

Part III: Embedding-Driven Topic Discovery

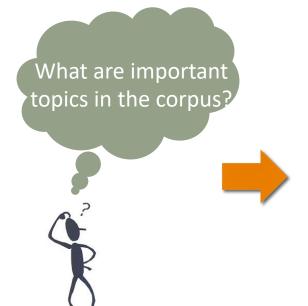
Outline

Unsupervised Topic Modeling

- Supervised & Seed-Guided Topic Modeling
- Discriminative Topic Mining
- Clustering-Based Topic Discovery

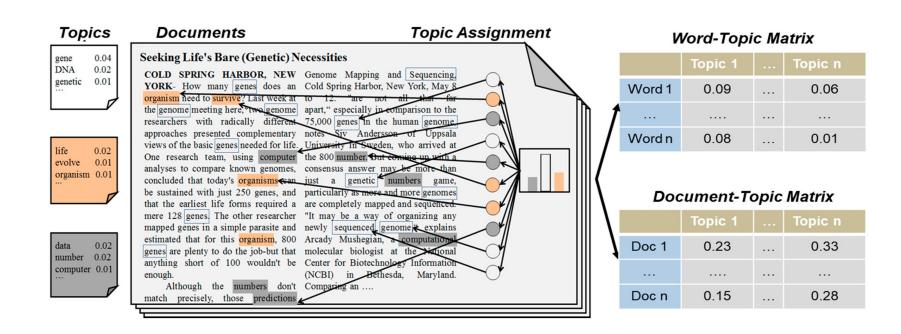
Topic Modeling: Introduction

- How to effectively & efficiently comprehend a large text corpus?
- Knowing what important topics are there is a good starting point!
- Topic discovery facilitates a wide spectrum of applications
 - Document classification/organization
 - Document retrieval/ranking
 - Text summarization



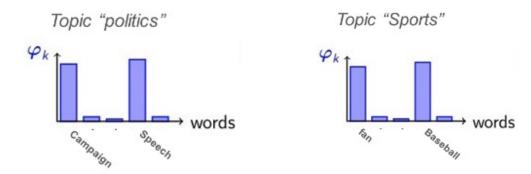
Topic Modeling: Overview

- How to discover topics automatically from the corpus?
- By modeling the corpus statistics!
 - Each document has a latent topic distribution
 - Each topic is described by a different word distribution



Latent Dirichlet Allocation (LDA): Overview

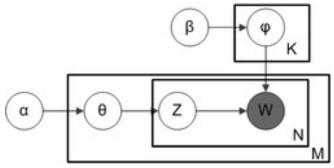
- Each document is represented as a mixture of various topics
 - Ex. A news document may be 40% on politics, 50% on economics, and 10% on sports
- Each topic is represented as a probability distribution over words
 - Ex. The distribution of "politics" vs. "sports" might be like:



- Dirichlet priors are imposed to enforce sparse distributions:
 - Documents cover only a small set of topics (sparse document-topic distribution)
 - Topics use only a small set of words frequently (sparse topic-word distribution)

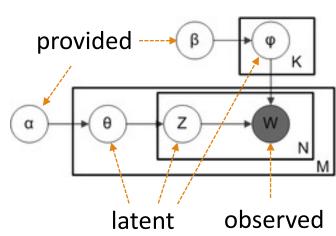
LDA: Generative Model

- Formulating the statistical relationship between words, documents and latent topics as a generative process describing how documents are created:
 - lacksquare For the ith document, choose $heta_i \sim \mathrm{Dir}(lpha)$ document's topic distribution
 - lacksquare For the kth topic, choose $arphi_k \sim \mathrm{Dir}(eta)$ topic's word distribution
 - \Box For the *j*th word in the *i*th document,
 - lacksquare choose topic $z_{i,j} \sim \operatorname{Categorical}(heta_i)$ word's topic
 - lacktriangledown choose a word $w_{i,j} \sim \operatorname{Categorical}(\varphi_{z_{i,j}})$



LDA: Inference

- Learning the LDA model (Inference)
- What need to be learned
 - $lue{}$ Document topic distribution heta (for assigning topics to documents)
 - \Box Topic-word distribution φ (for topic interpretation)
 - Words' latent topic z
- How to learn the latent variables? complicated due to intractable posterior
 - Monte Carlo simulation
 - Gibbs sampling
 - Variational inference
 - **...**



Outline

- **Unsupervised Topic Modeling**
- Supervised & Seed-Guided Topic Modeling

- Discriminative Topic Mining
- Clustering-Based Topic Discovery

Issues with LDA

- LDA is completely unsupervised (i.e., users only input number of topics)
- Cannot take user supervision

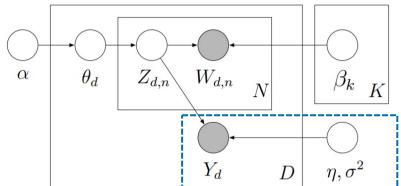
Ex. What if a user is specifically interested in some topics but LDA doesn't discover

them?

	Topic 1	Weight	Topic 2	Weight	Topic 3	Weight	Topic 4	Weight	Topic 5	Weight
0	life	0.018076	father	0.059603	official	0.017620	case	0.021908	art	0.010555
1	man	0.017714	graduate	0.048363	force	0.015388	law	0.020698	open	0.010413
2	woman	0.016657	son	0.042746	military	0.014587	court	0.019967	room	0.010363
3	book	0.010486	mrs	0.041379	war	0.011381	lawyer	0.016935	house	0.009002
4	family	0.010382	daughter	0.037156	government	0.010564	state	0.014501	building	0.008722
5	young	0.009896	mother	0.034542	troop	0.008949	judge	0.012487	artist	0.008264
6	write	0.009493	receive	0.029211	attack	0.008886	legal	0.011141	design	0.008162
7	child	0.009460	marry	0.029038	leader	0.008082	rule	0.009854	floor	0.008034
8	live	0.008819	yesterday	0.024107	peace	0.006835	decision	0.009261	museum	0.007917
9	love	0.007814	degree	0.022899	soldier	0.006562	file	0.008289	exhibition	0.007222
	Topic 6	Weight	Topic 7	Weight	Topic 8	Weight	Topic 9	Weight	Topic 10	Weight
0	group	0.051052	market	0.024976	serve	0.010918	change	0.007661	city	0.021776
1	member	0.040683	stock	0.024874	add	0.010185	system	0.007233	area	0.014865
2	meeting	0.016390	share	0.020583	minute	0.009301	problem	0.006835	build	0.014361
3	issue	0.014988	price	0.018141	pepper	0.009235	power	0.005400	building	0.014326
4	official	0.013069	sell	0.016564	oil	0.008976	create	0.005056	home	0.013632
5	support	0.011994	buy	0.015415	cook	0.008711	research	0.004712	resident	0.013483
6	leader	0.011799	company	0.015249	food	0.008689	produce	0.004574	community	0.012479
7	organization	0.011135	investor	0.015062	cup	0.008682	far	0.004447	local	0.010686
	meet	0.010235	yesterday	0.012813	sauce	0.008209	result	0.004280	live	0.010661
- 8	meec	0.010100	1							

Supervised LDA (sLDA)

- Allow users to provide document annotations/labels
- Incorporate document labels into the generative process
 - lacksquare For the ith document, choose $heta_i \sim \mathrm{Dir}(lpha)$ document's topic distribution
 - For the jth word in the ith document,
 - lacksquare choose topic $z_{i,j} \sim \operatorname{Categorical}(heta_i)$ word's topic
 - \square choose a word $w_{i,j} \sim \operatorname{Categorical}(\beta_{z_{i,j}})$
 - lacksquare For the ith document, choose $y_i \sim N(\eta^{ op} ar{z}_i, \sigma^2)$, $ar{z}_i = rac{1}{L} \sum_{i=1}^L z_{i,j}$

