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Introduction to Text Embeddings

❑ A milestone in NLP and ML: 
❑ Unsupervised learning of text representations—No supervision needed

❑ Embed one-hot vectors into lower-dimensional space—Address “curse of dimensionality”

❑ Word embedding captures useful properties of word semantics

❑ Word similarity: Words with similar meanings are embedded closer

❑ Word analogy: Linear relationships between words (e.g. king - queen = man - woman)

Word AnalogyWord Similarity



Introduction to Text Embeddings

❑ Text embeddings can be used in a lot of downstream applications
❑ Word/token/entity-level tasks
❑ Keyword extraction/clustering
❑ Taxonomy construction

❑ Document/paragraph-level tasks
❑ Document classification/clustering/retrieval
❑ Question answering/text summarization

Taxonomy Construction Document Classification
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Word2Vec

❑ Local context-based word embedding learning pushes together terms that share same or 
similar local contexts

❑ For example, Word2Vec maximizes the probability of observing a word based on its contexts
❑ As a result, semantically coherent terms are more likely to have close embeddings

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their 
Compositionality. NIPS.



7

GloVe

❑ GloVe factorizes a global co-occurrence matrix derived from the entire corpus
❑ Low-dimensional representations are obtained by solving a least-squares problem to “recover” 

the co-occurrence matrix

Sparse, high dimensional Low dimensional representation

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.
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fastText

❑ fastText improves upon Word2Vec by incorporating subword information into word embedding

❑ fastText allows sharing subword representations across words, since words are represented by 
the aggregation of their n-grams

Represent a word by the sum of the
vector representations of its n-grams

N-gram embedding

Word2Vec probability expression

Tri-gram extraction

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association 
for Computational Linguistics, 5, 135-146.
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Hyperbolic Embedding: Poincaré embedding 
❑ Why non-Euclidean embedding space?
❑ Data can have specific structures that Euclidean-space 

models struggle to capture

❑ The hyperbolic space
❑ Continuous version of trees
❑ Naturally equipped to model hierarchical structures

❑ Poincaré embedding
❑ Learn hierarchical representations by pushing general 

terms to the origin of the Poincaré ball, and specific 
terms to the boundary

Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.
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Texts in Hyperbolic Space: Poincaré GloVe

❑ GloVe in hyperbolic space
❑ Motivation: latent hierarchical structure of words exists among text
❑ Hypernym-hyponym
❑ Textual entailment

❑ Approach: use hyperbolic kernels!
❑ Effectively model generality/specificity

Tifrea, A., Bécigneul, G., & Ganea, O. (2019). Poincaré GloVe: Hyperbolic Word Embeddings. ICLR.

GloVe

Poincaré GloVe

Hyperbolic metric

Specific

General
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Directional Analysis for Text Embeddings

❑ How to use text embeddings? Mostly directional similarity (i.e., cosine 
similarity)

❑ Word similarity is derived using cosine similarity

❑ Better clustering performances when embeddings are normalized and spherical clustering algorithms 
are used (Spherical K-means)

❑ Vector direction is what actually matters! 
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Motivation

❑ Issues with previous word embedding frameworks:
❑ Although directional similarity has shown effective for various applications, previous embeddings (e.g. 

Word2Vec, GloVe, fastText) are trained in the Euclidean space

❑ A gap between training space and usage space: Trained in Euclidean space but used on sphere

Embedding Training in Euclidean Space Embedding Usage on the Sphere 
(Similarity, Clustering, etc.)

Post-processing 
(Normalization)
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Motivation

❑ What is the consequence of the inconsistency between word embedding 
training and usage space? 

❑ The objective we optimize during training is not really the one we use

❑ Regardless of the different training objective, Word2Vec, GloVe and fastText all optimize the 
embedding dot product during training, but cosine similarity is what actually used in applications

Word2Vec GloVe fastText

Embedding dot product is optimized during training 
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Motivation

❑ What is the consequence of the inconsistency between word embedding 
training and usage space? 

❑ The objective we optimize during training is not really the one we use

❑ E.g. Consider two pairs of words, A: lover-quarrel; B: rock-jazz. Pair B has higher ground truth 
similarity than pair A in WordSim353 (a benchmark testset)

❑ Word2Vec assigns higher dot product to pair B, but its cosine similarity is still smaller than pair A

Training

Usage

Inconsistency
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Motivation

❑ Apart from the training/usage space inconsistency issue, previous 
embedding frameworks only leverage local contexts to learn word 
representations

❑ Local contexts can only partly define word semantics in unsupervised word embedding learning

Local contexts of 
“harmful”
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Spherical Text Embedding

❑ We design a generative model on the sphere that follows how humans 
write articles:

❑ We first have a general idea of the paragraph/document, and then start to write down each word in 
consistent with not only the paragraph/document, but also the surrounding words

❑ Assume a two-step generation process: 

Document/
Paragraph (𝑑)

Center Word 
(𝑢)

Surrounding Word 
(𝑣)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text 
Embedding. NeurIPS.



❑ How to define the generative model in the spherical space?

❑ We prove a theorem connecting the above generative model with a spherical 
probability distribution:

19

Spherical Text Embedding

Document/
Paragraph (𝑑)

Center Word 
(𝑢)

Surrounding Word 
(𝑣)

What are their expressions on the sphere?



