



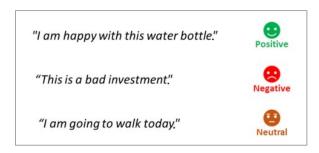
What Weakly-Supervised Text Classification Is, and Why It Matters 🧼



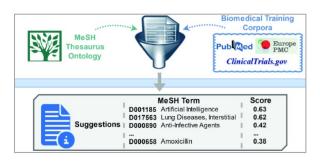
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]
  - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]
  - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
  - Embedding: MetaCat [SIGIR'20]
  - Pre-trained LM: MICoL [WWW'22]

#### **Text Classification**

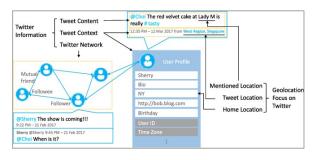
- ☐ Given a set of text units (e.g., documents, sentences) and a set of categories, the task is to assign relevant category/categories to each text unit
- ☐ Text Classification has a lot of downstream applications



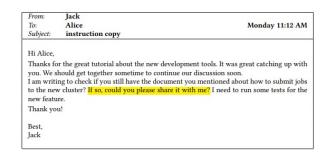
**Sentiment Analysis** 



**Paper Topic Classification** 



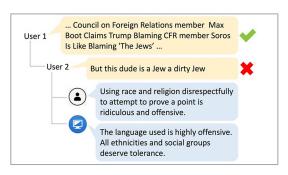
**Location Prediction** 



**Email Intent Identification** 



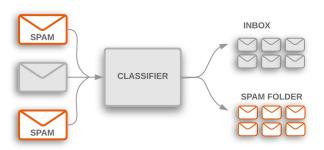
**News Topic Classification** 



**Hate Speech Detection** 

## Different Text Classification Settings: Single-Label vs. Multi-Label

- □ Single-label: Each document belongs to one category.
  - Ex. Spam Detection



- Multi-label: Each document has multiple relevant labels.
  - Ex. Paper Topic Classification

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

#### Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

#### Related Topics 1



https://academic.microsoft.com/paper/2963341956/

#### Different Text Classification Settings: Flat vs. Hierarchical

- **Flat**: All labels are at the same granularity level.
  - Ex. Sentiment Analysis of E-Commerce Reviews (1-5 stars)

★★★★★ It works, it's nice, comfortable, and easy to type on. Not loud (unless you're a key pounder)

This keyboard works. It's comfortable, sensitive enough for touch typers, very quiet by comparison to other mechanicals (unless, of course, you're a 'key pounder'), and the lit keys are excellent for people like me who tend to prefer to work in a cave-like environment. https://www.amazon.com/gp/product/B089YFHYYS/

- Hierarchical: Labels are organized into a hierarchy representing their parent-child relationship.
  - Ex. Paper Topic Classification (the arXiv category taxonomy)

#### BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

https://arxiv.org/abs/1810.04805

Subjects: Computation and Language (cs.CL)

Cite as: arXiv:1810.04805 [cs.CL]

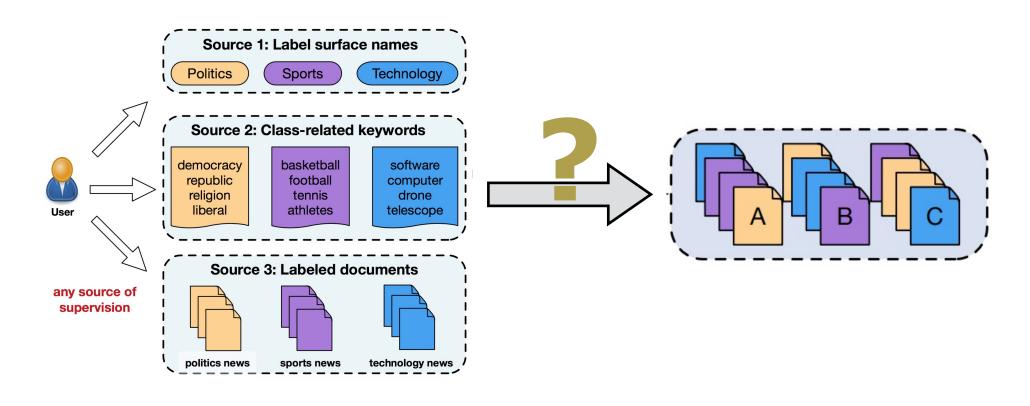
(or arXiv:1810.04805v2 [cs.CL] for this version)

### Weakly-Supervised Text Classification: Motivation

- □ Supervised text classification models (especially recent deep neural models) rely on a significant number of manually labeled training documents to achieve good performance.
- Collecting such training data is usually expensive and time-consuming. In some domains (e.g., scientific papers), annotations must be acquired from domain experts, which incurs additional cost.
- While users cannot afford to label sufficient documents for training a deep neural classifier, they can provide a small amount of seed information:
  - Category names or category-related keywords
  - A small number of labeled documents

### Weakly-Supervised Text Classification: Definition

- Text classification without massive human-annotated training data
  - **Keyword-level weak supervision**: category names or a few relevant keywords
  - □ **Document-level weak supervision**: a small set of labeled docs



## General Ideas to Perform Weakly-Supervised Text Classification

- Joint representation learning
  - Put words, labels, and/or documents into the same latent space using embedding learning or pre-trained language models
- Pseudo training data generation
  - Retrieve some unlabeled documents or synthesize some artificial documents using text embeddings or contextualized representations
  - Give them pseudo labels to train a text classifier
- ☐ Transfer the knowledge of pre-trained language models to classification tasks

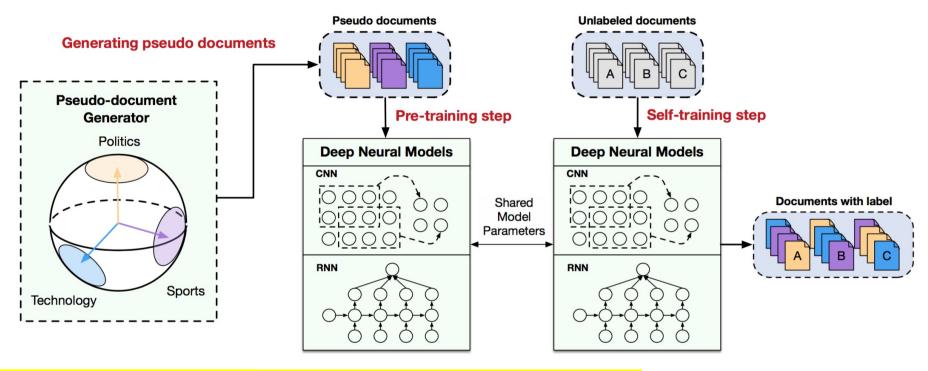
- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]



- Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]
  - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
  - Embedding: MetaCat [SIGIR'20]
  - Pre-trained LM: MICoL [WWW'22]

#### WeSTClass: Pseudo Training Data + Self-Training

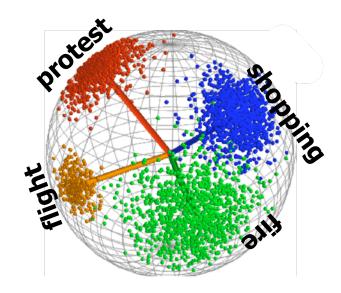
- Embed all words (including label names and keywords) into the same space
- Pseudo document generation: generate pseudo documents from seeds
- Self-training: train deep neural nets (CNN, RNN) with bootstrapping

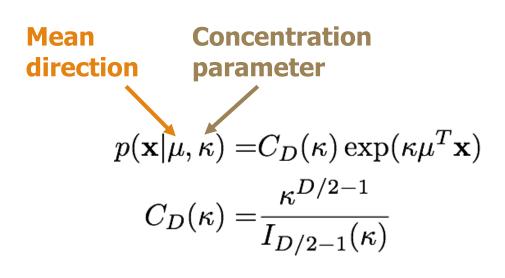


Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18. Applicable to both keyword-level and document-level supervision.

#### **WeSTClass: Pseudo Document Generation**

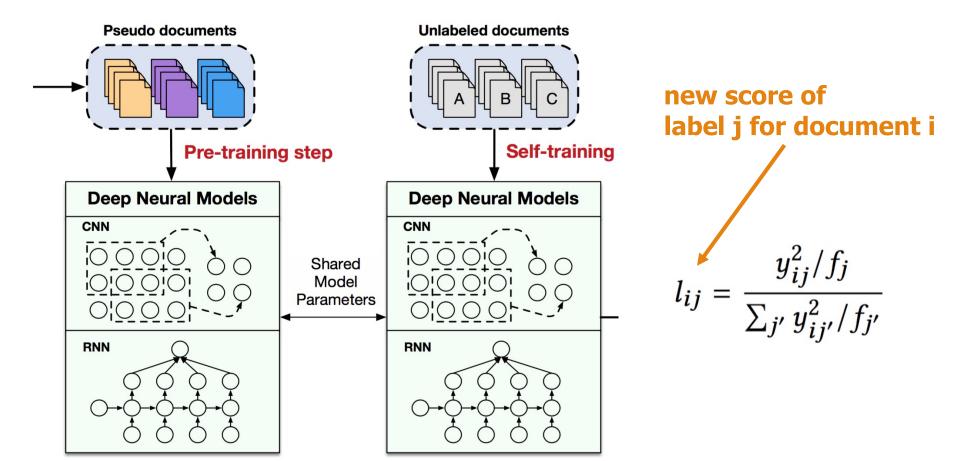
- ☐ Fit a von-Mishes Fisher distribution for each category according to the keywords
  - Category name as supervision? Find nearest words as keywords
  - ☐ A few documents as supervision? Retrieve words with high TF-IDF scores
- Sample bag-of-keywords as pseudo documents for each class





#### **WeSTClass: Self-Training Deep Neural Nets**

- □ Pre-training: Use pseudo documents to initialize DNNs (e.g., CNN, RNN)
- □ **Self-training**: Iteratively refine DNNs in a self-boosting fashion



