

Part IV: Embedding-Driven Multi-Dimensional Text Analysis

KDD 2020 Tutorial Embedding-Driven Multi-Dimensional Topic Mining and Text Analysis Yu Meng, Jiaxin Huang, Jiawei Han Computer Science, University of Illinois at Urbana-Champaign August 23, 2020

Outline

- Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - □ Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAI'19]
 - Incorporating Metadata: MetaCat [SIGIR'20]
 - Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

Multi-Dimensional Text Cube

Numerical data cube (each cell is a numerical value) has been extensively studied

- □ Measures: Numerical aggregations as *sum* & *avg*.
- Text cube: Each cell contains a set of documents (e.g., Apple, TV, 2016>)
 - There is an imminent need to do OLAP analysis on text cubes

Dimensions:

Brand: Apple, Samsung, Huawei... *Product:* phone, tablet, TV, laptop... *Field:* IR, Machine Learning, NLP...

Text:

Aviation Safety Reports from NASA Product Reviews from Amazon Research Papers from DBLP

Multi-dimensional Text Cube with Queries & Hierarchies

Text Cube Construction: Two Central Tasks

1. Taxonomy Construction

How to discover the taxonomy for each dimension?

Outline

- Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAI'19]
 - Incorporating Metadata: MetaCat [SIGIR'20]
 - Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

Cube Construction: Which Document Goes to Which Cell?

How to Put Documents into the Right Cube Cell?

- Major challenges on putting docs into the right cell
 - Few would like label the "training sets"
 - □ So many cells, so many documents
 - Dimension values are often "under-represented"
 - □ E.g., Topic dimension: Sports, economy, politics,
 - Documents are often "over-represented" on single dimension
 - Ex. " The <u>super bowl</u> is on air from <u>Chicago, Illinois</u>.
 The <u>NFL</u> has decided that best coach of <u>2017</u> is from ...
- Our methodology: Dimension-aware joint embedding
 - Constructing an L-T-D (label-term-document) graph

Constructing Text Cubes with Massive Data, Few Labels

- Dimension focusing—**Dimension-Focal Score**, a discriminative measure
 - A term t is "focal" to dimension L
 - The documents with t has very imbalanced labels (KL-divergence can be a good

Label expansion: Combining two measures for seed expansion

Discriminativeness	Dimension	Label	1st Expansion	2nd Expansion	3rd Expansion
		Movies	films	director	hollywood
Using food soors		Baseball	inning	hits	pitch
Using local score	Topic	Tennis	wimbledon	french open	grand slam
		Business	company	chief executive	industry
Popularity		Law Enforcement	litigation	law	county courthouse
reparenty		Brazil	brazilian	sao paulo	confederations cup
	Location	Australia	sydney	australian	melbourne
xample:	Location	Spain	madrid	barcelona	la liga
		China	chinese	shanghai	beijing

Example:

Outline

- Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - □ Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAI'19]
 - Incorporating Metadata: MetaCat [SIGIR'20]
 - Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

Weakly-Supervised Text Classification

Require no training data, but a small amount of seed information
 (1) label names, or (2) relevant keywords, or (3) a few labeled docs

Pseudo Training Data + Self-Training

Pseudo document generation: generate pseudo documents from seeds.
 Self-training: train deep neural nets (CNN, RNN) with bootstrapping.

Pseudo Document Generation

Fit a von-Mishes Fisher distribution with the embeddings of seeds.
 Sample bag-of-keywords as pseudo documents for each class.

Self-Training Deep Neural Nets

1. Pre-training: Use pseudo documents to initialize DNNs (e.g., CNN, RNN)
 2. Self-training: Iteratively refine DNNs in a self-boosting fashion.

Overall Classification Performance

Datasets: (1) NYT, (2) AG's News, (3) Yelp

□ Evaluation: use different types of weak supervision and measure accuracies

	Methods	The New York Times			AG's News		Yelp Review			
		LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS
	IR with tf-idf	0.319	0.509	-	0.187	0.258	-	0.533	0.638	-
	Topic Model	0.301	0.253	-	0.496	0.723	-	0.333	0.333	-
	Dataless	0.484	-	-	0.688	-	-	0.337	-	-
Macro-F1 scores:	UNEC	0.690	-	-	0.659	-	-	0.602	-	-
	PTE	-	-	0.834 (0.024)	-	-	0.542 (0.029)	-	-	0.658 (0.042)
	HAN	0.348	0.534	0.740 (0.059)	0.498	0.621	0.731 (0.029)	0.519	0.631	0.686 (0.046)
	CNN	0.338	0.632	0.702 (0.059)	0.758	0.770	0.766 (0.035)	0.523	0.633	0.634 (0.096)
	NoST-HAN	0.515	0.213	0.823 (0.035)	0.590	0.727	0.745 (0.038)	0.731	0.338	0.682 (0.090)
	NoST-CNN	0.701	0.702	0.833 (0.013)	0.534	0.759	0.759 (0.032)	0.639	0.740	0.717 (0.058)
	WESTCLASS-HAN	0.754	0.640	0.832 (0.028)	0.816	0.820	0.782 (0.028)	0.769	0.736	0.729 (0.040)
	WESTCLASS-CNN	0.830	0.837	0.835 (0.010)	0.822	0.821	0.839 (0.007)	0.735	0.816	0.775 (0.037)
	IR with tf-idf	0.240	0.346	-	0.292	0.333	-	0.548	0.652	-
	Topic Model	0.666	0.623	-	0.584	0.735	-	0.500	0.500	-
	Dataless	0.710	-	-	0.699	-	-	0.500	-	-
	UNEC	0.810	-	-	0.668	-	-	0.603	-	-
Micro-F1 scores:	PTE	-	-	0.906 (0.020)	-	-	0.544(0.031)	-	-	0.674 (0.029)
	HAN	0.251	0.595	0.849(0.038)	0.500	0.619	0.733 (0.029)	0.530	0.643	0.690 (0.042)
	CNN	0.246	0.620	0.798(0.085)	0.759	0.771	0.769 (0.034)	0.534	0.646	0.662 (0.062)
	NoST-HAN	0.788	0.676	0.906 (0.021)	0.619	0.736	0.747(0.037)	0.740	0.502	0.698 (0.066)
	NoST-CNN	0.767	0.780	0.908 (0.013)	0.553	0.766	0.765 (0.031)	0.671	0.750	0.725 (0.050)
-	WESTCLASS-HAN	0.901	0.859	0.908 (0.019)	0.816	0.822	0.782 (0.028)	0.771	0.737	0.729 (0.040)
-	WESTCLASS-CNN	0.916	0.912	0.911 (0.007)	0.823	0.823	0.841 (0.007)	0.741	0.816	0.776 (0.037)