❑ Understanding the spherical generative model
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Spherical Text Embedding



❑ Training objective:
❑ The final generation probability:

❑ Maximize the log-probability of a real co-occurred tuple (𝑣, 𝑢, 𝑑), while minimize that of a negative 
sample (𝑣, 𝑢′, 𝑑), with a max-margin loss:

21

Spherical Text Embedding

Positive Sample

Negative Sample



❑ Riemannian optimization with Riemannian SGD:
❑ Riemannian gradient:

❑ Exponential mapping (maps from the tangent plane to the sphere):

❑ Riemannian SGD:

❑ Retraction (first-order approximation of the exponential mapping):

22

Optimization on the Sphere



❑ Training details:
❑ Incorporate angular distances into Riemannian optimization

❑ Multiply the Euclidean gradient with its angular distance from the current point

23

Optimization on the Sphere



❑ Word similarity results:

❑ Why does BERT fall behind on this task?

❑ BERT learns contextualized representations, but word similarity is conducted in a context-free 
manner 

❑ BERT is optimized on specific pre-training tasks like predicting masked words and sentence 
relationships, which have no direct relation to word similarity

24

Experiments



❑ Document clustering results:

❑ Embedding quality is generally more important than clustering algorithms: 

❑ Using spherical K-Means only gives marginal performance boost over K-Means

❑ JoSE embedding remains optimal regardless of clustering algorithms
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Experiments



❑ Training efficiency:

❑ Why is JoSE training efficient?
❑ Other models’ objectives contain many non-linear operations (Word2Vec & 

fastText's objectives involve exponential functions; GloVe's objective involves 
logarithm functions), while JoSE only has linear terms in the objective

26

Experiments
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From Context-Free Embedding to Contextualized Embedding

❑ Previous unsupervised word embeddings like Word2Vec and GloVe learn context-
free word embedding
❑ Each word has one representation regardless of specific contexts it appears in
❑ E.g. “bank” is a polysemy, but only has one representation

❑ Deep neural language models overcome this problem by learning contextualized
word semantics

“Open a bank account” “On the river bank”

28

Share representation



❑ Word representations are learned functions of the internal states of a deep bi-
directional LSTMs

❑ Results in a pre-trained network that benefits several downstream tasks (e.g. Sentiment 
analysis, Named entity extraction, Question answering)

❑ However, left-to-right and right-to-left LSTMs are independently trained and 
concatenated

ELMo: Deep contextualized word representations

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M.P., Clark, C., Lee, K., & Zettlemoyer, L.S. (2018). Deep contextualized word 
representations. NAACL.
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BERT: Masked Language Modeling
❑ Bidirectional: BERT leverages a Masked LM learning to introduce real 

bidirectionality training
❑ Masked LM: With 15% words randomly masked, the model learns bidirectional

contextual information to predict the masked words

30
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).



BERT: Deep Bidirectional Transformers
❑ Transformer Encoder: Reads the entire sequence of words at once; learns the 

context of a word based on every token in the sequence
❑ The Transformer employs a self-attention mechanism that learns contextual 

relations between words (and sub-words) in a text sequence

31



BERT: Next Sentence Prediction
❑ Next Sentence Prediction: learn to predict if the second sentence in the pair is the 

subsequent sentence in the original document

32



RoBERTa

❑ Several simple modifications that make BERT more effective:
❑ train the model longer, with bigger batches over more data
❑ remove the next sentence prediction objective
❑ train on longer sequences
❑ dynamically change the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A 
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.



ALBERT

❑ Simple modifications that make BERT more efficient:
❑ Factorized embedding parameterization: use lower-dimensional token embeddings; 

project token embeddings to hidden layer dimension
❑ Cross-layer parameter sharing: share feed-forward network parameters/attention 

parameters across layers
❑ Inter-sentence coherence loss: change the next sentence prediction task to sentence 

order prediction

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite bert for self-
supervised learning of language representations. ICLR.



XLNet: Autoregressive Language Modeling
❑ Issues with BERT: Masked tokens are predicted independently, and [MASK] token 

brings discrepancy between pre-training and fine-tuning
❑ XLNet uses Permutation Language Modeling 
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q Permutes the text sequence 
and predicts the target word 
using the remaining words in 
the sequence

q Since words in the original 
sequence are permuted, 
both forward direction 
information and backward 
direction information are 
leveraged

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive 
Pretraining for Language Understanding. arXiv:1906.08237.



XLNet: Two-Stream Self-Attention
❑ Content representation: Encodes both token position as well as content
❑ Query representation: Encodes only token position

36

Content representation

Query representation



ELECTRA
❑ Change masked language modeling to a more sample-efficient pre-training task, 

replaced token detection
❑ Why more efficient:
❑ Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
❑ The generator trained with MLM is small (parameter size is ~1/10 of discriminator)
❑ The discriminator is trained with a binary classification task, instead of MLM (classification over the 

entire vocabulary)

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as 
discriminators rather than generators. ICLR.



ELECTRA

❑ State-of-the-art GLUE (General Language Understanding Evaluation) test 
performance with the same compute (measured by Floating Point 
Operations)
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From Unsupervised Embedding to Weakly-Supervised Embedding

❑ Unsupervised word embedding can be used as word representations/features in a 
wide spectrum of text mining tasks

❑ However, unsupervised word embeddings are generic word representations
q Not yielding the best performance on downstream tasks (e.g., taxonomy construction, document

classification)

q Reason: Not incorporating task-specific information

❑ We will introduce a weakly-supervised text embedding method in Part 3 

Unsupervised word embedding (Word2Vec) 
fails to discriminate opposite meaning words
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