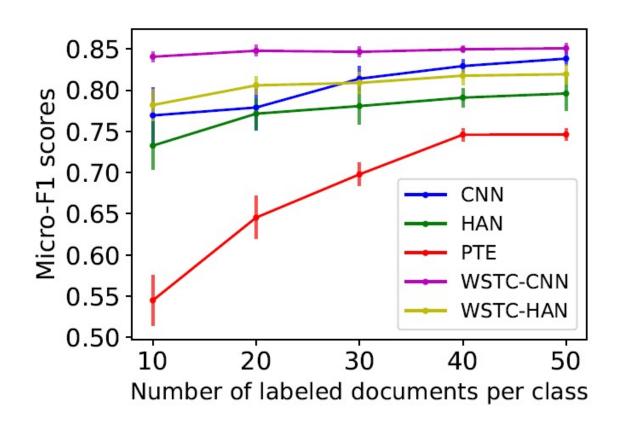
## **WeSTClass: Experiment Results**

- □ Datasets: (1) NYT, (2) AG's News, (3) Yelp
- Evaluation: use different types of weak supervision and measure accuracies

|                  | Methods        | The New York Times |              |               |        | AG's News |               | Yelp Review |                |               |  |
|------------------|----------------|--------------------|--------------|---------------|--------|-----------|---------------|-------------|----------------|---------------|--|
|                  |                | LABELS             | KEYWORDS     | DOCS          | LABELS | KEYWORDS  | DOCS          | LABELS      | KEYWORDS       | DOCS          |  |
|                  | IR with tf-idf | 0.319              | 0.509        | -             | 0.187  | 0.258     | -             | 0.533       | 0.638          | =             |  |
|                  | Topic Model    | 0.301              | 0.253        | -             | 0.496  | 0.723     | -             | 0.333       | 0.333          | -             |  |
|                  | Dataless       | 0.484              | -2           | -             | 0.688  | -         | -             | 0.337       | -              | -             |  |
| Macro-F1 scores: | UNEC           | 0.690              | -            | -             | 0.659  | -         | -             | 0.602       | -              | -             |  |
|                  | PTE            | -                  | <b>F</b> (1) | 0.834 (0.024) | -      | -         | 0.542 (0.029) | -           | -              | 0.658 (0.042) |  |
|                  | HAN            | 0.348              | 0.534        | 0.740(0.059)  | 0.498  | 0.621     | 0.731 (0.029) | 0.519       | 0.631          | 0.686(0.046)  |  |
|                  | CNN            | 0.338              | 0.632        | 0.702 (0.059) | 0.758  | 0.770     | 0.766 (0.035) | 0.523       | 0.633          | 0.634 (0.096) |  |
|                  | NoST-HAN       | 0.515              | 0.213        | 0.823 (0.035) | 0.590  | 0.727     | 0.745 (0.038) | 0.731       | 0.338          | 0.682 (0.090) |  |
|                  | NoST-CNN       | 0.701              | 0.702        | 0.833 (0.013) | 0.534  | 0.759     | 0.759 (0.032) | 0.639       | 0.740          | 0.717 (0.058) |  |
|                  | WeSTClass-HAN  | 0.754              | 0.640        | 0.832 (0.028) | 0.816  | 0.820     | 0.782 (0.028) | 0.769       | 0.736          | 0.729 (0.040) |  |
|                  | WESTCLASS-CNN  | 0.830              | 0.837        | 0.835 (0.010) | 0.822  | 0.821     | 0.839 (0.007) | 0.735       | 0.816          | 0.775 (0.037) |  |
|                  |                |                    |              |               |        |           |               |             |                |               |  |
|                  | IR with tf-idf | 0.240              | 0.346        | -             | 0.292  | 0.333     | -             | 0.548       | 0.652          | -             |  |
|                  | Topic Model    | 0.666              | 0.623        | -             | 0.584  | 0.735     | -             | 0.500       | 0.500          | -             |  |
|                  | Dataless       | 0.710              |              | -             | 0.699  | 1.=       | .=.           | 0.500       | . <del>.</del> | ==            |  |
|                  | UNEC           | 0.810              | -            | -             | 0.668  | -         | -             | 0.603       | -              | -             |  |
| Micro-F1 scores: | PTE            | -                  | _            | 0.906 (0.020) | -      | -         | 0.544 (0.031) | _           | _              | 0.674 (0.029) |  |
|                  | HAN            | 0.251              | 0.595        | 0.849(0.038)  | 0.500  | 0.619     | 0.733 (0.029) | 0.530       | 0.643          | 0.690 (0.042) |  |
|                  | CNN            | 0.246              | 0.620        | 0.798 (0.085) | 0.759  | 0.771     | 0.769 (0.034) | 0.534       | 0.646          | 0.662 (0.062) |  |
|                  | NoST-HAN       | 0.788              | 0.676        | 0.906 (0.021) | 0.619  | 0.736     | 0.747 (0.037) | 0.740       | 0.502          | 0.698 (0.066) |  |
|                  | NoST-CNN       | 0.767              | 0.780        | 0.908 (0.013) | 0.553  | 0.766     | 0.765 (0.031) | 0.671       | 0.750          | 0.725 (0.050) |  |
|                  | WESTCLASS-HAN  | 0.901              | 0.859        | 0.908 (0.019) | 0.816  | 0.822     | 0.782 (0.028) | 0.771       | 0.737          | 0.729 (0.040) |  |
| 4.2              | WESTCLASS-CNN  | 0.916              | 0.912        | 0.911 (0.007) | 0.823  | 0.823     | 0.841(0.007)  | 0.741       | 0.816          | 0.776 (0.037) |  |

#### WeSTClass: Effect of # Labeled Documents

□ Compare the performances of five methods on the AG's News dataset by varying the number of labeled documents per class and



- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]
  - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]



- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]
  - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
  - Embedding: MetaCat [SIGIR'20]
  - Pre-trained LM: MICoL [WWW'22]

## Language Models for Weakly-Supervised Classification

- ☐ The previous approaches only use the local corpus
- □ Fail to take advantage of the general knowledge source (e.g., Wikipedia)
- Why general knowledge?
  - Humans can classify texts with general knowledge
  - Common linguistic features to understand texts better
  - Compensate for potential data scarcity of the local corpus
- How to use general knowledge?
  - Neural language models (e.g., BERT) are pre-trained on large-scale general knowledge texts
  - Their learned semantic/syntactic features can be transferred to downstream tasks

### ConWea: Disambiguating User-Provided Keywords

- User-provided seed words may be ambiguous.
- Example:

| Class  | Seed words            |
|--------|-----------------------|
| Soccer | soccer, goal, penalty |
| Law    | law, judge, court     |

- Classify the following sentences:
  - Messi scored the penalty.
  - John was issued a death penalty.
- Disambiguate the "senses" based on contextualized representations

Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20. Keywords as supervision. ConWea-related slides credit to Jingbo Shang

### **ConWea: Clustering for Disambiguation**

- □ For each word, find all its occurrences in the input corpus
  - Run BERT to get their contextualized representations
  - □ Run a clustering method (e.g., K-Means) to obtain clusters for different "senses"

# User-Provided Seed Words Class Seed Words Soccer soccer, goal, penalty Law law, judge, court ... ...

| Class  | Seed Words                                        |
|--------|---------------------------------------------------|
| Soccer | soccer, goal\$0, goal\$1, penalty\$0, penalty\$1, |
| Law    | law, judge, court\$0, court\$1                    |
|        |                                                   |

**Extended Seed Words** 

| (        | Contextuali | zed & Expanded S                 | Seed Words   | <b>Comparative Ranking</b>                      |
|----------|-------------|----------------------------------|--------------|-------------------------------------------------|
| _        | Class       | Seed Words                       |              | Company Company                                 |
| _        | Soccer      | soccer, goal\$0, per             | nalty\$1,    | Law                                             |
|          | Law         | law, judge, court\$1 penalty\$0, | ,            | 1 % 1                                           |
| -        |             |                                  | _            | Cosmos Politics                                 |
| $\Sigma$ | •           | $\Box$                           |              | <u></u>                                         |
|          |             |                                  | Judge passed | the penalty\$1! the order of ssued a penalty\$0 |
|          | Text (      | Classifier                       | Contextualiz | zed Docs with Predictions                       |

#### **Raw Docs**

Messi scored the penalty! ...
Judge passed the order of ...
The court issued a penalty ...

#### **Contextualized Docs**

Messi scored the **penalty\$1!** ...

Judge passed the order of ...

The **court\$1** issued a **penalty\$0** ...

### **ConWea: Experiment Results**

#### Ablations:

- ConWea-NoCon: Variant of ConWea trained without contextualization.
- □ ConWea-NoExpan: Variant of ConWea trained without seed expansion.
- □ ConWea-WSD: Variant of ConWea with contextualization replaced by a word sense disambiguation algorithm.

|             |   |                |                      | N'                   | YT                   | 20 Newsgroup         |                      |                      |                      |                      |
|-------------|---|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|             |   |                | 5-Class              | (Coarse)             | 25-Clas              | ss (Fine)            | 6-Class              | (Coarse)             | 20-Clas              | ss (Fine)            |
|             |   | Methods        | Micro-F <sub>1</sub> | Macro-F <sub>1</sub> |
|             | Γ | IR-TF-IDF      | 0.65                 | 0.58                 | 0.56                 | 0.54                 | 0.49                 | 0.48                 | 0.53                 | 0.52                 |
| _           |   | Dataless       | 0.71                 | 0.48                 | 0.59                 | 0.37                 | 0.50                 | 0.47                 | 0.61                 | 0.53                 |
| Baselines   | ┥ | Word2Vec       | 0.92                 | 0.83                 | 0.69                 | 0.47                 | 0.51                 | 0.45                 | 0.33                 | 0.33                 |
|             |   | Doc2Cube       | 0.71                 | 0.38                 | 0.67                 | 0.34                 | 0.40                 | 0.35                 | 0.23                 | 0.23                 |
|             | L | WeSTClass      | 0.91                 | 0.84                 | 0.50                 | 0.36                 | 0.53                 | 0.43                 | 0.49                 | 0.46                 |
|             |   | ConWea         | 0.95                 | 0.89                 | 0.91                 | 0.79                 | 0.62                 | 0.57                 | 0.65                 | 0.64                 |
|             | ٢ | ConWea-NoCon   | 0.91                 | 0.83                 | 0.89                 | 0.74                 | 0.53                 | 0.50                 | 0.58                 | 0.57                 |
| Ablations   | ┥ | ConWea-NoExpan | 0.92                 | 0.85                 | 0.76                 | 0.66                 | 0.58                 | 0.53                 | 0.58                 | 0.57                 |
| Abiations   | L | ConWea-WSD     | 0.83                 | 0.78                 | 0.72                 | 0.64                 | 0.52                 | 0.46                 | 0.49                 | 0.47                 |
| Upper bound | { | HAN-Supervised | 0.96                 | 0.92                 | 0.94                 | 0.82                 | 0.90                 | 0.88                 | 0.83                 | 0.83                 |

