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Introduction to Text Embeddings

32 A milestone in NLP and ML:

- Unsupervised learning of text representations—No supervision needed

- Embed one-hot vectors into lower-dimensional space—Address “curse of dimensionality”

- Word embedding captures useful properties of word semantics

d  Word similarity: Words with similar meanings are embedded closer

1 Word analogy: Linear relationships between words (e.g. king - queen = man - woman)
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Introduction to Text Embeddings

1 Text embeddings can be used in a lot of downstream applications
2 Word/token/entity-level tasks

2 Keyword extraction/clustering
2 Taxonomy construction
2 Document/paragraph-level tasks
2 Document classification/clustering/retrieval

2 Question answering/text summarization
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Outline

3 Introduction to text embeddings

3 Local context-based word embeddings

- Euclidean space: Word2Vec, GloVe, fastText @

- Hyperbolic space: Poincaré embeddings

3 Joint local and global context-based text embeddings
3 Deep contextualized embeddings via neural language models

1 Extend unsupervised embeddings to incorporate weak supervision



Word2Vec

3 Local context-based word embedding learning pushes together terms
similar local contexts

1 For example, Word2Vec maximizes the probability of observing a word based on its contexts

that share same or

d As a result, semantically coherent terms are more likely to have close embeddings

LT i O auery O..
i Co-occurred words in a local context window | Vol O video
! I O O
e ——— TR T EEEEE T . dbms
T T index time image
1 - ————— i
72, > logp(uweylw) o © | oo
t=1 —c<j<¢,j#0 O
. T machine_learning
exp (vwo ’uwI) ' O\ O O O
p(wolwr) = — —~ o o”
Zw:1 exp (Uw UU)I) - robotics
training O
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations off Words and Phrases and their

Compositionality. NIPS.



GloVe

1 GloVe factorizes a global co-occurrence matrix derived from the entire corpus

d Low-dimensional representations are obtained by solving a least-squares problem to “recover”
the co-occurrence matrix

|4
J = Z f (X,,-) (WiTWj +bi +bj — log Xif)z
=

i,j=1

Context =——————> Features ————> Context =———>
8 Word - Context - Word - Feature xg Feature - Context
2[| Co-occurenceMatrix | === Matrix 3 Matrix
LT i""""""'l T T L :
| Sparse, high dimensional ; | Low dimensional representation !

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.



fastText

A fastText improves upon Word2Vec by incorporating subword information into word embedding

Tri-gram extraction

<where> , <wh, whe, her, ere, re>

A fastText allows sharing subword representations across words, since words are represented by
the aggregation of their n-grams

Word2Vec probability expression

I |
— |
ox ;'UT'T';“} . i-z v, E Represent a word by the sum of the |
------------- gr'c: ) ]
p(wolwr) = il -1-”9---31- (,eg“!--!-' | vector representations of its n-grams i
w=1 exXp (,U':U 'le) __________ ;_ _______I- ---------------------------------------

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association
3 for Computational Linguistics, 5, 135-146.
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3 Introduction to text embeddings

3 Local context-based word embeddings

- Euclidean space: Word2Vec, GloVe, fastText

- Hyperbolic space: Poincaré embeddings @

3 Joint local and global context-based text embeddings
3 Deep contextualized embeddings via neural language models

1 Extend unsupervised embeddings to incorporate weak supervision



Hyperbolic Embedding: Poincaré embedding

Notebook

d Why non-Euclidean embedding space?

New York

- Data can have specific structures that Euclidean-space
models struggle to capture sl
ad The hyperbolic space
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d Poincaré embedding

- Learn hierarchical representations by pushing general
terms to the origin of the Poincaré ball, and specific
terms to the boundary

W, V) = arcos [u ~ ol
d(u, v) h<1+2(1— |l[?)(1 — ||U||2)>

Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.
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Texts in Hyperbolic Space: Poincaré GloVe

1 GloVe in hyperbolic space
1 Motivation: latent hierarchical structure of words exists among text

0 Hypernym-hyponym =3 £ (%) e+ B -lgx,)’ Glove

- Textual entailment " I Hyperbolicmetric

1,7=1

1 Effectively model generality/specificity
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Tifrea, A., Bécigneul, G., & Ganea, O. (2019). Poincaré GloVe: Hyperbolic Word Embeddings. ICLR.
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Outline