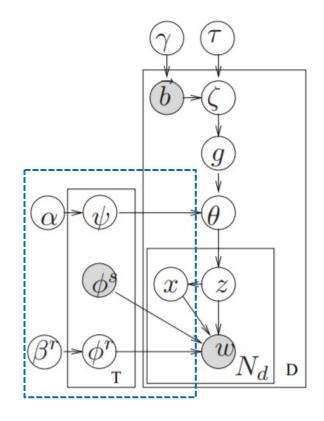


generate document's label

Seeded LDA: Guided Topic-Word Distribution

- Another form of user supervision: several seed words for each topic
 - 1. For each $k=1\cdots T$,
 - (a) Choose regular topic $\phi_k^r \sim \text{Dir}(\beta_r)$.
 - (b) Choose seed topic $\phi_k^s \sim \text{Dir}(\beta_s)$.
 - (c) Choose $\pi_k \sim \text{Beta}(1,1)$.
 - 2. For each seed set $s = 1 \cdots S$,
 - (a) Choose group-topic distribution $\psi_s \sim \text{Dir}(\alpha)$.
 - 3. For each document d,
 - (a) Choose a binary vector \vec{b} of length S.
 - (b) Choose a document-group distribution $\zeta^d \sim \text{Dir}(\tau \vec{b})$.
 - (c) Choose a group variable $g \sim \text{Mult}(\zeta^d)$.
 - (d) Choose $\theta_d \sim \text{Dir}(\psi_g)$. // of length T
 - (e) For each token $i = 1 \cdots N_d$:
 - i. Select a topic $z_i \sim \text{Mult}(\theta_d)$.
 - ii. Select an indicator $x_i \sim \text{Bern}(\pi_{z_i})$.
 - iii. if x_i is 0
 - Select a word $w_i \sim \text{Mult}(\phi_{z_i}^r)$.
 - iv. if x_i is 1
 - Select a word $w_i \sim \text{Mult}(\phi_{z_i}^s)$.

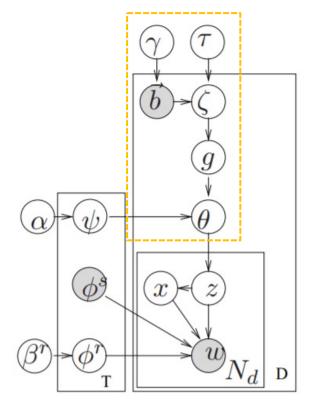
Seed topics used to improve the topic-word distribution:
Each word comes from either "regular topics" with a distribution over all word like in LDA, or "seed topics" which only generate words from the seed set



Seeded LDA: Guided Document-Topic Distribution

- Another form of user supervision: several seed words for each topic
 - 1. For each $k=1\cdots T$,
 - (a) Choose regular topic $\phi_k^r \sim \text{Dir}(\beta_r)$.
 - (b) Choose seed topic $\phi_k^s \sim \text{Dir}(\beta_s)$.
 - (c) Choose $\pi_k \sim \text{Beta}(1,1)$.
 - 2. For each seed set $s = 1 \cdots S$,
 - (a) Choose group-topic distribution $\psi_s \sim \text{Dir}(\alpha)$.
 - 3. For each document d,
 - (a) Choose a binary vector \vec{b} of length S.
 - (b) Choose a document-group distribution $\zeta^d \sim \text{Dir}(\tau \vec{b})$.
 - (c) Choose a group variable $g \sim \text{Mult}(\zeta^d)$.
 - (d) Choose $\theta_d \sim \text{Dir}(\psi_q)$. // of length T
 - (e) For each token $i = 1 \cdots N_d$:
 - i. Select a topic $z_i \sim \text{Mult}(\theta_d)$.
 - ii. Select an indicator $x_i \sim \text{Bern}(\pi_{z_i})$.
 - iii. if x_i is 0
 - Select a word $w_i \sim \text{Mult}(\phi_{z_i}^r)$.
 - iv. if x_i is 1
 - Select a word $w_i \sim \text{Mult}(\phi_{z_i}^s)$.

Seed topics used to improve the document-topic distribution:
Group-topic distribution = seed set distribution over regular topics Group-topic distribution used as prior to draw document-topic distribution



Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Discriminative Topic Mining

- Introduction of the Task
- CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
- JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
- Clustering-Based Topic Discovery

Motivations

- What are the limitations of topic models?
- Failure to incorporate user guidance: Topic models tend to retrieve the most general and prominent topics from a text collection
 - may not be of a user's particular interest
 - provide a skewed and biased summarization of the corpus
- □ Failure to enforce distinctiveness among retrieved topics: Topic models do not impose discriminative constraints
 - concepts are most effectively interpreted via their uniquely defining features
 - e.g. Egypt is known for pyramids and China is known for the Great Wall

Motivations

- ☐ (Cont'd) Failure to enforce distinctiveness among retrieved topics: Topic models do not impose discriminative constraints
 - three retrieved topics from the New York Times annotated corpus via LDA:

Table 1: LDA retrieved topics on NYT dataset. The meanings of the retrieved topics have overlap with each other.

Topic 1	Topic 2	Topic 3
canada, united states		_
canadian, economy	olympic, games	government, president

□ it is difficult to clearly define the meaning of the three topics due to an overlap of their semantics (e.g., the term "united states" appears in all three topics)

Introduction

- A New Task: Discriminative Topic Mining
 - Given a text corpus and a set of category names, discriminative topic mining aims to retrieve a set of terms that exclusively belong to each category
 - \square Ex. Given c_1 : "The United States", c_2 : "France", c_3 : "Canada"
 - \square correct to retrieve "Ontario" under c_3 : Ontario is a province in Canada and exclusively belongs to Canada
 - \square incorrect to retrieve "North America" under c_3 : North America is a continent and does not belong to any countries (reversed belonging relationship)
 - \square incorrect to retrieve "English" under c_3 : English is also the national language of the United States (not discriminative)

Discriminative Topic Mining

- A New Task: Discriminative Topic Mining
 - Difference from topic modeling
 - requires a set of user provided category names and only focuses on retrieving terms belonging to the given categories
 - □ imposes strong discriminative requirements that each retrieved term under the corresponding category must **belong to and only belong to** that category semantically

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Discriminative Topic Mining
 - Introduction of the Task

- CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
- JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
- Clustering-based Topic Discovery

CatE Embedding: Overview

- Motivation:
 - □ Topic models use document-topic and topic-word distributions to model the text generation process
 - able to discover hidden topic semantics
 - bag-of-words generation assumption
 - Word embeddings capture word semantic correlations via the distributional hypothesis
 - captures local context similarity
 - not exploit document-level statistics (global context)
 - not model topics
- □ Take advantage of both frameworks!

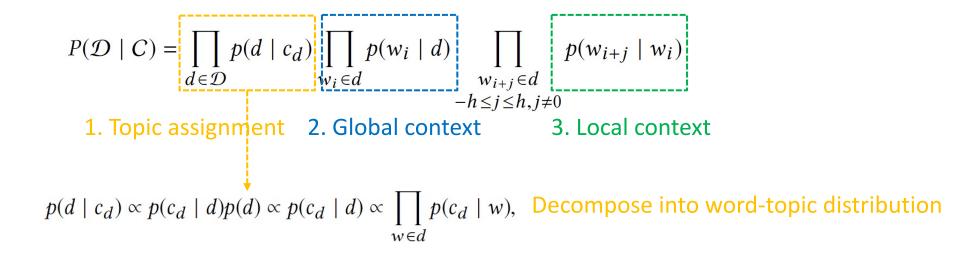
CatE Embedding: Text Generation Modeling

- Modeling text generation under user guidance
- A three-step process:
 - 1. A document d is generated conditioned on one of the n categories
- 1. Topic assignment
- 2. Each word w_i is generated conditioned on the semantics of the document d
- 2. Global context

- 3. Surrounding words w_{i+j} in the local context window of w_i are generated conditioned on the semantics of the center word w_i
- 3. Local context
- ☐ Likelihood of corpus generation conditioned on user-given categories

CatE Embedding: Objective

Objective: negative log-likelihood



☐ How do we know which word belongs to which category (word-topic distribution)?