## LOTClass: Find Similar Meaning Words with Label Names

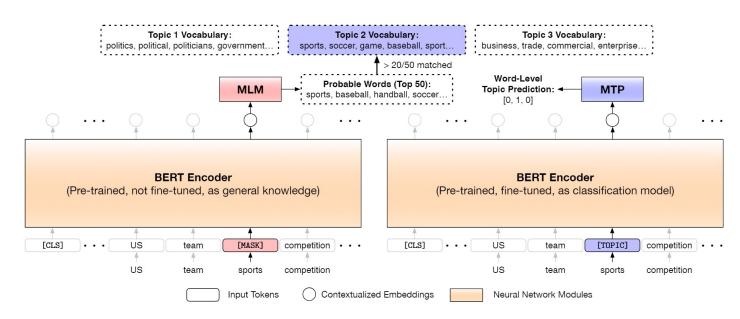
- ☐ Find topic words based on label names
  - Overcome the low semantic coverage of label names
- Use language models to predict what words can replace the label names
  - Interchangeable words are likely to have similar meanings

| Sentence                                                                                                                                                                       | Language Model Prediction                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| The oldest annual US team <b>sports</b> competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.                       | sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,          |
| Samsung's new SPH-V5400 mobile phone <b>sports</b> a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said. | has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers, |

Table 1: BERT language model prediction (sorted by probability) for the word to appear at the position of "sports" under different contexts. The two sentences are from *AG News* corpus.

## LOTClass: Contextualized Word-Level Topic Prediction

- Context-free matching of topic words is inaccurate
  - "Sports" does not always imply the topic "sports"
- Contextualized topic prediction:
  - Predict a word's implied topic under specific contexts
  - We regard a word as "topic indicative" only when its top replacing words have enough overlap with the topic vocabulary.



### **LOTClass: Experiment Results**

- Achieve around 90% accuracy on four benchmark datasets by only using at most 3 words (1 in most cases) per class as the label name
  - Outperforming previous weakly-supervised approaches significantly
  - Comparable to state-of-the-art semi-supervised models

| Supervision Type | Methods                                                     | <b>AG News</b> | DBPedia        | <b>IMDB</b>    | Amazon         |
|------------------|-------------------------------------------------------------|----------------|----------------|----------------|----------------|
|                  | Dataless (Chang et al., 2008)                               | 0.696          | 0.634          | 0.505          | 0.501          |
|                  | WeSTClass (Meng et al., 2018)                               | 0.823          | 0.811          | 0.774          | 0.753          |
| Weakly-Sup.      | BERT w. simple match                                        | 0.752          | 0.722          | 0.677          | 0.654          |
|                  | Ours w/o. self train                                        | 0.822          | 0.850          | 0.844          | 0.781          |
|                  | Ours                                                        | 0.864          | 0.889          | 0.894          | 0.906          |
| Semi-Sup.        | <b>UDA</b> (Xie et al., 2019)                               | 0.869          | 0.986          | 0.887          | 0.960          |
| Supervised       | char-CNN (Zhang et al., 2015)<br>BERT (Devlin et al., 2019) | 0.872<br>0.944 | 0.983<br>0.993 | 0.853<br>0.937 | 0.945<br>0.972 |

## How Powerful Are Vanilla BERT Representations in Category Prediction?

An average of BERT representations of all tokens in a sentence/document preserves domain information well

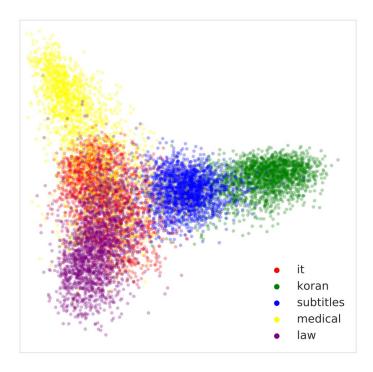


Figure 1: A 2D visualization of average-pooled BERT hidden-state sentence representations using PCA. The colors represent the domain for each sentence.

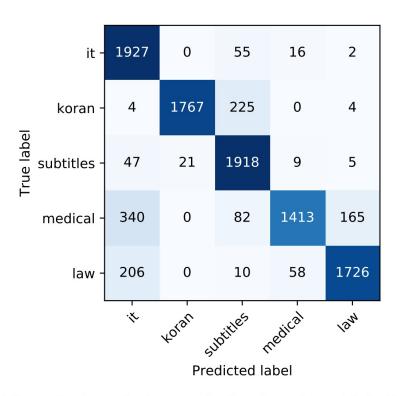


Figure 2: A confusion matrix for clustering with k=5 using BERT-base.

### X-Class: Class-Oriented BERT Representations

- A simple idea for text classification
  - Learn representations for documents
  - Set the number of clusters as the number of classes
  - Hope their clustering results are almost the same as the desired classification
- However, the same corpus could be classified differently

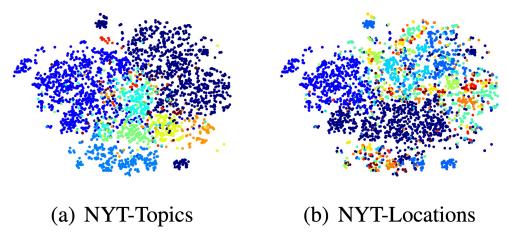
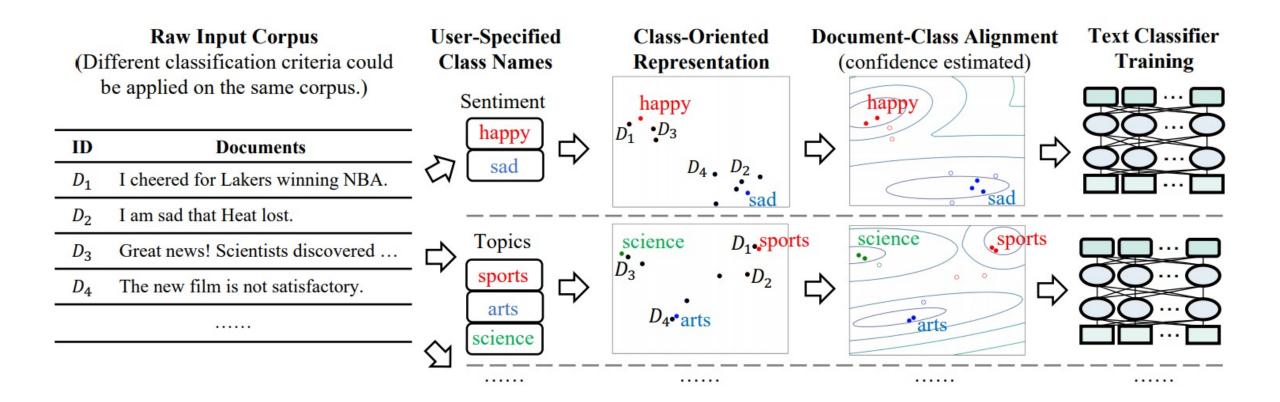


Figure 1: Visualizations of News using Average BERT Representations. Colors denote different classes.

Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21. Category Names as supervision. X-Class-related slides credit to Jingbo Shang

### X-Class: Class-Oriented BERT Representations

Clustering for classification based on class-oriented representations



## X-Class: Experiment Results

- WeSTClass & ConWea consume at least 3 seed words per class
- LOTClass & X-Class use category names only

|                 | <b>AGNews</b> | 20News        | NYT-Small | NYT-Topic | NYT-Location | Yelp      | DBpedia   |
|-----------------|---------------|---------------|-----------|-----------|--------------|-----------|-----------|
| Corpus Domain   | News          | News          | News      | News      | News         | Reviews   | Wikipedia |
| Class Criterion | <b>Topics</b> | <b>Topics</b> | Topics    | Topics    | Locations    | Sentiment | Ontology  |
| # of Classes    | 4             | 5             | 5         | 9         | 10           | 2         | 14        |
| # of Documents  | 120,000       | 17,871        | 13,081    | 31,997    | 31,997       | 38,000    | 560,000   |
| Imbalance       | 1.0           | 2.02          | 16.65     | 27.09     | 15.84        | 1.0       | 1.0       |

| Model         | <b>AGNews</b>                 | 20News            | <b>NYT-Small</b>   | NYT-Topic          | <b>NYT-Location</b> | Yelp               | <b>DBpedia</b>     |
|---------------|-------------------------------|-------------------|--------------------|--------------------|---------------------|--------------------|--------------------|
| Supervised    | 93.99/93.99                   | 96.45/96.42       | 97.95/95.46        | 94.29/89.90        | 95.99/94.99         | 95.7/95.7          | 98.96/98.96        |
| WeSTClass     | 82.3/82.1                     | 71.28/69.90       | 91.2/83.7          | 68.26/57.02        | 63.15/53.22         | 81.6/81.6          | 81.1/ N/A          |
| ConWea        | 74.6/74.2                     | 75.73/73.26       | 95.23/90.79        | <b>81.67/71.54</b> | 85.31/83.81         | 71.4/71.2          | N/A                |
| LOTClass      | <b>86.89/86.82</b> 84.8/84.65 | 73.78/72.53       | 78.12/56.05        | 67.11/43.58        | 58.49/58.96         | 87.75/87.68        | 86.66/85.98        |
| X-Class       |                               | <b>81.36/80.6</b> | <b>96.67/92.98</b> | 80.6/69.92         | <b>90.5/89.81</b>   | <b>88.36/88.32</b> | <b>91.33/91.14</b> |
| X-Class-Rep   | 77.92/77.03                   | 75.14/73.24       | 92.13/83.94        | 77.85/65.38        | 86.7/87.36          | 77.87/77.05        | 74.06/71.75        |
| X-Class-Align | 83.1/83.05                    | 79.28/78.62       | 96.34/92.08        | 79.64/67.85        | 88.58/88.02         | 87.16/87.1         | 87.37/87.28        |