1 Introduction to text embeddings
1 Local context-based word embeddings

1 Joint local and global context-based text embeddings

- Spherical space: JoSE @

1 Deep contextualized embeddings via neural language models

1 Extend unsupervised embeddings to incorporate weak supervision
12



Directional Analysis for Text Embeddings

1 How to use text embeddings? Mostly directional similarity (i.e., cosine
similarity)

- Word similarity is derived using cosine similarity

France ball
4 4
Ital .
6 taly 0 France - Paris
. R , ol
0
crocodile Rome - ltaly
France and ltaly are quite similar ball and crocodile are not similar the tW.O vectors are Sim“aT but opposite
the first one encodes (city - country)
9 is close to 0° 0 is close to 90° while the second one encodes (country - city)
cos(@) =1 cos(8)=0 @ is close to 180°

cos(8) = -1

- Better clustering performances when embeddings are normalized and spherical clustering algorithms
are used (Spherical K-means)

- Vector direction is what actually matters!
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Motivation

1 Issues with previous word embedding frameworks:

- Although directional similarity has shown effective for various applications, previous embeddings (e.g.
Word2Vec, GloVe, fastText) are trained in the Euclidean space

- Agap between training space and usage space: Trained in Euclidean space but used on sphere

Post-processing
(Normalization)

—/

Embedding Usage on the Sphere

Embedding Training in Euclidean Space - _
(Similarity, Clustering, etc.)



Motivation

1 What is the consequence of the inconsistency between word embedding
training and usage space?
- The objective we optimize during training is not really the one we use

- Regardless of the different training objective, Word2Vec, GloVe and fastText all optimize the
embedding dot product during training, but cosine similarity is what actually used in applications

Embedding dot product is optimized during training

PR el
;T 0N
exp (v Vw4 1% ~

- -
plwolwr) = ———=7 T 7= f (XiJ(wi o bi+ B - log Xi5) s(w,c) = ) (zyve,
21 CXP (% Uwf) L=l =T 9€Gw =

Word2Vec GloVe fastText



Motivation

1 What is the consequence of the inconsistency between word embedding
training and usage space?
- The objective we optimize during training is not really the one we use

- E.g. Consider two pairs of words, A: lover-quarrel; B: rock-jazz. Pair B has higher ground truth
similarity than pair A in WordSim353 (a benchmark testset)

- Word2Vec assigns higher dot product to pair B, but its cosine similarity is still smaller than pair A

o ‘ Metrics A: lover-quarrel  B: rock-jazz
LIrainine —— Dot Product 5284 = 6287
[ “Usage Cosine Similarity 0.637 = 0.628

P !
! Inconsistency |
|

16



Motivation

1 Apart from the training/usage space inconsistency issue, previous
embedding frameworks only leverage local contexts to learn word

representations

- Local contexts can only partly define word semantics in unsupervised word embedding learning

[f I hear someone screwing with my car (ie, setting off the alarm) and
taunting me to come out, you can be very sure that my Colt Delta
Elite will also be coming with me. It 1s not the screwing with the car
that would get them shot, it 1s the potential physical danger. If they

' Lacal contexts of | are taunting like that, it’s very possible that they also intend to rob

“harmful” | me and or do other physically {harmful ﬂthings. Here in Houston last

year a woman heard the sound of someone ...

17
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Spherical Text Embedding

1 We design a generative model on the sphere that follows how humans

write articles:

2 Wefirst have a general idea of the paragraph/document, and then start to write down each word in
consistent with not only the paragraph/document, but also the surrounding words

2  Assume a two-step generation process:

p(u | d) < exp(cos(u, d))

Document/

n

Paragraph (d)

, Center Word
(u)

p(v | u) x exp(cos(v,u))

| Surrounding Word

(v)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text

Embedding. NeurlPS.