Category Representative Word Retrieval

- □ As a starting point, we propose to retrieve representative words by jointly considering two separate aspects:
 - Relatedness: measured by embedding cosine similarity
 - □ Specificity: category representative words should be more specific than the category name
- Ex. "Ontario" can be selected as a category representative word of "Canada" since it is related to "Canada" and more specific than "Canada".
- How do we know the specificity of words?

Word Semantic Specificity

■ Word distributional specificity:

Definition 2 (Word Distributional Specificity). We assume there is a scalar $\kappa_w \geq 0$ correlated with each word w indicating how specific the word meaning is. The bigger κ_w is, the more specific meaning word w has, and the less varying contexts w appears in.

■ Ex. "seafood" has a higher word distributional specificity than "food", because seafood is a specific type of food

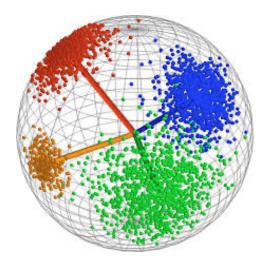
Interpreting The Model

□ Preliminary: The vMF distribution – A distribution defined on unit sphere

$$f(\boldsymbol{x}; \boldsymbol{\mu}, \kappa) = c_p(\kappa) \exp(\kappa \boldsymbol{x}^{\top} \boldsymbol{\mu}),$$

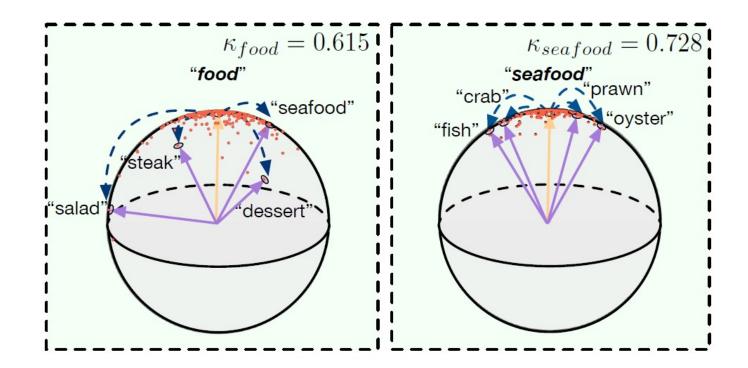
Concentration Parameter

Center Direction



Interpreting The Model

□ (Theorem) Our model essentially learns both word embedding and word distributional specificity that maximize the probability of the context vectors getting generated by the center word's vMF distribution



Category Representative Word Retrieval

- Ranking Measure for Selecting Class Representative Words:
- \square We find a representative word of category c_i and add it to the set S by

Prefer words having high embedding cosine similarity with the category name

Prefer words with low distributional specificity (more general)

$$w = arg min_w rank_{sim}(w, c_i) \cdot rank_{spec}(w)$$

 $s.t. \quad w \notin \mathcal{S} \quad and \quad \kappa_w > \kappa_{c_i}.$

w hasn't been a representative word

w must be more specific than the category name

Experiment Settings

[#] 1500

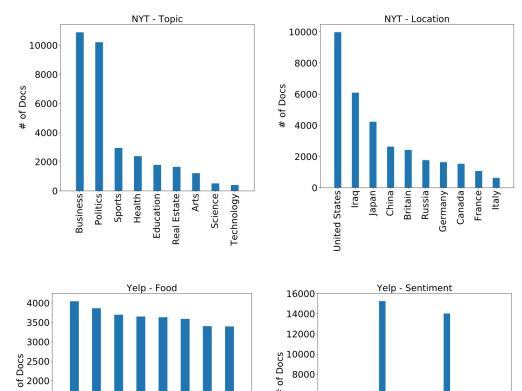
1000

500

sushi bars

steakhouses

- Datasets
- New York Times annotated corpus (Sandhaus, 2008)
 - topic
 - location
- Recently released Yelp Dataset Challenge
 - food type
 - sentiment



6000 4000

2000

Qualitative Results

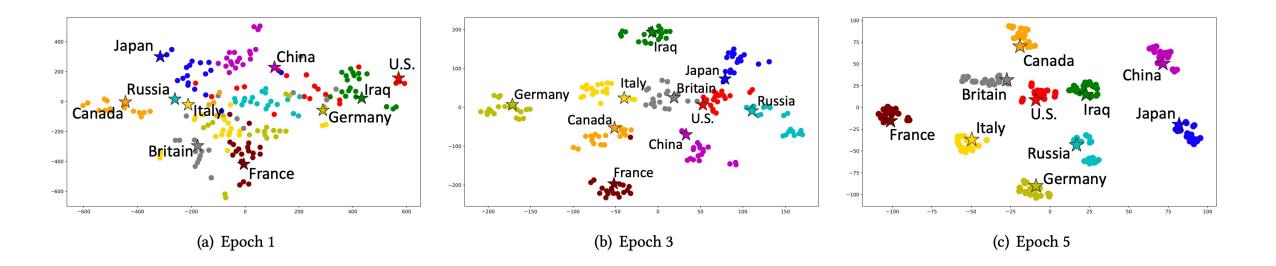
Methods	NYT-L	ocation	NYT-	-Topic	Ye	lp -Food	Yelp-Sentiment	
Methods	britain	canada	education	politics	burger	desserts	good	bad
	company (×)	percent (×) economy (×)	school students	campaign clinton	fatburger dos (×)	ice cream chocolate	great place (×)	valet (×) peter (×)
LDA	british	canadian	city (×)	mayor	liar (×)	gelato	love	aid (×)
	shares (×)	united states (×)	state (×)	election	cheeseburgers	tea (×)	friendly	relief (\times)
	great britain	trade (\times)	schools	political	bearing (x)	sweet	breakfast	rowdy
	british	city (×)	state (×)	republican	like (×)	great (×)	place (×)	service (×)
Seeded	industry (×)	building (\times)	school	political	fries	like (×)	great	did(x)
LDA	deal (×)	street (×)	students	senator	just (×)	ice cream	service (×)	order (\times)
LDA	billion (×)	buildings (×)	city (×)	president	great (×)	delicious (\times)	just (×)	time (\times)
	business (×)	york (×)	board (×)	democrats	time (×)	just (×)	ordered (×)	ordered (×)
	germany (×)	toronto	arts (×)	religion	burgers	chocolate	tasty	subpar
	spain (×)	osaka (×)	fourth graders	race	fries	complimentary (x)	decent	positive (\times)
TWE	manufacturing (×)	booming (\times)	musicians (×)	attraction (\times)	hamburger	green tea (×)	darned (×)	awful
	south korea (×)	asia (×)	advisors	era (×)	cheeseburger	sundae	great	crappy
	markets (×)	alberta	regents	tale (×)	patty	whipped cream	suffered (×)	honest (x)
	moscow (×)	sports (×)	republican (\times)	military (\times)	order (×)	make (×)	selection (×)	did (×)
Anchored	british	games (\times)	senator (×)	war(x)	know (×)	chocolate	prices (×)	just (×)
CorEx	london	players (\times)	democratic (×)	troops (\times)	called (\times)	people (\times)	great	came (\times)
COLEX	german (×)	canadian	school	baghdad(x)	fries	right (\times)	reasonable	asked (\times)
	russian (×)	coach	schools	iraq (×)	going (×)	want (×)	mac (×)	table (×)
	france (×)	canadian	higher education	political	hamburger	pana	decent	horrible
Labeled ETM	germany (×)	british columbia	educational	expediency (\times)	cheeseburger	gelato	great	terrible
	canada (×)	britain (×)	school	perceptions (\times)	burgers	tiramisu	tasty	good(x)
	british	quebec	schools	foreign affairs	patty	cheesecake	bad (×)	awful
	europe (×)	north america (×)	regents	ideology	steak (×)	ice cream	delicious	appallingly
	england	ontario	educational	political	burgers	dessert	delicious	sickening
	london	toronto	schools	international politics	cheeseburger	pastries	mindful	nasty
CatE	britons	quebec	higher education	liberalism	hamburger	cheesecakes	excellent	dreadful
	scottish	montreal	secondary education	political philosophy	burger king	scones	wonderful	freaks
	great britain	ottawa	teachers	geopolitics	smash burger	ice cream	faithful	cheapskates