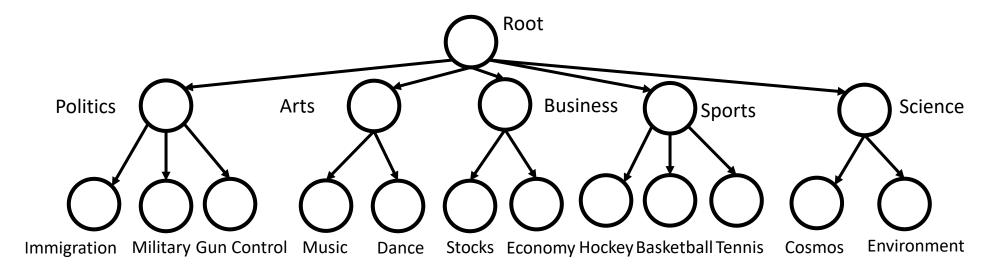
- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]
  - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]



- Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
  - Embedding: MetaCat [SIGIR'20]
  - Pre-trained LM: MICoL [WWW'22]

## WeSHClass: Weakly-Supervised Hierarchical Text Classification

□ The hierarchy has a **tree** structure. Each document is associated with **one path** starting from the root node. (E.g., the main subject of each arXiv paper.)



- Keyword-level weak supervision: The name of each node in the taxonomy, or a few keywords for each leaf category
- □ Document-level weak supervision: A few labeled documents for each leaf category

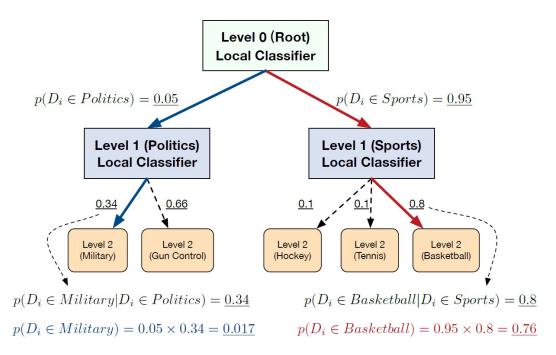
#### WeSHClass: Hierarchical Classification Model

- Local Classifier Pre-training
  - $lue{}$  Generate eta pseudo documents per class (recall WeSTClass) to pre-train the local classifier
  - lacksquare A naive way of creating the label for a pseudo document  $D_i^*$ :
    - □ Directly use the associated class label it is generated from; one-hot encodings;
    - Problem: classifier overfitting to pseudo documents
  - Instead, use pseudo labels:

- $lue{}$   $\alpha$  accounts for the "noises" in pseudo documents; it is evenly split into all m classes
- Pre-training is performed by minimizing KL divergence loss to pseudo labels

#### WeSHClass: Hierarchical Classification Model

- Global Classifier Per Level
  - $lue{}$  At each level k in the class taxonomy, construct a global classifier by ensembling all local classifiers from root to level k
  - Use unlabeled documents to bootstrap the global classifier



#### WeSHClass: Hierarchical Classification Model

- Global Classifier Construction
  - □ The multiplication operation can be explained by the conditional probability formula:

$$p(D_i \in C_{child}) = p(D_i \in C_{child} \mid D_i \in C_{parent}) p(D_i \in C_{parent})$$

- $lue{}$  All local classifiers from root to to level k are fine-tuned simultaneously via back-propagation during self-training; misclassifications at higher levels can be corrected
- Global Classifier Self-training
  - □ Step 1: Use the pre-trained global classifier to classify all unlabeled documents in the corpus;
  - Step 2: Compute pseudo labels based on current predictions:

$$l_{ij} = \frac{y_{ij}^2/f_j}{\sum_{j'} y_{ij'}^2/f_{j'}}$$
 where  $f_j = \sum_i y_{ij}$  and  $y_{ij}$  is the current prediction

- □ Step 3: Minimize KL divergence loss to pseudo labels
- $lue{}$  Iterate between Steps 2 and 3 until less than  $\delta\%$  of documents in the corpus have class assignment changes

## **WeSHClass: Experiment Results**

- Datasets
  - New York Times; arXiv; Yelp Review
- Evaluation: Micro-F1 and Macro-F1 among all classes

| Methods       | NYT           |       |                      |                      |       | arXiv |                      |                      |       | Yelp Review |                      |                      |  |
|---------------|---------------|-------|----------------------|----------------------|-------|-------|----------------------|----------------------|-------|-------------|----------------------|----------------------|--|
|               | KEYWORDS DOCS |       | OCS                  | KEYWORDS DOCS        |       |       | KEYW                 | ORDS                 | DO    | DOCS        |                      |                      |  |
|               | Macro         | Micro | Macro<br>Avg. (Std.) | Micro<br>Avg. (Std.) | Macro | Micro | Macro<br>Avg. (Std.) | Micro<br>Avg. (Std.) | Macro | Micro       | Macro<br>Avg. (Std.) | Micro<br>Avg. (Std.) |  |
| Hier-Dataless | 0.593         | 0.811 |                      |                      | 0.374 | 0.594 | _                    | 12                   | 0.284 | 0.312       | /2                   | -                    |  |
| Hier-SVM      | _             | -     | 0.142(0.016)         | 0.469(0.012)         | -     | _     | 0.049(0.001)         | 0.443(0.006)         | -     | -           | 0.220(0.082)         | 0.310(0.113)         |  |
| CNN           | -             | -     | $0.165\ (0.027)$     | 0.329(0.097)         | -     | -     | 0.124(0.014)         | 0.456(0.023)         | -     | -           | $0.306\ (0.028)$     | 0.372(0.028)         |  |
| WeSTClass     | 0.386         | 0.772 | 0.479(0.027)         | $0.728\ (0.036)$     | 0.412 | 0.642 | $0.264\ (0.016)$     | 0.547(0.009)         | 0.348 | 0.389       | $0.345\ (0.027)$     | $0.388\ (0.033)$     |  |
| No-global     | 0.618         | 0.843 | $0.520\ (0.065)$     | $0.768\ (0.100)$     | 0.442 | 0.673 | $0.264\ (0.020)$     | $0.581\ (0.017)$     | 0.391 | 0.424       | $0.369\ (0.022)$     | $0.403\ (0.016)$     |  |
| No-vMF        | 0.628         | 0.862 | $0.527\ (0.031)$     | $0.825\ (0.032)$     | 0.406 | 0.665 | $0.255\ (0.015)$     | $0.564\ (0.012)$     | 0.410 | 0.457       | 0.372(0.029)         | $0.407\ (0.015)$     |  |
| No-self-train | 0.550         | 0.787 | $0.491\ (0.036)$     | $0.769\ (0.039)$     | 0.395 | 0.635 | $0.234\ (0.013)$     | $0.535\ (0.010)$     | 0.362 | 0.408       | $0.348\ (0.030)$     | $0.382\ (0.022)$     |  |
| Our method    | 0.632         | 0.874 | 0.532(0.015)         | 0.827(0.012)         | 0.452 | 0.692 | 0.279 (0.010)        | 0.585 (0.009)        | 0.423 | 0.461       | 0.375(0.021)         | 0.410(0.014)         |  |

- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]
  - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]
  - Pre-trained LM: TaxoClass [NAACL'21]



- Text Classification with Metadata Information
  - Embedding: MetaCat [SIGIR'20]
  - Pre-trained LM: MICoL [WWW'22]

## TaxoClass: Weakly-supervised Hierarchical Multi-Label Text Classification

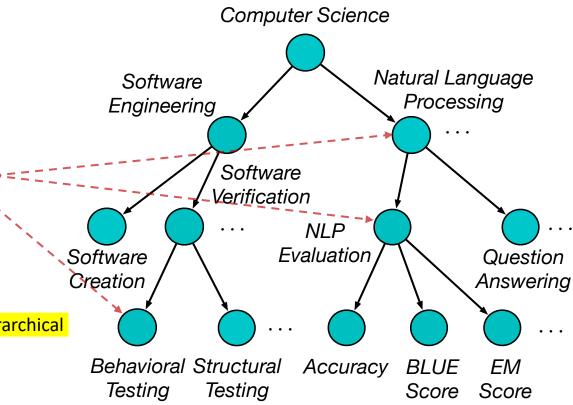
- ☐ The taxonomy is a directed acyclic graph (DAG)
- Each paper can have multiple categories distributed on different paths
- Category names can be phrases and may not appear in the corpus

#### **Document**

Measuring held-out accuracy often overestimates the performance of *NLP* models... Inspired by principles of *behavioral testing* in software engineering, we introduce CheckList, a task-agnostic methodology for *testing NLP models*...

Shen, J., Qiu, W., Meng, Y., Shang, J., Ren, X., & Han, J., "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21.

Category names as supervision.