Spherical Text Embedding

1 How to define the generative model in the spherical space?

Document/
Paragraph (d)

— O N, EM TEE TR TS S
- --

<_

| Center Word

(u)

— W S EM TSN TR TS .
- -

= O e e -

A 4

Surrounding Word
(v)

What are their expressions on the sphere?

d We prove a theorem connecting the above generative model with a spherical
probability distribution:

Theorem 1. When the corpus has infinite vocabulary, i.e., |V| — oo, the analytic forms of p(u | d) < exp(cos(u, d))
and p(v | u) o< exp(cos(v,w)) are given by the von Mises-Fisher (vMF) distribution with the prior embedding as the

mean direction and constant 1 as the concentration parameter, i.e.,

lim p(v | u) =vMF,(v:u, 1),

19

|V | =0

lim p(u|d) =vMF,(u:d,1).

|V |— oo
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Spherical Text Embedding

1 Understanding the spherical generative model

Step 1 Step 2

Center word semantics
generate local contexts

Global context generates
center word semantics
A computer
graphics document

113

A “‘display”

Step 1 » " ~Document d;

| |
i |
| |
| ... you create 8 grey level images and display them for... |
I w - Se__V !
\ |
\ |
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Spherical Text Embedding

1 Training objective:
- The final generation probability:
p(v,u|d)=pv|u)- plu|d =vMF,(v;u,1) - vMF,(u;d, 1)

2 Maximize the log-probability of a real co-occurred tuple (v, u, d), while minimize that of a negative
sample (v,u’, d), with a max-margin loss:

Lioint(u, v, d) = max <O, m —og (¢, (1) exp(cos(v, u)) - ¢, (1) exp(cos(u, d))): Positive Sample

F ——————————————————————

+1og (¢,(1) exp(cos(v,u’)) - ¢,(1) exp(cos(w’, d)):)> Negative Sample

= max (0, m — cos(v,u) — cos(u, d) + cos(v,u’) + cos(u’, d)) ,



Optimization on the Sphere

1 Riemannian optimization with Riemannian SGD:

- Riemannian gradient:
grad f(z) == (I —zz ") Vf(x)

- Exponential mapping (maps from the tangent plane to the sphere):

_ [eostlzl)a + sinlzl) gz, = € TuS '\ {0},
exp,(z) = . .~ 0

a Riemannian SGD:

Zri1 = exp,, (—igrad f(z,)

- Retraction (first-order approximation of the exponential mapping):

ozt z
|l + =]

Re (2) :



Optimization on the Sphere

1 Training details:
- Incorporate angular distances into Riemannian optimization

A

—Vfi(x) =[1,1]7

Ll?tﬂ > -
Sl /r+1
z = gradf(x

:ctTVf
Vi

\ B

Lt41

 J

~V fo(zy ]1': 1, —1]T

\% |

deos = 1 — cos (xy, —V f(x)) =

- Multiply the Euclidean gradient with its angular distance from the current point

Lit1 — Rmt <—I]t <1 + CE,;TVf(CBt)) ([ — LTy )Vf(a:t)) .

va(wt)”
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Experiments

1 Word similarity results:

Table I: Spearman rank correlation on word similarity evaluation.

Embedding Space Model WordSim353 MEN  SimLex999
Word2Vec 0.711 0.726 0.311
Euclidean GloVe 0.598 0.690 0.321
‘ fastText 0.697 0.722 0.303
BERT 0.477 0.594 0.287
Poincaré Poincaré GloVe 0.623 0.652 0.321
Spherical JoSE 0.739 0.748 0.339

- Why does BERT fall behind on this task?

- BERT learns contextualized representations, but word similarity is conducted in a context-free
manner

2 BERT is optimized on specific pre-training tasks like predicting masked words and sentence
relationships, which have no direct relation to word similarity
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Experiments

1 Document clustering results:

a

Table 2: Document clustering evaluation on the 20 Newsgroup dataset.

Embedding Clus. Alg. MI NMI ARI Purity
Ave. W2V K-Means  1.299 +0.031 0.445 4+ 0.009 0.247 £0.008 0.408 £ 0.014
ST SK-Means  1.328 £0.024 0.453 +0.009 0.250 £+ 0.008 0.419 £+ 0.012
SIE K-Means  0.893 4+ 0.028 0.308 + 0.009  0.137 £ 0.006  0.285 £+ 0.011
SK-Means 0.958 = 0.012 0.322 +£0.004 0.164 £0.004 0.331 4+ 0.005
BERT K-Means  0.719 £ 0.013  0.248 +-0.004  0.100 £ 0.003  0.233 £ 0.005
SK-Means 0.854 +0.022 0.289 + 0.008  0.127 £0.003 0.281 £ 0.010
Doc2Vec K-Means  1.856 +0.020 0.626 £ 0.006 0.469 + 0.015 0.640 £ 0.016
“eYEE SK-Means  1.876 +£0.020  0.630 £ 0.007  0.494 +0.012  0.648 + 0.017
JoSE K-Means  1.975 +0.026 0.663 + 0.008 0.556 £0.018 0.711 £ 0.020
SK-Means 1.982 + 0.034 0.664 + 0.010 0.568 + 0.020 0.721 4+ 0.029

Embedding quality is generally more important than clustering algorithms:

Using spherical K-Means only gives marginal performance boost over K-Means

d

JOSE embedding remains optimal regardless of clustering algorithms
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Experiments

1 Training efficiency:

Table 4: Training time (per iteration) on the latest Wikipedia dump.