Quantitative Results

Methods	NYT-Location		NYT-Topic		Yelp -Food		Yelp -Sentiment	
Methous	TC	MACC	TC	MACC	TC	MACC	TC	MACC
LDA	0.007	0.489	0.027	0.744	-0.033	0.213	-0.197	0.350
Seeded LDA	0.024	0.168	0.031	0.456	0.016	0.188	0.049	0.223
TWE	0.002	0.171	-0.011	0.289	0.004	0.688	-0.077	0.748
Anchored CorEx	0.029	0.190	0.035	0.533	0.025	0.313	0.067	0.250
Labeled ETM	0.032	0.493	0.025	0.889	0.012	0.775	0.026	0.852
CatE	0.049	0.972	0.048	0.967	0.034	0.913	0.086	1.000

Case Study

■ Discriminative Embedding Space



Case Study

■ Coarse-to-Fine Topic Presentation

Range of κ	Science ($\kappa_c = 0.539$)	Technology ($\kappa_c = 0.566$)	Health ($\kappa_c = 0.527$)	
$\kappa_c < \kappa < 1.25\kappa_c$	scientist, academic, research, laboratory	machine, equipment, devices, engineering	medical, hospitals, patients, treatment	
$1.25\kappa_c < \kappa < 1.5\kappa_c$	physics, sociology,	information technology, computing,	mental hygiene, infectious diseases,	
$1.23\kappa_C < \kappa < 1.3\kappa_C$	biology, astronomy	telecommunication, biotechnology	hospitalizations, immunizations	
$1.5\kappa_c < \kappa < 1.75\kappa_c$	microbiology, anthropology,	wireless technology, nanotechnology,	dental care, chronic illnesses,	
$1.3\kappa_{c} < \kappa < 1.73\kappa_{c}$	physiology, cosmology	semiconductor industry, microelectronics	cardiovascular disease, diabetes	
	national science foundation,	integrated circuits,	juvenile diabetes,	
v > 1 75v	george washington university,	assemblers,	high blood pressure,	
$\kappa > 1.75\kappa_c$	hong kong university,	circuit board,	family violence,	
	american academy	advanced micro devices	kidney failure	

Outline

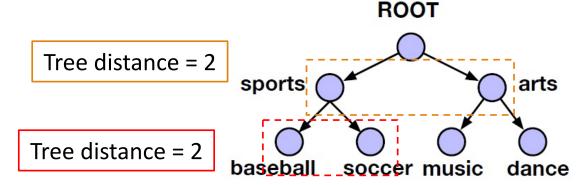
- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Discriminative Topic Mining
 - Introduction of the Task
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - □ JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
- Clustering-based Topic Discovery

Motivation

- Mining a set of meaningful topics organized into a hierarchy is intuitively appealing and has broad applications
 - Coarse-to-fine topic understanding
 - Hierarchical corpus summarization
 - Hierarchical text classification
- ☐ Hierarchical topic models discover topic structures from text corpora via modeling the text generative process with a latent hierarchy

JoSH Embedding

- □ Difference from hyperbolic models (e.g., Poincare, Lorentz)
 - Hyperbolic embeddings preserve absolute tree distance (similar embedding distance => similar tree distance)
 - We do not aim to preserve the absolute tree distance, but rather use it as a relative measure



Although $d_{\text{tree}}(\text{sports, arts}) = d_{\text{tree}}(\text{baseball, soccer})$, "baseball" and "soccer" should be embedded closer than "sports" and "arts" to reflect semantic similarity.

Use tree distance in a relative manner: Since $d_{\rm tree}$ (sports, baseball) $< d_{\rm tree}$ (baseball, soccer), "baseball" and "soccer" should be embedded closer than "baseball" and "soccer".

JoSH Tree Embedding

□ Intra-Category Coherence: Representative terms of each category should be highly semantically relevant to each other, reflected by high directional similarity in the spherical space

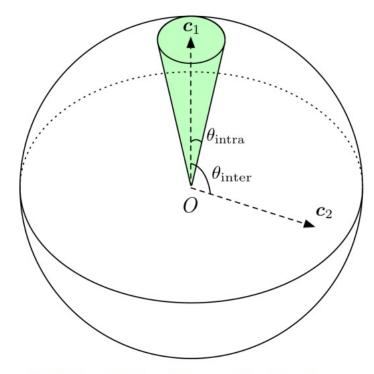
$$\mathcal{L}_{\text{intra}} = \sum_{c_i \in \mathcal{T}} \sum_{w_i \in C_i} \min(0, \boldsymbol{u}_{w_j}^{\top} \boldsymbol{c}_i - m_{\text{intra}}),$$

Inter-Category Distinctiveness: Encourage distinctiveness across different categories to avoid semantic overlaps so that the retrieved terms provide a clear and distinctive description

$$\mathcal{L}_{\text{inter}} = \sum_{c_i \in \mathcal{T}} \sum_{c_j \in \mathcal{T} \setminus \{c_i\}} \min(0, 1 - c_i^{\top} c_j - m_{\text{inter}}).$$

$$\theta_{\text{intra}} \leq \arccos(m_{\text{intra}})$$

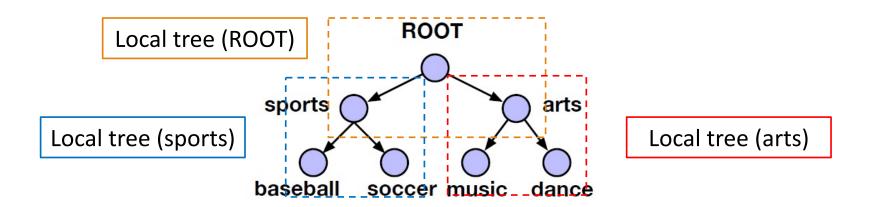
$$\theta_{\text{inter}} \ge \arccos(1 - m_{\text{inter}})$$



(a) Intra- & Inter-Category Configuration.