## **TaxoClass: Why Category Names Only?**

- □ Taxonomies for multi-label text classification are often big.
  - lacktriangle Amazon Product Catalog:  $\times 10^4$  categories
  - $\square$  MeSH Taxonomy (for medical papers):  $\times 10^4$  categories
  - $lue{}$  Microsoft Academic Taxonomy:  $imes 10^5$  labels
- ☐ Impossible for users to provide even a small set of (e.g., 3) keywords/labeled documents for each category

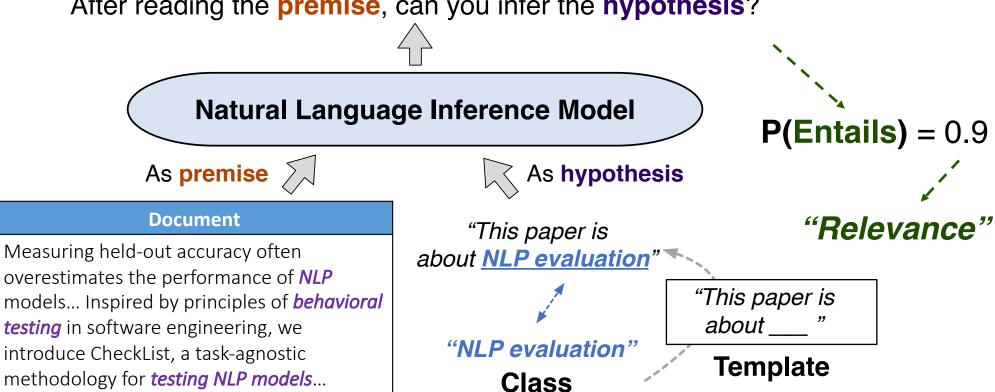


https://academic.microsoft.com/home

#### TaxoClass: Document-Class Relevance Calculation

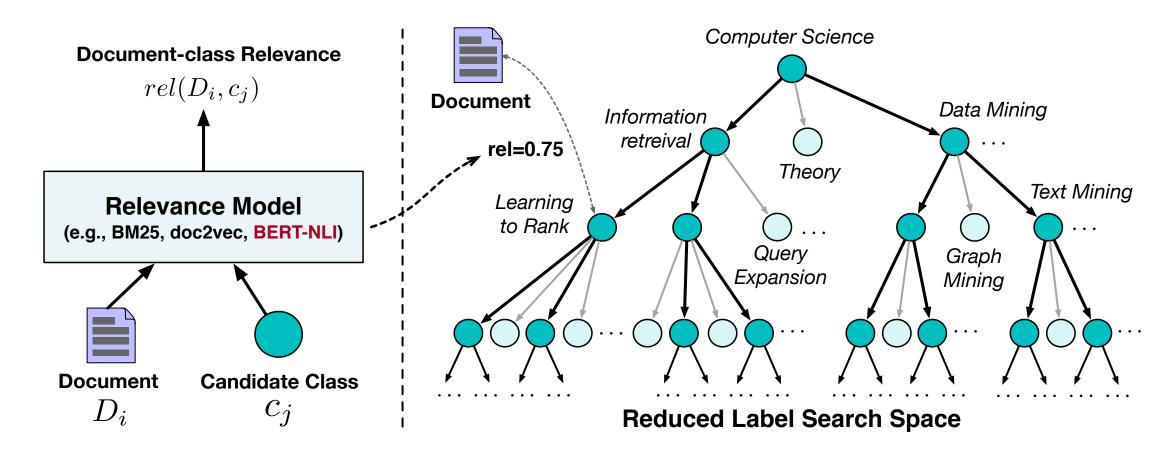
- How to use the knowledge from pre-trained LMs?
- □ Relevance model: BERT/RoBERTa fine-tuned on the NLI task
  - https://huggingface.co/roberta-large-mnli

After reading the **premise**, can you infer the **hypothesis**?



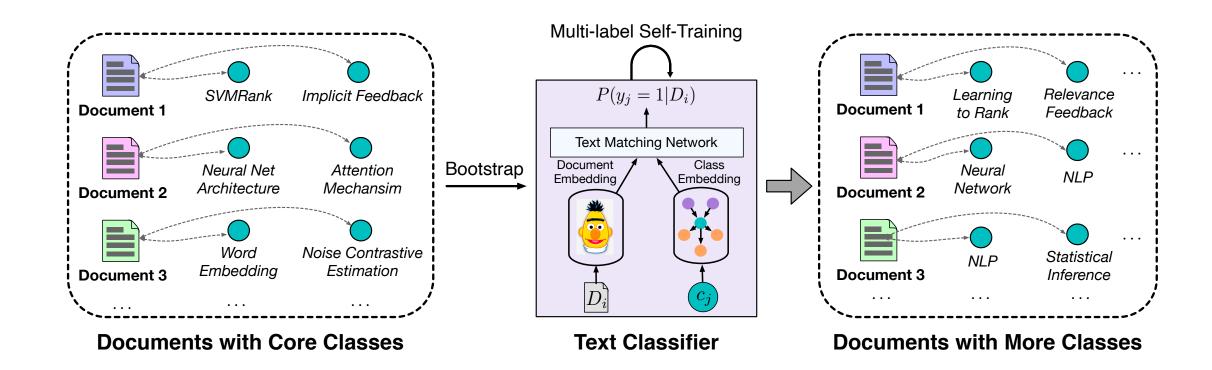
#### **TaxoClass: Top-Down Exploration**

- How to use the taxonomy?
- Shrink the label search space with top-down exploration
  - Use a relevance model to filter out completely irrelevant classes



#### **TaxoClass: Identify Core Classes and More Classes**

- Identify document core classes in reduced label search space
- Generalize from core classes with bootstrapping and self-training



#### **TaxoClass: Experiment Results**

Weakly-supervised multiclass classification method

Semi-supervised methods using 30% of training set

Zero-shot method <----

| Amazo      | n                                | DBPedia                                                                                                                               |                                                                                                                                                                                                                                      |  |
|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Example-F1 | P@1                              | Example-F1                                                                                                                            | P@1                                                                                                                                                                                                                                  |  |
| 0.246      | 0.577                            | 0.305                                                                                                                                 | 0.536                                                                                                                                                                                                                                |  |
| 0.292      | 0.537                            | 0.385                                                                                                                                 | 0.742                                                                                                                                                                                                                                |  |
| 0.339      | 0.592                            | 0.428                                                                                                                                 | 0.761                                                                                                                                                                                                                                |  |
| 0.474      | 0.714                            | 0.677                                                                                                                                 | 0.787                                                                                                                                                                                                                                |  |
| 0.593      | 0.812                            | 0.816                                                                                                                                 | 0.894                                                                                                                                                                                                                                |  |
|            | 0.246<br>0.292<br>0.339<br>0.474 | Example-F1       P@1         0.246       0.577         0.292       0.537         0)       0.339       0.592         0.474       0.714 | Example-F1         P@1         Example-F1           0.246         0.577         0.305           0.292         0.537         0.385           0)         0.339         0.592         0.428           0.474         0.714         0.677 |  |

- vs. WeSHClass: better model document-class relevance
- vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy
- vs. Hier-OShot-TC: better capture domain-specific information from core classes

**Amazon**: 49K product reviews (29.5K training + 19.7K testing), 531 classes

DBPedia: 245K Wiki articles (196K training + 49K testing), 298 classes

$$\textbf{Example-F1} = \frac{1}{N} \sum_{i=1}^{N} \frac{2|true_i \cap pred_i|}{|true_i| + |pred_i|}, \ \textbf{P@1} = \frac{\#docs\ with\ top-1\ pred\ dorrect}{\#total\ docs}$$

#### **Outline**

- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]
  - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]
  - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
  - 💶 Embedding: MetaCat [SIGIR'20] 🦊
  - Pre-trained LM: MICoL [WWW'22]

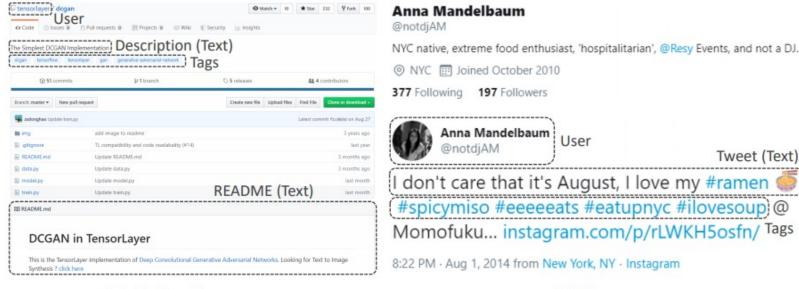
### MetaCat: Leveraging Metadata for Categorization

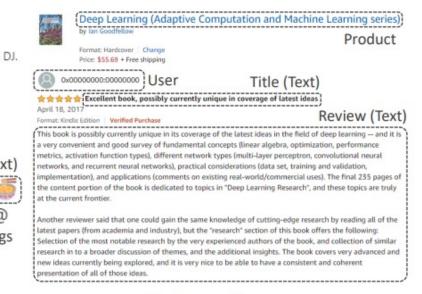
- Metadata is prevalent in many text sources
  - GitHub repositories: User, Tag
  - Tweets: User, Hashtag
  - Amazon reviews: User, Product
  - Scientific papers: Author, Venue

Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally Supervised Categorization of Text with Metadata", SIGIR'20.

A few labeled documents as supervision.

How to leverage these heterogenous signals in the categorization process?