Word2Vec GloVe fastText BERT Poincaré GloVe JOSE

0.81 hrs  0.85hrs 2.11 hrs > 5 days 1.25 hrs 0.73 hrs

2 Why is JOSE training efficient?

- Other models’ objectives contain many non-linear operations (Word2Vec &
fastText's objectives involve exponential functions; GloVe's objective involves
logarithm functions), while JoSE only has linear terms in the objective
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From Context-Free Embedding to Contextualized Embedding

d Previous unsupervised word embeddings like Word2Vec and GloVe learn context-
free word embedding

- Each word has one representation regardless of specific contexts it appears in
2 E.g. “bank” is a polysemy, but only has one representation

Share representation

d Deep neural language models overcome this problem by learning contextualized
word semantics
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ELMo: Deep contextualized word representations

ad Word representations are learned functions of the internal states of a deep bi-
directional LSTMs

1 Results in a pre-trained network that benefits several downstream tasks (e.g. Sentiment
analysis, Named entity extraction, Question answering)

d However, left-to-right and right-to-left LSTMs are independently trained and
concatenated

Peters, M.E., Neumann, M., lyyer, M., Gardner, M.P., Clark, C., Lee, K., & Zettlemoyer, L.S. (2018). Deep contextualized word
representations. NAACL.



BERT: Masked Language Modeling

0 Bidirectional: BERT leverages a Masked LM learning to introduce real
bidirectionality training
d Masked LM: With 15% words randomly masked, the model learns bidirectional

1 1
| MAsK] | | MAsK] |
/ / NI \|/ N /’ N £ N / / N
Input [CLS]] my [j| dog |l| is fcute} [SEP] he [ likes \l( play 1 ##ing \] [SEP]
I I | | | |
Token : : : :
Embeddings E[CLS] Emy : EIMASKI: Els ECUte E[SEP] Ehe : EIMASKI : Eplay E ing E[SEP]
| S —— J e — J
+* + +* +* +* +* +* -+ +* + +*
Sentence
Embedding EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + -+ +
Transformer
Positional
Embedding EO El EZ E3 E4 ES E6 E? Es E9 ElO

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).
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BERT: Deep Bidirectional Transformers

d Transformer Encoder: Reads the entire sequence of words at once; learns the
context of a word based on every token in the sequence

d The Transformer employs a self-attention mechanism that learns contextual
relations between words (and sub-words) in a text sequence

Embedding[ wh J [ w2 ] [ Wi ] [ W' ] [ w’s ]

A 3
to vocab + T T
softmax [

Classification Layer: Fully-connected layer + GELU + Norm J

Transformer encoder

Embedding T T T T T

w1 w2 ] w3 ] [ [MASK] ] Ws

T T T T T

W1 W2 W3 W4 W5

S
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BERT: Next Sentence Prediction

d Next Sentence Prediction: learn to predict if the second sentence in the pair is the
subsequent sentence in the original document

Class

Label

—&

K ][ T, | [ ) e | 7

BERT
E[CLS] E1 EN E[SEP] E1’ EM

L g I — gy

@=E- EEE- @
I | |

| |

Sentence 1 Sentence 2



RoBERTa

1 Several simple modifications that make BERT more effective:

- train the model longer, with bigger batches over more data
- remove the next sentence prediction objective
- train on longer sequences
- dynamically change the masking pattern applied to the training data
SQuAD
Model data  bsz steps (v1.1/2.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer  160GB 8K 500K  94.6/89.4 90.2 96.4
BERT, arce
with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7
XLNet; srce
with BOOKS + WIKI 13GB 256 IM  94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.