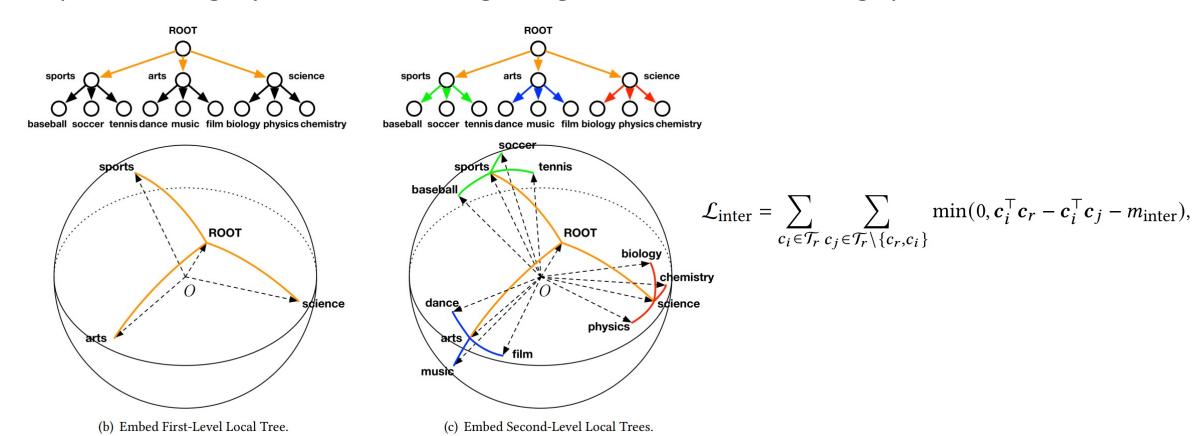
JoSH Tree Embedding

- □ **Recursive Local Tree Embedding:** Recursively embed local structures of the category tree onto the sphere
- □ Local tree: A local tree T_r rooted at node $c_r \in T$ consists of node c_r and all of its direct children nodes



JoSH Tree Embedding

□ Preserving Relative Tree Distance Within Local Trees: A category should be closer to its parent category than to its sibling categories in the embedding space



JoSH Text Embedding

- Modeling Text Generation Conditioned on the Category Tree (Similar to CatE)
- A three-step process:
 - 1. A document d_i is generated conditioned on one of the n categories $p(d_i \mid c_i) = \text{vMF}(d_i; c_i, \kappa_{c_i}) = n_p(\kappa_{c_i}) \exp\left(\kappa_{c_i} \cdot \cos(d_i, c_i)\right)$
 - 2. Each word w_j is generated conditioned on the semantics of the document d_i 2. Global context $p(w_j \mid d_i) \propto \exp(\cos(\pmb{u}_{w_i}, \pmb{d}_i))$
 - Surrounding words w_{j+k} in the local context window of w_i are generated conditioned on the semantics of the center word w_i
 - $p(w_{j+k} \mid w_j) \propto \exp(\cos(\boldsymbol{v}_{w_{j+k}}, \boldsymbol{u}_{w_j}))$

3. Local context

Experiments: Quantitative results

Table 2: Quantitative evaluation: hierarchical topic mining.

Madala	N'	ΥT	arXiv			
Models	TC	MACC	TC	MACC		
hLDA	-0.0070	0.1636	-0.0124	0.1471		
hPAM	0.0074	0.3091	0.0037	0.1824		
JoSE	0.0140	0.6818	0.0051	0.7412		
Poincaré GloVe	0.0092	0.6182	-0.0050	0.5588		
Anchored CorEx	0.0117	0.3909	0.0060	0.4941		
CatE	0.0149	0.9000	0.0066	0.8176		
JoSH	0.0166	0.9091	0.0074	0.8324		

Experiments: Qualitative Results

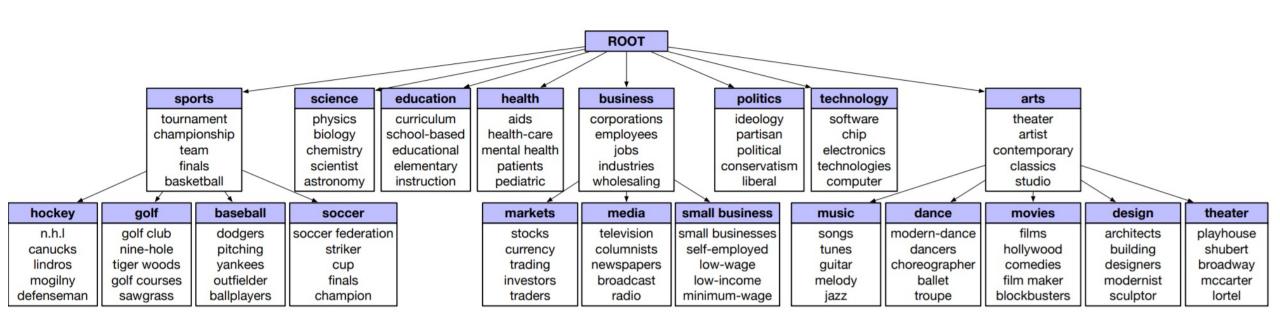
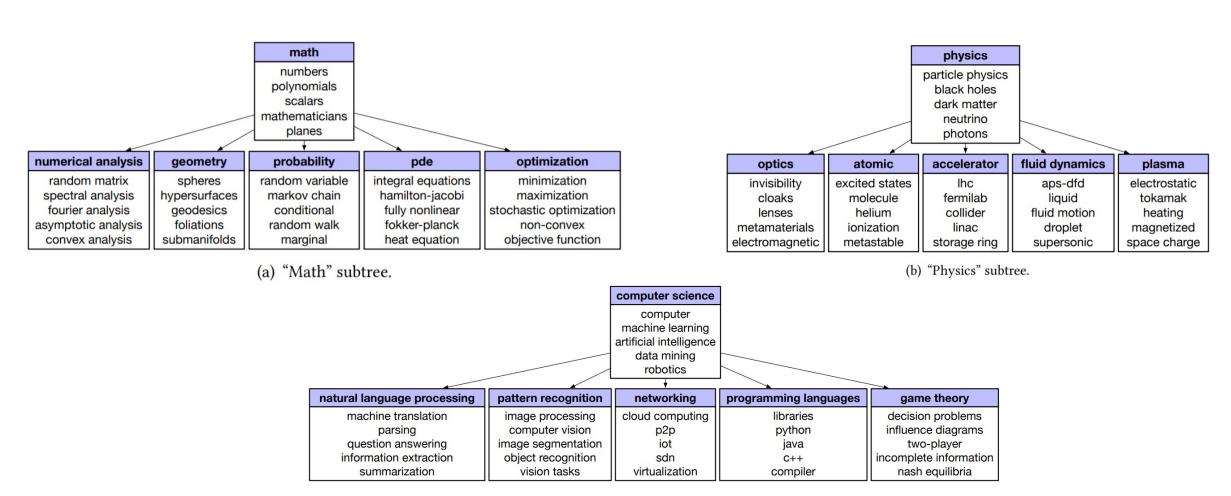


Figure 3: Hierarchical Topic Mining results on NYT.

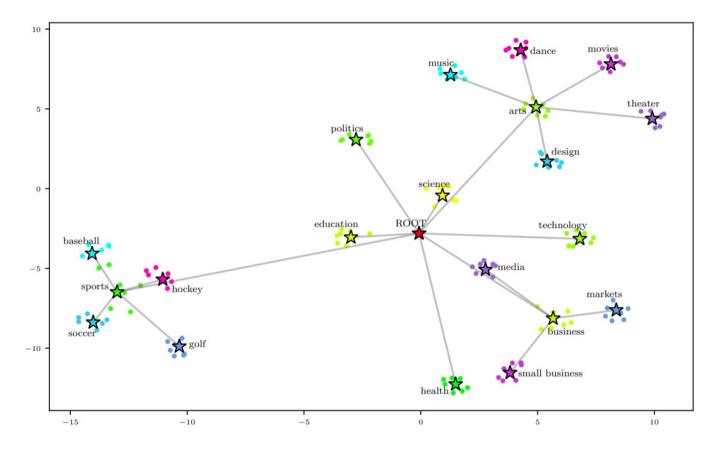
Experiments: Qualitative Results



(c) "Computer Science" subtree.

