47 0.47 0.65
CorEx -3.83 -0.96 0.77 - -4.75 -1.91 0.43 -
ETM | 298 -098 0.67 030| -3.04 -033 047 0.16
BERTopic| -3.78 -0.51 0.70 0.61| 637 -2.05 073 0.36
TopClus | -2.67 -0.45 0.93 0.99 | -1.35 -0.27 0.87 0.96
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NYT Yelp
Methods Topic 1 Topic 2 Topic 3 Topic4  Topic 5 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
(sports) (politics) (research)  (france)  (japan) (positive) (negative)  (vegetables)  (fruits) (seafood)
olympic mr said french  japanese amazing loud spinach mango fish
year bush report union tokyo really awful carrots  strawberry roll
LDA @ president evidence  germany year m sunday greens vanilla salmon
games white findings workers ~ matsui | phenomenal like salad banana fresh
team house defense paris said pleasant slow dressing peanut ngi
baseball house possibility ~ french  japanese great even garlic strawberry  shrimp
championship white challenge italy tokyo friendly bad tomato caramel beef
CorEx playing support reasons ITris index atmosphere mean onions sugar crab
fans groups give francs osaka love cold toppings fruit dishes
leaTgue member plaﬁed jacques electronics | favorite literally slices mango salt
olympic government  approach french  japanese nice disappointed  avocado  strawberry  fish
league national problems  students agreement worth cold greek mango shrimp
ET™M national plan experts paris tokyo lunch review salads sweet lobster
basketball pﬁc move german  market | recommend  experience spinach soft crab
athletes support give american  european friendly bad tomatoes ﬂars chips
swimming bush researchers  french  japanese | awesome horrible tomatoes  strawberry lobster
freestyle democrats scientists paris tokyo atmosphere quality avocado mango crab
BERTopic popov white cases lyon ufj friendly disgusting soups cup shrimp
gold bushs genetic minister  company night disappointing kale lemon oysters
olympic house study billion yen good place cauliffower = banana  amazing
athletes government hypothesis  french  japanese good tough potatoes  strawberry  fish
medalist ministry  methodology  seine tokyo best bad onions lemon octopus
TopClus olympics  bureaucracy possibility toulouse  osaka friendly painful tomatoes apples shrimp
tournaments  politicians criteria marseille hokkaido cozy frustrating cabbage grape lobster
quarterfinal electoral  assumptions  paris  yokohama casual brutal mushrooms  peach crab




Experiments

3 Visualization
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Figure 5: Visualization using t-SNE of 10,000 randomly sampled latent embeddings during the course of TopClus training,.
Embeddings assigned to the same cluster are denoted with the same color. The latent space gradually exhibits distinctive and
balanced cluster structure.
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Advantages of TopClus over topic models

d TopClus works with contextualized embeddings which provide better word
representations than the “bag-of-words” assumption of topic models

ad TopClus employs pre-trained LMs to bring in general linguistic knowledge
which helps generate more reliable and stable word representations on
the target corpus than training topic models from scratch on it

d TopClus does not involve any probabilistic approximations, and is
computationally and conceptually simpler than variational inference in
topic models
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