ALBERT

4
u

4

Simple modifications that make BERT more efficient:

Factorized embedding parameterization: use lower-dimensional token embeddings;
project token embeddings to hidden layer dimension

Cross-layer parameter sharing: share feed-forward network parameters/attention
parameters across layers

Inter-sentence coherence loss: change the next sentence prediction task to sentence
order prediction

Model Parameters SQuADI1.1 SQuAD2.0 MNLI SST-2 RACE | Avg | Speedup
base 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 | 82.3 4.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 73.9 | 85.2 1.0
base 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 | 80.1 5.6x
ALBERT large 18M 90.6/83.9 82.3/79.4 83.5 91.7 68.5 | 824 1.7x
xlarge 60M 92.5/86.1 86.1/83.1 86.4 92.4 74.8 | 85.5 0.6x
xxlarge 235M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 | 88.7 0.3x

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite bert for self-
supervised learning of language representations. ICLR.
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XLNet: Autoregressive Language Modeling

2 Issues with BERT: Masked tokens are predicted independently, and [MASK] token
brings discrepancy between pre-training and fine-tuning

1 XLNet uses Permutation Language Modeling

d Permutes the text sequence
and predicts the target word
using the remaining words in
the sequence

 Since words in the original
sequence are permuted,
both forward direction
information and backward
direction information are
leveraged

mem ©® ) ! = o

Factorization order: 3> 2> 4> 1 Factorization order: 2> 4> 3 > 1

mem(® Xy a X3 g

Factorization order: 1 242> 2> 3 Factorization order: 4 > 3> 1> 2

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive
Pretraining for Language Understanding. arXiv:1906.08237.
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XLNet: Two-Stream Self-Attention

d Content representation: Encodes both token position as well as content

d Query representation: Encodes only token position

Attention

() ay)

Y &

(0) (0) (0) 0)
(a)

Attention

(o) xv )

(0) (0) (0) (0)

(b)
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Masked Two-stream Attention

Attention Masks

Content stream:
can see self

N\

Masked Two-stream Attention

Query stream:
cannot see self

Sample a factorization order:

3222421



ELECTRA

d Change masked language modeling to a more sample-efficient pre-training task,
replaced token detection

d Why more efficient:
- Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
2 The generator trained with MLM is small (parameter size is ~1/10 of discriminator)

- The discriminator is trained with a binary classification task, instead of MLM (classification over the
entire vocabulary)

sample
the —> [MASK] —> --> the —> —> original
chef — chef —> Gen_erator chef — Discriminator —> original
cooked —>» [MASK] —> (typically a f-> ate —> (ELECTRA) —> replaced
the —» the —»| small MLM) the —> —> original
meal — meal —> meal —>» —> original

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as
discriminators rather than generators. ICLR.



ELECTRA

1 State-of-the-art GLUE (General Language Understanding Evaluation) test

performance with the same compute (measured by Floating Point
Operations)

Model Train FLOPs CoLA SST MRPC STS QQP MNLI QNLI RTE WNLI Avg.* Score

BERT 1.9¢20 (0.06x) 60.5 949 854 86.5 89.3 86.7 927 70.1 65.1 79.8 80.5
RoBERTa 3.2¢21 (1.02x) 67.8 96.7 89.8 919 90.2 90.8 954 882 89.0 88.1 88.1
ALBERT  3.1e22 (10x) 69.1 97.1 91.2 920 90.5 913 - 89.2 91.8 89.0 -
XLNet 3.9e21 (1.26x) 70.2 97.1 90.5 92.6 904 909 - 88.5 925 89.1 -

ELECTRA 3.1e21 (1x) 7.7  97.1 90.7 925 90.8 913 958 898 925 895 894
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Deep contextualized embeddings via neural language models

Extend unsupervised embeddings to incorporate weak supervision

@



From Unsupervised Embedding to Weakly-Supervised Embedding

1 Unsupervised word embedding can be used as word representations/features in a
wide spectrum of text mining tasks

d However, unsupervised word embeddings are generic word representations

2 Not yielding the best performance on downstream tasks (e.g., taxonomy construction, document
classification)

0 Reason: Not incorporating task-specific information

d We will introduce a weakly-supervised text embedding method in Part 3

good bad

decent I good (X) | e e e .
great "“terrible ! :
tast oor ! . I
Xumgl_y hfmble i Unsupervised word embedding (Word2Vec) |
[bad (X) | __awful I fails to discriminate opposite meaning words i
_El?i:gﬁt- !_alrlght (X) _! ! :
fantastic “weird e e |

impressive_ frustrating

Lweak () i _ __harsh __

Fdisappointing (><) ¥ |decent (X)1
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