Experiments: Joint Embedding Space Visualization

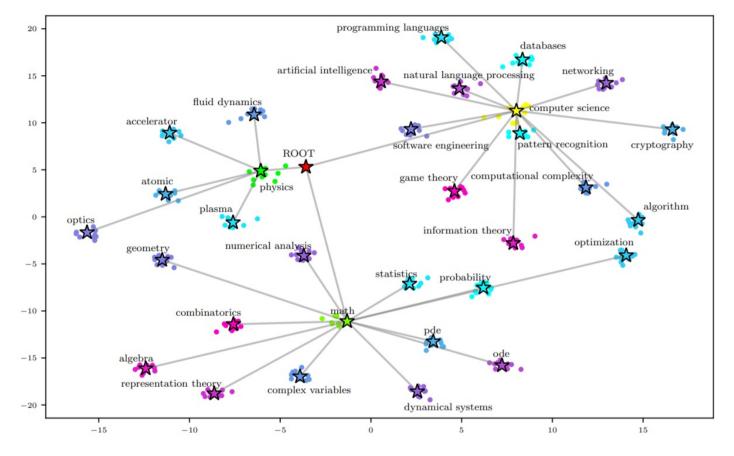
T-SNE visualization (stars=category embeddings; dots=representative word embeddings)



(a) NYT joint embedding space.

Experiments: Joint Embedding Space Visualization

□ T-SNE visualization (stars=category embeddings; dots=representative word embeddings)



(b) arXiv joint embedding space.

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Discriminative Topic Mining
- Clustering-Based Topic Discovery

 TopClus: Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations [WWW'22]

Clustering-Based Topic Discovery

- Topic modeling frameworks use bag-of-words features (i.e., only word counts in documents matter; word ordering is ignored)
- □ In Part I of the tutorial, we introduced distributed text representations (text embeddings and language models) that better model sequential information in text
- □ Can we take advantage of those advanced text representations for the topic discovery task, as an alternative to topic modeling?

Word Embedding + Clustering

- □ Cast "topics" as clusters of word types similar to taking the top-ranked words from each topic's distribution in topic modeling
- How to obtain word clusters? Run clustering algorithms on word embeddings
- Since the text embedding space captures word semantic similarity (i.e., high vector similarity implies high semantic similarity), using distance-based clustering algorithms (like K-means) will naturally group semantically similar words into the same cluster

Clustering-Based Topic Discovery: A benchmark study

- Clustering algorithms:
 - k-means (KM)
 - Gaussian Mixture Models (GMM)
- Embeddings:
 - Word2Vec
 - GloVe
 - fastText
 - Spherical text embedding
 - ELMo
 - BERT

Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too! EMNLP

Clustering-Based Topic Discovery: Word Frequency

- One thing to consider is that text embeddings do not explicitly encode frequency information, which is important for topic discovery (i.e., more frequent words in the corpus may be more representative)
- Two ways to incorporate frequency information
 - □ Weighted clustering: Frequent words weigh more when computing cluster centroids
 - Rerank words in clusters: Rerank terms by frequency in each cluster when selecting representative terms

Clustering-Based Topic Discovery: Results

- Using k-means (KM)/Gaussian Mixture Models (GMM) as clustering algorithm and using Spherical text embedding/BERT as representations leads to comparable results with LDA
- Future work
 - More advanced clustering algorithms?
 - Joint modeling of document-topic distribution via clustering?

	Reuters							weighted clustering + reranking								
	<	>	\diamond^w		\diamond_r		\diamond^w_r		♦		\diamond^{w}		\diamond_r		\diamond^w_r	
	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM
Word2vec	-0.39	-0.47	-0.21	-0.09	0.02	0.01	0.03	0.08	-0.21	-0.10	-0.11	0.13	0.18	0.16	0.19	0.20
ELMo	-0.73	-0.55	-0.43	0.00	-0.10	-0.08	-0.02	0.06	-0.56	-0.13	-0.38	0.18	0.13	0.14	0.16	0.19
GloVe	-0.67	-0.59	-0.04	0.01	-0.27	-0.03	0.01	0.05	-0.18	-0.12	0.06	0.24	0.22	0.23	0.23	0.23
Fasttext_	-0.68	-0.70	-0.46	0.08_	0.00_	0.00	0.06_	0.11	-0.32	-0.20	-0.18	0.21	0.24	0.23	_0.25_	0.24_
Spherical	-0.53	-0.65	-0.07	0.09	0.01	-0.05	0.10	0.12	-0.05	-0.24	0.24	0.23	0.25	0.22	0.26	0.24
BERT	-0.43	-0.19	-0.07	0.12	0.00	-0.01	0.12	0.15	0.04	0.14	0.25	0.25	0.17	0.19	0.25	0.25
average	-0.57	-0.52	-0.21	0.01	-0.06	-0.03	0.05	0.10	-0.21	-0.11	-0.02	0.21	0.20	0.20	0.23	0.23
std. dev.	0.14	0.18	0.19	0.09	0.12	0.03	0.05	0.04	0.21	0.13	0.25	0.05	0.04	0.04	0.04	0.02

Table 1: NPMI Results (higher is better) for pre-trained word embeddings and k-means (KM), and Gaussian Mixture Models (GMM). \diamond^w indicates weighted and \diamond_r indicates reranking of top words. For Reuters (left table), LDA has an NPMI score of 0.12, while GMM $_r^w$ BERT achieves 0.15. For 20NG (right), both LDA and KM $_r^w$ Spherical achieve a score of 0.26. All results are averaged across 5 random seeds.

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Discriminative Topic Mining
- Clustering-Based Topic Discovery
 - TopClus: Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations [WWW'22]

Motivation

- Recently, pre-trained language models (LMs) have achieved enormous success in lots of tasks
 - They employ Transformer as the backbone architecture for capturing the **long-range**, **high-order** semantic dependency in text sequences, yielding superior representations
 - They are pre-trained on large-scale text corpora like Wikipedia, they carry **generic linguistic features** that can be generalized to almost any text-related applications
- Given the strong representation power of the contextualized embeddings, it is natural to consider simply clustering them as an alternative to topic models
- Topics are essentially interpreted via clusters of semantically coherent and meaningful words
- □ Interestingly, such an attempt has not been reported successful yet

The Challenges

- Why not naively cluster pre-trained embeddings?
- Visualization: The embedding spaces do not exhibit clearly separated clusters
- Applying K-means with a typical K (e.g., K=100) to these spaces leads to low-quality and unstable clusters

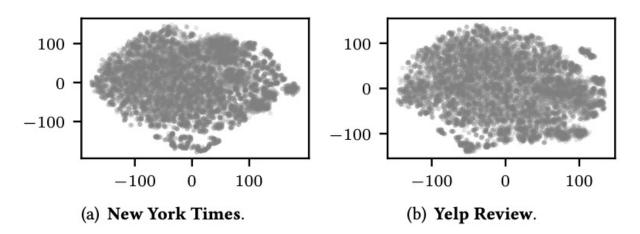


Figure 1: Visualization using t-SNE of 10,000 randomly sampled contextualized word embeddings of BERT on (a) NYT and (b) Yelp datasets, respectively. The embedding spaces do not have clearly separated clusters.