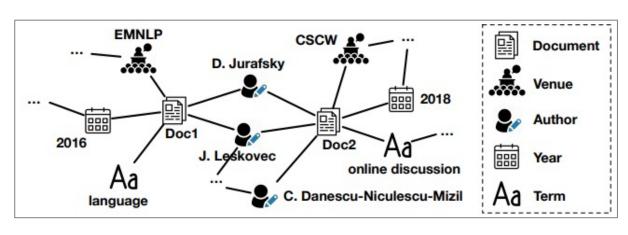
(a) GITHUB REPOSITORY

(b) Tweet

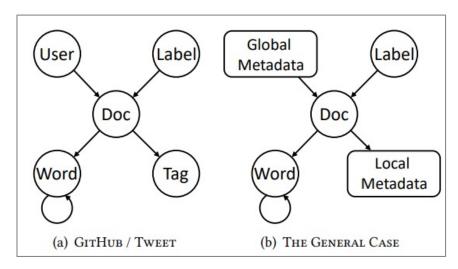
(c) Amazon Review

### **MetaCat: The Underlying Generative Process**

- Two categories of metadata:
  - ☐ Global metadata: user/author, product
    - "Causes" the generation of documents. (E.g., User/Author -> Document)
  - Local metadata: tag/hashtag
    - "Describes" the documents. (E.g., Document -> Tag)
  - We can also say "labels" are global, and "words" are local



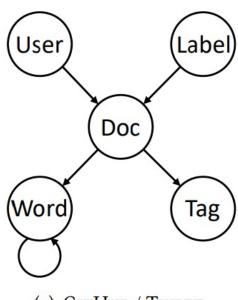
A network view of corpus with metadata



A generative-process view of corpus with metadata

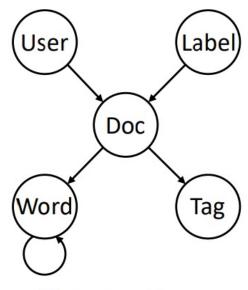
#### **MetaCat: The Underlying Generative Process**

- We use GitHub/Tweet as a specific example to illustrate the process.
- Step 1: User (Global Metadata) & Label -> Document  $p(d|u,l) \propto \exp(\boldsymbol{e}_d^T \boldsymbol{e}_u) \cdot \exp(\boldsymbol{e}_d^T \boldsymbol{e}_l)$
- Step 2: Document -> Word  $p(w|d) \propto \exp(\boldsymbol{e}_w^T \boldsymbol{e}_d)$
- Step 3: Document -> Tag (Local Metadata)
- Step 4: Word -> Context



#### MetaCat: How to use this underlying model?

- Embedding Learning Module
  - $\square$  All embedding vectors  $e_u$ ,  $e_l$ ,  $e_d$ ,  $e_t$ ,  $e_w$  are parameters of the generative process
  - Learn the embedding vectors through maximizing the likelihood of observing all text and metadata
- Training Data Generation Module
  - lacksquare  $oldsymbol{e}_{u}, oldsymbol{e}_{l}, oldsymbol{e}_{d}, oldsymbol{e}_{t}, oldsymbol{e}_{w}$  have been learned
  - $\Box$  Given a label l, generate d, w and t according to the generative process



(a) GITHUB / TWEET

### **MetaCat: Experiment Results**

- Metadata is more helpful on smaller corpora.
- Datasets
  - GitHub-Bio: 10 categories;876 docs
  - GitHub-AI: 14 categories;1,596 docs
  - ☐ GitHub-Sec: 3 categories; 84,950 docs
  - Amazon: 10 categories;100,000 docs
  - Twitter: 9 categories; 135,619 docs

Table 2: Micro F1 scores of compared algorithms on the five datasets. "-": excessive memory requirements.

| Type        | Method           | GitHub-Bio          | GitHub-AI           | GitHub-Sec          | Amazon              | Twitter             |
|-------------|------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|             | CNN [12]         | $0.2227 \pm 0.0195$ | $0.2404 \pm 0.0404$ | $0.4909 \pm 0.0489$ | $0.4915 \pm 0.0374$ | $0.3106 \pm 0.0613$ |
|             | HAN [38]         | $0.1409 \pm 0.0145$ | $0.1900 \pm 0.0299$ | $0.4677 \pm 0.0334$ | $0.4809 \pm 0.0372$ | $0.3163 \pm 0.0878$ |
| Text-based  | PTE [32]         | $0.3170 \pm 0.0516$ | $0.3511 \pm 0.0403$ | $0.4551 \pm 0.0249$ | $0.2997 \pm 0.0786$ | $0.1945 \pm 0.0250$ |
| Text-baseu  | WeSTClass [23]   | $0.3680 \pm 0.0138$ | $0.5036 \pm 0.0287$ | $0.6146 \pm 0.0084$ | $0.5312 \pm 0.0161$ | $0.3568 \pm 0.0178$ |
|             | PCEM [36]        | $0.3426 \pm 0.0160$ | $0.4820 \pm 0.0292$ | $0.5912 \pm 0.0341$ | $0.4645 \pm 0.0163$ | $0.2387 \pm 0.0344$ |
|             | BERT [4]         | $0.2680 \pm 0.0303$ | $0.2451 \pm 0.0273$ | $0.5538 \pm 0.0368$ | $0.5240 \pm 0.0261$ | $0.3312 \pm 0.0860$ |
|             | ESim [27]        | $0.2925 \pm 0.0223$ | $0.4376 \pm 0.0323$ | $0.5480 \pm 0.0109$ | $0.5320 \pm 0.0246$ | $0.3512 \pm 0.0226$ |
| Croph board | Metapath2vec [5] | $0.3956 \pm 0.0141$ | $0.4444 \pm 0.0231$ | $0.5772 \pm 0.0594$ | $0.5256 \pm 0.0335$ | $0.3516 \pm 0.0407$ |
| Graph-based | HIN2vec [6]      | $0.2564 \pm 0.0131$ | $0.3614 \pm 0.0234$ | $0.5218 \pm 0.0466$ | $0.4987 \pm 0.0252$ | $0.2944 \pm 0.0614$ |
|             | TextGCN [39]     | $0.4759 \pm 0.0126$ | $0.6353 \pm 0.0059$ | -                   | -                   | $0.3361 \pm 0.0032$ |
|             | МетаСат          | $0.5258 \pm 0.0090$ | $0.6889 \pm 0.0128$ | $0.7243 \pm 0.0336$ | $0.6422 \pm 0.0058$ | $0.3971 \pm 0.0169$ |

Table 3: Macro F1 scores of compared algorithms on the five datasets. "-": excessive memory requirements.

| Type        | Method           | GitHub-Bio          | GitHub-AI           | GitHub-Sec          | Amazon              | Twitter             |
|-------------|------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|             | CNN [12]         | $0.1896 \pm 0.0133$ | $0.1796 \pm 0.0216$ | $0.4268 \pm 0.0584$ | $0.5056 \pm 0.0376$ | $0.2858 \pm 0.0559$ |
|             | HAN [38]         | $0.0677 \pm 0.0208$ | $0.0961 \pm 0.0254$ | $0.4095 \pm 0.0590$ | $0.4644 \pm 0.0597$ | $0.2592 \pm 0.0826$ |
| Text-based  | PTE [32]         | $0.2630 \pm 0.0371$ | $0.3363 \pm 0.0250$ | $0.3803 \pm 0.0218$ | $0.2563 \pm 0.0810$ | $0.1739 \pm 0.0190$ |
| Text-based  | WeSTClass [23]   | $0.3414 \pm 0.0129$ | $0.4056 \pm 0.0248$ | $0.5497 \pm 0.0054$ | $0.5234 \pm 0.0147$ | $0.3085 \pm 0.0398$ |
|             | PCEM [36]        | $0.2977 \pm 0.0281$ | $0.3751 \pm 0.0350$ | $0.4033 \pm 0.0336$ | $0.4239 \pm 0.0237$ | $0.2039 \pm 0.0472$ |
|             | BERT [4]         | $0.1740 \pm 0.0164$ | $0.2083 \pm 0.0415$ | $0.4956 \pm 0.0164$ | $0.4911 \pm 0.0544$ | $0.2834 \pm 0.0550$ |
|             | ESim [27]        | $0.2598 \pm 0.0182$ | $0.3209 \pm 0.0202$ | $0.4672 \pm 0.0171$ | $0.5336 \pm 0.0220$ | $0.3399 \pm 0.0113$ |
| Graph-based | Metapath2vec [5] | $0.3214 \pm 0.0128$ | $0.3220 \pm 0.0290$ | $0.5140 \pm 0.0637$ | $0.5239 \pm 0.0437$ | $0.3443 \pm 0.0208$ |
| Graph-baseu | HIN2vec [6]      | $0.2742 \pm 0.0136$ | $0.2513 \pm 0.0211$ | $0.4000 \pm 0.0115$ | $0.4261 \pm 0.0284$ | $0.2411 \pm 0.0142$ |
|             | TextGCN [39]     | $0.4817 \pm 0.0078$ | $0.5997 \pm 0.0013$ | _                   | _                   | $0.3191 \pm 0.0029$ |
|             | МетаСат          | $0.5230 \pm 0.0080$ | $0.6154 \pm 0.0079$ | $0.6323 \pm 0.0235$ | $0.6496 \pm 0.0091$ | $0.3612 \pm 0.0067$ |

### HIMECat: Jointly Modeling Metadata and Hierarchy

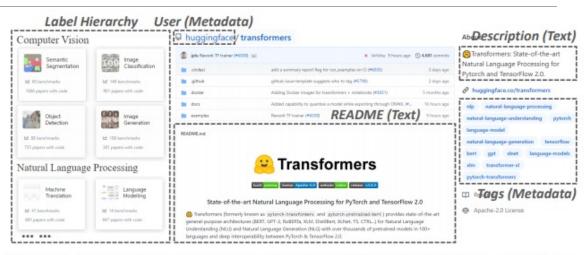
How to jointly leverage the label hierarchy, metadata, and text information?

Zhang, Y., Chen, X., Meng, Y., & Han, J. "Hierarchical Metadata-Aware Document Categorization under Weak Supervision", WSDM'21.

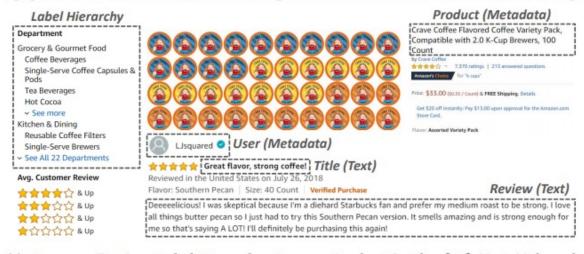
A few labeled documents as supervision.



(b) arXiv Paper. Label Hierarchy: arXiv Category Taxonomy (https://arxiv.org/category\_taxonomy); Text: Title and Abstract; Metadata: Author.



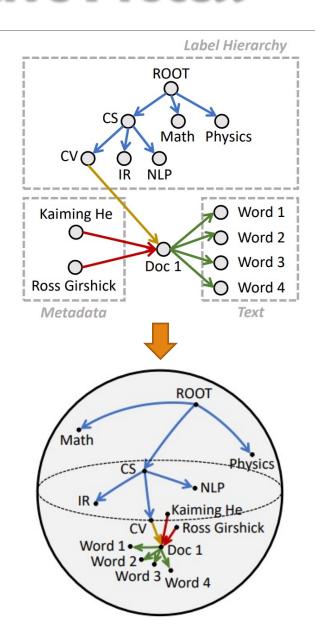
(a) **GitHub Repository.** Label Hierarchy: PaperWithCode Task Taxonomy (https://paperswithcode.com/sota); Text: Description and README; Metadata: User and Tag.



(c) Amazon Review. Label Hierarchy: Amazon Product Catalog [24]; Text: Title and Review; Metadata: User and Product.

#### HIMECat: A Hierarchical Generative Process

- Step 1: Parent Label -> Child Label
- □ Step 2: **Leaf** label & Metadata -> Document
- Step 3: Document -> Word
- Joint Representation Learning
  - Embeddings are the parameters of the generative process.
  - Maximum likelihood estimation of the parameters when observing the hierarchy, metadata and text
- Hierarchical Data Augmentation
  - After representation learning, how to synthesize training data for each class?
  - Follow the generative process

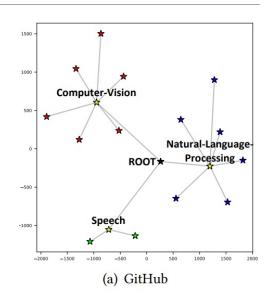


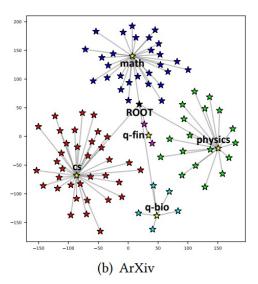
### **HIMECat: Experimental Results**

- Datasets
  - ☐ GitHub: 3+14 categories; 1,596 docs
  - □ ArXiv: 5+88 categories; 25,960 docs
  - Amazon: 18+147 categories; 147,000 docs
- Metrics
  - ☐ F1 scores on leaf categories
  - ☐ F1 scores on all non-root categories

Table 2: {Leaf, Overall}×{Micro, Macro} F1 scores of compared algorithms on the three datasets. \*: significantly worse than HIMECAT (p-value < 0.05). \*\*: significantly worse than HIMECAT (p-value < 0.01).

|                  | GitHub   |          |          |          |          | Ar       | Xiv      |          | Amazon   |          |          | 1.00     |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                  | Le       | eaf      | Ove      | erall    | Le       | eaf      | Ove      | erall    | Leaf     |          | Overall  |          |
|                  | Micro    | Macro    |
| HierSVM [7]      | 0.1861** | 0.1388** | 0.4862** | 0.2457** | 0.0538** | 0.0460** | 0.4066** | 0.0750** | 0.0248** | 0.0217** | 0.2218** | 0.0494** |
| WeSHClass [29]   | 0.1727** | 0.1559** | 0.3332** | 0.1924** | 0.0604** | 0.0602** | 0.3077** | 0.0797** | 0.0483** | 0.0500** | 0.1234** | 0.0640** |
| PCEM [48]        | 0.2519** | 0.1234** | 0.5299*  | 0.1786** | 0.1090** | 0.0717** | 0.4440   | 0.0963** | 0.0675** | 0.0439** | 0.2189** | 0.0659** |
| HiGitClass [53]  | 0.3984   | 0.3902*  | 0.5073** | 0.4084** | 0.1738** | 0.1656** | 0.3928** | 0.1880** | 0.0903** | 0.0876** | 0.1677** | 0.1040** |
| MetaCat [51]     | 0.3762** | 0.3403** | 0.5411*  | 0.3863** | 0.0790** | 0.0768** | 0.3071** | 0.0935** | 0.1008** | 0.0994** | 0.1703** | 0.1083** |
| Metapath2vec [6] | 0.2814** | 0.2805** | 0.4592** | 0.3212** | 0.1360** | 0.1344** | 0.3419** | 0.1534** | 0.0669** | 0.0666** | 0.1334** | 0.0800** |
| Poincaré [32]    | 0.2750** | 0.1980** | 0.4302** | 0.2218** | 0.1336** | 0.1296** | 0.2995** | 0.1454** | 0.0645** | 0.0607** | 0.1202** | 0.0739** |
| BERT [5]         | 0.2889** | 0.2561** | 0.4675** | 0.3007** | 0.1316** | 0.0812** | 0.4203** | 0.1100** | 0.0891** | 0.0520** | 0.2361** | 0.0771** |
| HIMECAT          | 0.4254   | 0.4209   | 0.5820   | 0.4535   | 0.2038   | 0.1938   | 0.4509   | 0.2191   | 0.1552   | 0.1553   | 0.2748   | 0.1770   |



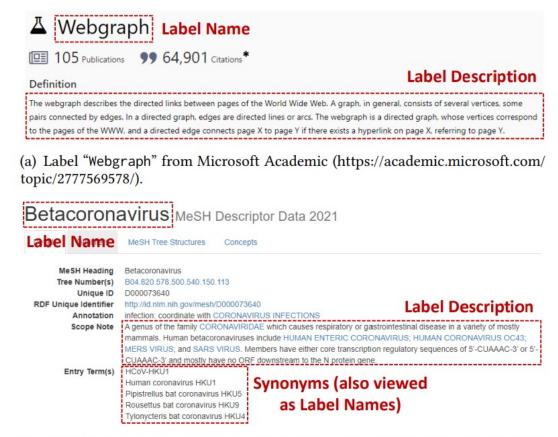


#### **Outline**

- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
  - Embedding: WeSTClass [CIKM'18]
  - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
  - Embedding: WeSHClass [AAAI'19]
  - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
  - Embedding: MetaCat [SIGIR'20]
  - Pre-trained LM: MICoL [WWW'22]

# MICoL: Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification

- Input
  - A set of labels. Each label has its name and description.
  - A large set of unlabeled documents associated with metadata (e.g., authors, venue, references) that can connect the documents together.
- Output
  - A multi-label text classifier. Given some new documents, the classifier can predict relevant labels for each document.

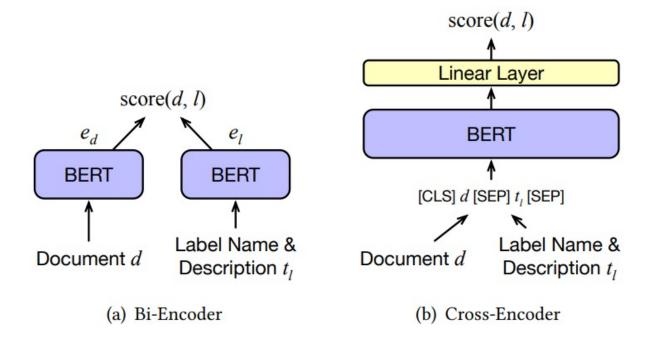


(b) Label "Betacoronavirus" from PubMed (https://meshb.nlm.nih.gov/record/ui?ui=D000073640).

Zhang, Y., Shen, Z., Wu, C., Xie, B., Wang, Y., Wang, K. & Han, J. "Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification", To appear in WWW'22. Category names and descriptions as supervision.

# Pre-trained Language Models for Multi-Label Text Classification

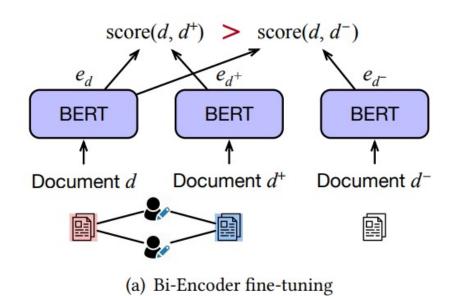
- ☐ If we could have some labeled documents, ...
  - We can use relevant (document, label) pairs to fine-tune the pre-trained LM.
  - Both Bi-Encoder and Cross-Encoder are applicable.

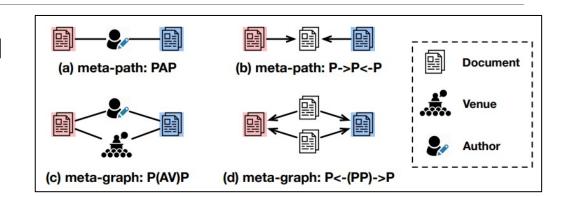


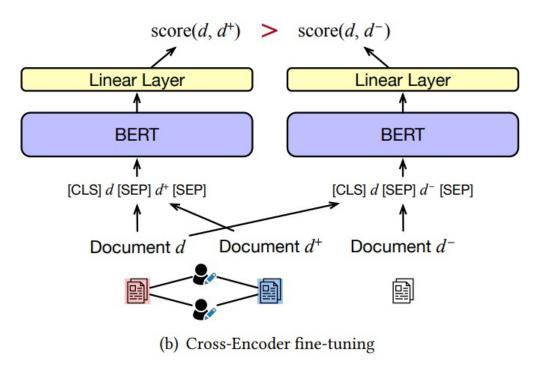
However, we do not have any labeled documents!!!

## Metadata-Induced Contrastive Learning

- Contrastive learning: Instead of training the model to know "what is what" (e.g., relevant (document, label) pairs), train it to know "what is similar with what" (e.g., similar (document, document) pairs).
- Using metadata to define similar (document, document) pairs.