The Challenges

- Theoretically, such embedding space structure is due to too many clusters
- Theorem: The MLM pre-training objective of BERT assumes that the learned contextualized embeddings are generated from a Gaussian Mixture Model (GMM) with |V| mixture components where |V| is the vocabulary size of BERT.
- Mismatch between the number of clusters in the pre-trained LM embedding space and the number of topics to be discovered
 - □ If a smaller K (K << |V|) is used, the resulting partition will not fit the original data well, resulting in unstable and low-quality clusters
 - If a bigger K (K ≈ |V|) is used, most clusters will contain only one unique term, which is meaningless for topic discovery

The Latent Space Model

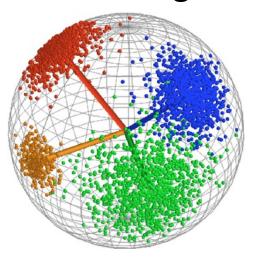
- We propose to project the original embedding space into a latent space with K clusters of words corresponding to K latent topics
- We assume that the latent space is lower-dimensional and spherical, with the following preferable properties:
 - Spherical latent space employs angular similarity between vectors to capture word semantic correlations, which works better than Euclidean metrics
 - Lower-dimensional space mitigates the "curse of dimensionality"
 - Projection from high-dimension to lower-dimension space forces the model to discard the information that is not helpful for forming topic clusters (e.g., syntactic features, "play", "plays" and "playing" should not represent different topics)

Latent Topic Space

We propose a generative model for the joint learning

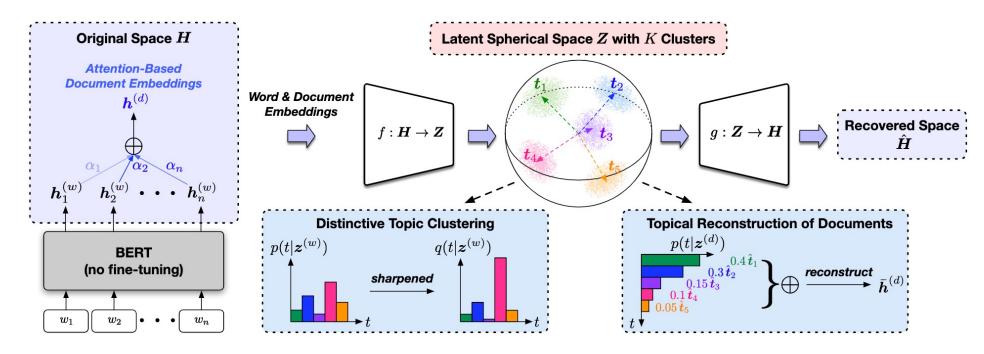
$$t_k \sim \text{Uniform}(K), z_i \sim \text{vMF}_{d'}(t_k, \kappa), h_i = g(z_i).$$

- $lue{}$ A topic t is sampled from a uniform distribution over the K topics
- $lue{}$ A latent embedding z is generated from the vMF distribution associated with topic t
- \Box A function g maps the latent embedding z to the original embedding



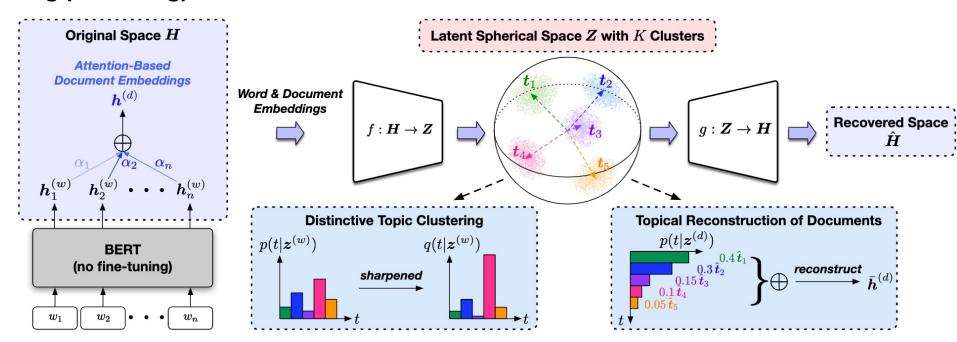
The Latent Space Model

- We propose to jointly learn the latent space projection and cluster in the latent space
 - ☐ The latent representation learning is guided by the clustering objective
 - The cluster quality benefits from the well-separated structure of the latent space
 - Achieve a mutually-enhanced effect



The Latent Space Model

- How to train the generative model?
 - A preservation loss that encourages the latent space to preserve the semantics of the original pretrained LM induced embedding space (preservation of original PLM embeddings)
 - A reconstruction loss to ensure the learned latent topics are meaningful summaries of the documents (Topic reconstruction of documents)
 - A clustering loss that enforces separable cluster structures in the latent space for distinctive topic learning (clustering)



Preservation of Original PLM Embeddings

- Motivated by the general idea of generative model training that optimizes the model to faithfully generate the original data
- We encourage the output of the autoencoder to recover the structure of the original embedding space by minimizing the cosine distance between the generated and the original embedding

$$\mathcal{L}_{\text{pre}} = \sum_{i=1}^{N} \| \boldsymbol{h}_{i}^{(w)} - g \left(f \left(\boldsymbol{h}_{i}^{(w)} \right) \right) \|^{2}$$

Topic Reconstruction of Documents

- We aim to reconstruct document semantics with topic representations so that the learned latent topics are meaningful summaries of the documents.
- We require the reconstructed document embedding to be a good approximation of the original content by minimizing the following reconstruction loss:

$$\mathcal{L}_{\text{rec}} = \sum_{d \in \mathcal{D}} \|\hat{\boldsymbol{h}}^{(d)} - \bar{\boldsymbol{h}}^{(d)}\|^2$$

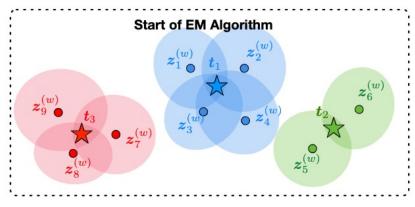
reconstructed document embedding

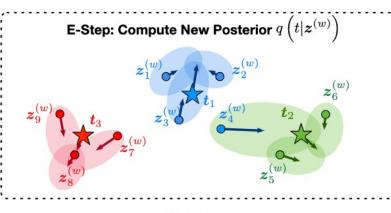
$$\hat{\boldsymbol{h}}^{(d)} = \sum_{k=1}^{K} p\left(t_k \big| \boldsymbol{z}^{(d)}\right) \hat{\boldsymbol{t}}_k, \quad \hat{\boldsymbol{t}}_k = g(\boldsymbol{t}_k),$$

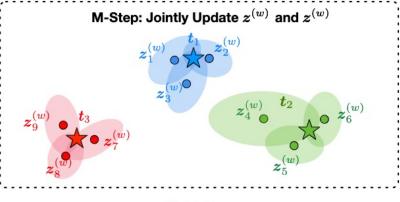
average of original word embeddings in the document

The Clustering Loss

- ☐ An EM algorithm, analogous to K-means
 - The E-step estimates a new cluster assignment of each word based on the current parameters
 - The M-step updates the model parameters given the cluster assignments







(a) Start of EM Algorithm.

(b) E-Step.

(c) M-Step.

Clustering EM

- E-step:
- Use the current posterior to derive a new posterior as the new cluster assignment

$$p(t_k|z_i) = \frac{p(z_i|t_k)p(t_k)}{\sum_{1 \le k' \le K} p(z_i|t_{k'})p(t_{k'})}$$

$$t_k \sim \text{Uniform}(K), z_i \sim \text{vMF}_{d'}(t_k, \kappa), h_i = g(z_i).$$

$$p(t_k) = 1/K$$

$$p(t_k) = 1/K \qquad p(z_i|t_k) = vMF_{d'}(t_k, \kappa) = n_{d'}(\kappa) \exp(\kappa \cdot \cos(z_i, t_k))$$

$$p(t_k|z_i) = \frac{\exp\left(\kappa \cdot \cos(z_i, t_k)\right)}{\sum_{1 \le k' \le K} \exp\left(\kappa \cdot \cos(z_i, t_{k'})\right)}$$

Clustering EM

- ☐ E-step:
- Use the current posterior to derive a new posterior as the new cluster assignment

$$p(t_{k}|z_{i}) = \frac{p(z_{i}|t_{k})p(t_{k})}{\sum_{1 \leq k' \leq K} p(z_{i}|t_{k'})p(t_{k'})}$$

$$q(t_{k}|z_{i}) = \frac{p(t_{k}|z_{i})^{2}/s_{k}}{\sum_{1 \leq k' \leq K} p(t_{k'}|z_{i})^{2}/s_{k'}}, \quad s_{k} = \sum_{1 \leq i \leq N} p(t_{k}|z_{i}).$$

- Such a new posterior has the following advantages:
 - Distinctive topic learning: Squaring-then-normalizing the current posterior distribution has a **sharpening** effect that skews the distribution towards its most confident cluster assignment
 - \Box Topic prior regularization: Dividing by the soft cluster frequency s_k encodes the uniform topic prior

Clustering EM

- M-step:
- Update the model parameters according to the new cluster assignment

$$\mathcal{L}_{\text{clus}} = -\sum_{1 \leq i \leq N} \sum_{1 \leq k \leq K} q(t_k | z_i) \log p(t_k | z_i),$$

- Both the topic center vectors and latent representations are updated to fit the new estimate
- □ This is the joint learning of latent space mapping functions and cluster structures

Experiments

Topic Discovery

Quantitative

Mathada		NY	Γ		Yelp UMass UCI Int. Div.					
Methods	UMass	UCI	Int.	Div.	UMass	UCI	Int.	Div.		
LDA	-3.75									
CorEx	-3.83	-0.96	0.77	-	-4.75	-1.91	0.43	-		
ETM	-2.98	-0.98	0.67	0.30	-3.04	-0.33	0.47	0.16		
BERTopic	-3.78	-0.51	0.70	0.61	-6.37	-2.05	0.73	0.36		
TopClus	-2.67	-0.45	0.93	0.99	-1.35	-0.27	0.87	0.96		

Qualitative

			NYT		Yelp							
Methods	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5		
	(sports)	(politics)	(research)	(france)	(japan)	(positive)	(negative)	(vegetables)	(fruits)	(seafood)		
-	olympic	mr	said	french	japanese	amazing	loud	spinach	mango	fish		
LDA	year	bush	report	union	tokyo	really	awful	carrots	strawberry	roll		
	said	president	evidence	germany	year	place	sunday	greens	vanilla	salmon		
	games	white	findings	workers	matsui	phenomenal	like	salad	banana	fresh		
	team	house	defense	paris	<u>said</u>	pleasant	slow	dressing	peanut	\overline{good}		
	baseball	house	possibility	french	japanese	great	even	garlic	strawberry	shrimp		
4000	championship	white	challenge	italy	tokyo	friendly	bad	tomato	caramel	beef		
CorEx	playing	support	reasons	paris	index	atmosphere	mean	onions	sugar	crab		
	fans	groups	give	francs	osaka	love	cold	toppings	fruit	dishes		
	league	member	planned	jacques	$\underline{\it electronics}$	favorite	literally	slices	mango	salt		
	olympic	government	approach	french	japanese	nice	disappointed	avocado	strawberry	fish		
	league	national	problems	students	agreement	worth	cold	greek	mango	shrimp		
ETM	national	plan	experts	paris	tokyo	<u>lunch</u>	<u>review</u>	salads	sweet	lobster		
	basketball	public	<u>move</u>	german	market	recommend	experience	spinach	soft	crab		
	athletes	support	\underline{give}	american	european	friendly	bad	tomatoes	flavors	chips		
*	swimming	bush	researchers	french	japanese	awesome	horrible	tomatoes	strawberry	lobster		
	freestyle	democrats	scientists	paris	tokyo	atmosphere	quality	avocado	mango	crab		
BERTopic	popov	white	cases	lyon	ufj	friendly	disgusting	soups	cup	shrimp		
	gold	bushs	genetic	minister	company	night	disappointing	kale	lemon	oysters		
	olympic	house	study	<u>billion</u>	yen	good	place	cauliflower	banana	amazing		
	athletes	government	hypothesis	french	japanese	good	tough	potatoes	strawberry	fish		
	medalist	ministry	methodology	seine	tokyo	best	bad	onions	lemon	octopus		
TopClus	olympics	bureaucracy	possibility	toulouse	osaka	friendly	painful	tomatoes	apples	shrimp		
	tournaments	politicians	criteria	marseille	hokkaido	cozy	frustrating	cabbage	grape	lobster		
	quarterfinal	electoral	assumptions	paris	yokohama	casual	brutal	mushrooms	peach	crab		

Experiments

Visualization

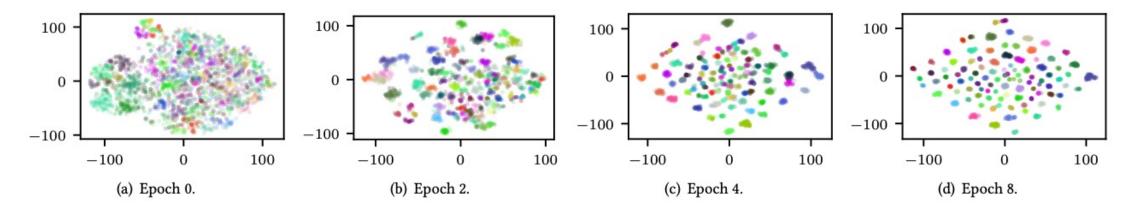


Figure 5: Visualization using t-SNE of 10,000 randomly sampled latent embeddings during the course of TopClus training. Embeddings assigned to the same cluster are denoted with the same color. The latent space gradually exhibits distinctive and balanced cluster structure.

Advantages of TopClus over topic models

- TopClus works with contextualized embeddings which provide better word representations than the "bag-of-words" assumption of topic models
- TopClus employs pre-trained LMs to bring in general linguistic knowledge which helps generate more reliable and stable word representations on the target corpus than training topic models from scratch on it
- TopClus does not involve any probabilistic approximations, and is computationally and conceptually simpler than variational inference in topic models

References

- Blei, D. M., Griffiths, T. L., Jordan, M. I., & Tenenbaum, J. B. (2003). Hierarchical topic models and the nested Chinese restaurant process. NIPS.
- □ Blei, D. M., & McAuliffe, J. D. (2007). Supervised topic models. NIPS.
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research.
- ☐ Mimno, D., Li, W., & McCallum, A. (2007). Mixtures of hierarchical topics with pachinko allocation. ICML.
- Jagarlamudi, J., Daumé III, H., & Udupa, R. (2012). Incorporating lexical priors into topic models. EACL.
- Meng, Y., Huang, J., Wang, G., Wang, Z., Zhang, C., Zhang, Y., & Han, J. (2020). Discriminative topic mining via category-name guided text embedding. WWW.
- Meng, Y., Zhang, Y., Huang, J., Zhang, Y., Zhang, C., & Han, J. (2020). Hierarchical topic mining via joint spherical tree and text embedding. KDD.
- Meng, Y., Zhang, Y., Huang, J., Zhang, Y., & Han, J. (2022). Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations. WWW.
- Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too! EMNLP.