## **MICoL: Experimental Results**

- MICoL significantly outperforms text-based contrastive learning baselines.
- MICoL is competitive with the supervised SOTA trained on 10K–50K labeled documents.

|       | Algorithm                                                 |          |          | MAG-CS   | [49]     |          |          | y        | PubMed [ | 24]      |          |
|-------|-----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|       | Algorithin                                                | P@1      | P@3      | P@5      | NDCG@3   | NDCG@5   | P@1      | P@3      | P@5      | NDCG@3   | NDCG@5   |
| 0/4   | Doc2Vec [31]                                              | 0.5697** | 0.4613** | 0.3814** | 0.5043** | 0.4719** | 0.3888** | 0.3283** | 0.2859** | 0.3463** | 0.3252** |
|       | SciBERT [2]                                               | 0.6440** | 0.5030** | 0.4011** | 0.5545** | 0.5061** | 0.4427** | 0.3572** | 0.3031** | 0.3809** | 0.3510** |
|       | ZeroShot-Entail [61]                                      | 0.6649** | 0.5003** | 0.3959** | 0.5570** | 0.5057** | 0.5275** | 0.4021   | 0.3299   | 0.4352   | 0.3913   |
| to    | SPECTER [8]                                               | 0.7107** | 0.5381** | 0.4184** | 0.5979** | 0.5365** | 0.5286** | 0.3923** | 0.3181** | 0.4273** | 0.3815** |
| shot  | EDA [53]                                                  | 0.6442** | 0.4939** | 0.3948** | 0.5471** | 0.5000** | 0.4919   | 0.3754*  | 0.3101*  | 0.4058*  | 0.3667*  |
| Zero- | UDA [57]                                                  | 0.6291** | 0.4848** | 0.3897** | 0.5362** | 0.4918** | 0.4795** | 0.3696** | 0.3067** | 0.3986** | 0.3614** |
| Z     | MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$ )       | 0.7062*  | 0.5369*  | 0.4184*  | 0.5960*  | 0.5355*  | 0.5124** | 0.3869*  | 0.3172*  | 0.4196*  | 0.3774*  |
|       | MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$ )    | 0.7050*  | 0.5344*  | 0.4161*  | 0.5937*  | 0.5331*  | 0.5198** | 0.3876*  | 0.3172*  | 0.4215*  | 0.3786*  |
|       | MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$ )    | 0.7177   | 0.5444   | 0.4219   | 0.6048   | 0.5415   | 0.5412   | 0.4036   | 0.3257   | 0.4391   | 0.3906   |
|       | MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$ ) | 0.7061   | 0.5376   | 0.4187   | 0.5964   | 0.5357   | 0.5218   | 0.3911   | 0.3172*  | 0.4249   | 0.3794   |
| pa    | MATCH [68] (10K Training)                                 | 0.4423** | 0.2851** | 0.2152** | 0.3375** | 0.3003** | 0.6915   | 0.3869*  | 0.2785** | 0.4649   | 0.3896   |
| vis   | MATCH [68] (50K Training)                                 | 0.6215** | 0.4280** | 0.3269** | 0.4987** | 0.4489** | 0.7701   | 0.4716   | 0.3585   | 0.5497   | 0.4750   |
| Super | MATCH [68] (100K Training)                                | 0.8321   | 0.6520   | 0.5142   | 0.7342   | 0.6761   | 0.8286   | 0.5680   | 0.4410   | 0.6405   | 0.5626   |
| Su    | MATCH [68] (Full, 560K+ Training)                         | 0.9114   | 0.7634   | 0.6312   | 0.8486   | 0.8076   | 0.9151   | 0.7425   | 0.6104   | 0.8001   | 0.7310   |

## **MICoL: Experimental Results**

Most meta-paths and meta-graphs used in MICoL can improve the classification performance upon unfine-tuned SciBERT.

| Algorithm                                                 | MAG-CS [49] |          |          |          |          | PubMed [24] |          |          |          |          |
|-----------------------------------------------------------|-------------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|
| Algorithm                                                 | P@1         | P@3      | P@5      | NDCG@3   | NDCG@5   | P@1         | P@3      | P@5      | NDCG@3   | NDCG@5   |
| Unfine-tuned SciBERT                                      | 0.6599**    | 0.5117** | 0.4056** | 0.5651** | 0.5136** | 0.4371**    | 0.3544** | 0.3014** | 0.3775** | 0.3485** |
| MICoL (Bi-Encoder, PAP)                                   | 0.6877**    | 0.5285** | 0.4143** | 0.5852** | 0.5280** | 0.4974**    | 0.3818** | 0.3154*  | 0.4122** | 0.3727** |
| MICoL (Bi-Encoder, PVP)                                   | 0.6589**    | 0.5123** | 0.4063** | 0.5656** | 0.5145** | 0.4440**    | 0.3507** | 0.2966** | 0.3761** | 0.3458** |
| MICoL (Bi-Encoder, $P \rightarrow P$ )                    | 0.7094      | 0.5391   | 0.4190   | 0.5982   | 0.5367   | 0.5200*     | 0.3903*  | 0.3195   | 0.4240*  | 0.3808*  |
| MICoL (Bi-Encoder, $P \leftarrow P$ )                     | 0.7095*     | 0.5374*  | 0.4178*  | 0.5970*  | 0.5356*  | 0.5195**    | 0.3905*  | 0.3192   | 0.4240*  | 0.3806*  |
| MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$ )       | 0.7062*     | 0.5369*  | 0.4184*  | 0.5960*  | 0.5355*  | 0.5124**    | 0.3869*  | 0.3172*  | 0.4196*  | 0.3774*  |
| MICoL (Bi-Encoder, $P \leftarrow P \rightarrow P$ )       | 0.7039*     | 0.5379*  | 0.4187*  | 0.5963*  | 0.5356*  | 0.5174**    | 0.3886*  | 0.3187*  | 0.4220*  | 0.3795*  |
| MICoL (Bi-Encoder, $P(AA)P$ )                             | 0.6873**    | 0.5272** | 0.4130** | 0.5840** | 0.5269** | 0.4963**    | 0.3794** | 0.3139** | 0.4101** | 0.3711** |
| MICoL (Bi-Encoder, $P(AV)P$ )                             | 0.6832**    | 0.5263** | 0.4135** | 0.5823** | 0.5263** | 0.4894**    | 0.3743** | 0.3099** | 0.4045** | 0.3664** |
| MICoL (Bi-Encoder, $P \rightarrow (PP) \leftarrow P$ )    | 0.7015**    | 0.5334** | 0.4160** | 0.5920** | 0.5322** | 0.5163**    | 0.3879*  | 0.3172*  | 0.4211*  | 0.3781*  |
| MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$ )    | 0.7050*     | 0.5344*  | 0.4161*  | 0.5937*  | 0.5331*  | 0.5198**    | 0.3876*  | 0.3172*  | 0.4215*  | 0.3786*  |
| MICoL (Cross-Encoder, PAP)                                | 0.7034*     | 0.5355   | 0.4168   | 0.5943   | 0.5337   | 0.5212**    | 0.3921*  | 0.3207   | 0.4255*  | 0.3818*  |
| MICoL (Cross-Encoder, PVP)                                | 0.6720*     | 0.5203*  | 0.4103*  | 0.5750*  | 0.5210*  | 0.4668**    | 0.3633** | 0.3051** | 0.3908** | 0.3574** |
| MICoL (Cross-Encoder, $P \rightarrow P$ )                 | 0.7033*     | 0.5391   | 0.4201   | 0.5971*  | 0.5365*  | 0.5266      | 0.3946   | 0.3207   | 0.4286   | 0.3830   |
| MICoL (Cross-Encoder, $P \leftarrow P$ )                  | 0.7169      | 0.5430   | 0.4214   | 0.6033   | 0.5406   | 0.5265      | 0.3924   | 0.3186   | 0.4268   | 0.3811   |
| MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$ )    | 0.7177      | 0.5444   | 0.4219   | 0.6048   | 0.5415   | 0.5412      | 0.4036   | 0.3257   | 0.4391   | 0.3906   |
| MICoL (Cross-Encoder, $P \leftarrow P \rightarrow P$ )    | 0.7045      | 0.5356*  | 0.4168*  | 0.5944*  | 0.5336*  | 0.5243*     | 0.3932*  | 0.3190*  | 0.4271*  | 0.3814*  |
| MICoL (Cross-Encoder, $P(AA)P$ )                          | 0.7028      | 0.5351   | 0.4171   | 0.5939   | 0.5338   | 0.5290*     | 0.3937   | 0.3201   | 0.4285*  | 0.3830   |
| MICoL (Cross-Encoder, $P(AV)P$ )                          | 0.7024*     | 0.5354*  | 0.4177   | 0.5940*  | 0.5343*  | 0.5164**    | 0.3897*  | 0.3195*  | 0.4225*  | 0.3797*  |
| MICoL (Cross-Encoder, $P \rightarrow (PP) \leftarrow P$ ) | 0.7076*     | 0.5379*  | 0.4188   | 0.5971*  | 0.5363*  | 0.5186      | 0.3924*  | 0.3184*  | 0.4254*  | 0.3800*  |
| $MICoL (Cross-Encoder, P \leftarrow (PP) \rightarrow P)$  | 0.7061      | 0.5376   | 0.4187   | 0.5964   | 0.5357   | 0.5218      | 0.3911   | 0.3172*  | 0.4249   | 0.3794   |

## Summary

| Method    | Flat vs. Hierarchical | Single-label vs.<br>Multi-label | Supervision Format | Embedding vs. Pretrained LM |
|-----------|-----------------------|---------------------------------|--------------------|-----------------------------|
| WeSTClass | Flat                  | Single-label                    | Both types         | Embedding                   |
| ConWea    | Flat                  | Single-label                    | Category Names     | Pretrained LM               |
| LOTClass  | Flat                  | Single-label                    | Category Names     | Pretrained LM               |
| X-Class   | Flat & Hierarchical   | Single-label & Path             | Category Names     | Pretrained LM               |
| WeSHClass | Hierarchical          | Path                            | Both types         | Embedding                   |
| TaxoClass | Hierarchical          | Multi-label                     | Category Names     | Pretrained LM               |
| MetaCat   | Flat                  | Single-label                    | A Few Labeled Docs | Embedding                   |
| HIMECat   | Hierarchical          | Path                            | A Few Labeled Docs | Embedding                   |
| MICoL     | Flat                  | Multi-label                     | Category Names     | Pretrained LM               |

#### References

- ☐ Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18
- ☐ Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20
- Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20
- □ Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21
- ☐ Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-Supervised Hierarchical Text Classification", AAAI'19
- Shen, J., Qiu, W., Meng, Y., Shang, J., Ren, X., & Han, J., "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21
- Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally Supervised Categorization of Text with Metadata", SIGIR'20
- Zhang, Y., Chen, X., Meng, Y., & Han, J. "Hierarchical Metadata-Aware Document Categorization under Weak Supervision", WSDM'21
- Zhang, Y., Shen, Z., Wu, C., Xie, B., Wang, Y., Wang, K. & Han, J. "Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification", To appear in WWW'22



# Q&A