Effect of # Labeled Documents

Compare the performances of five methods on the AG's News dataset by varying the number of labeled documents per class and

Outline

- Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - □ Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - □ Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAl'19]

- Incorporating Metadata: MetaCat [SIGIR'20]
- Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

Weakly-Supervised Hierarchical Text Classification

□ Class Hierarchy (toy example):

What if we have a taxonomy and aim to allocate documents into categories in the taxonomy?

Local Classifier Pre-training

- \Box We generate β pseudo documents per class to pre-train the local classifier;
- \Box A naive way of creating the label for a pseudo document D_i^* :
 - Directly use the associated class label it is generated from; one-hot encodings;
 - Problem: classifier overfitting to pseudo documents
- □ Instead, use pseudo labels:

$$\Box l_{ij} = \begin{cases} (1 - \alpha) + \alpha/m & D_i^* \text{ is generated from class } j \\ \alpha/m & \text{otherwise} \end{cases}$$

- $\square \alpha$ accounts for the "noises" in pseudo documents; it is evenly split into all m classes
- Pre-training is performed by minimizing KL divergence loss to pseudo labels

Global Classifier Per Level

- At each level k in the class taxonomy, we construct a global classifier by ensembling all local classifiers from root to level k
- Use unlabeled documents to bootstrap the global classifier

Global Classifier Construction

□ The multiplication operation can be explained by the conditional probability formula:

 $p(D_i \in C_{child}) = p(D_i \in C_{child} \mid D_i \in C_{parent})p(D_i \in C_{parent})$

- All local classifiers from root to to level k are fine-tuned simultaneously via back-propagation during self-training; misclassifications at higher levels can be corrected
- Global Classifier Self-training
 - Step 1: Use the pre-trained global classifier to classify all unlabeled documents in the corpus;
 - Step 2: Compute pseudo labels based on current predictions:

$$l_{ij} = \frac{y_{ij}^2/f_j}{\sum_{j'} y_{ij'}^2/f_{j'}}$$
 where $f_j = \sum_i y_{ij}$ and y_{ij} is the current prediction.

- Step 3: Minimize KL divergence loss to pseudo labels.
- Iterate between Steps 2 and 3 until less than δ% of documents in the corpus have class assignment changes

Blocking Mechanism

- Some documents should be classified into internal classes because they are more related to general topics rather than specific topics;
- □ When a document D_i is classified into an internal class C_j , we use the output q of C_j 's local classifier to determine whether or not D_i should be blocked at the current class:
 - \Box If q is close to a one-hot vector, D_i should be classified into the corresponding child;
 - □ If q is close to uniform distribution, D_i should be blocked at current class;
 - \Box Use normalized entropy as measure for blocking, i.e. block D_i if

$$-\frac{1}{\log m} \sum_{i=1}^{m} q_i \log q_i > \gamma$$

Overall Classification Performance

Datasets:

□ New York Times; arXiv; Yelp Review

Evaluation: Micro-F1 and Macro-F1 among all classes

Methods	NYT			arXiv			Yelp Review					
	KEYWORDS		WORDS DOCS		KEYWORDS		DC	DOCS K		ORDS	DOCS	
	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)
Hier-Dataless	0.593	0.811	-	-	0.374	0.594	-	-	0.284	0.312	-	
Hier-SVM	-	-	0.142(0.016)	0.469(0.012)	-	-	0.049(0.001)	0.443(0.006)	-	-	0.220(0.082)	0.310(0.113)
CNN	-	-	0.165(0.027)	0.329(0.097)	-	-	0.124(0.014)	0.456(0.023)	-	-	0.306(0.028)	0.372(0.028)
WeSTClass	0.386	0.772	0.479(0.027)	0.728(0.036)	0.412	0.642	0.264(0.016)	0.547(0.009)	0.348	0.389	0.345(0.027)	0.388(0.033)
No-global	0.618	0.843	0.520(0.065)	0.768(0.100)	0.442	0.673	0.264(0.020)	0.581(0.017)	0.391	0.424	0.369(0.022)	0.403(0.016)
No-vMF	0.628	0.862	0.527(0.031)	0.825(0.032)	0.406	0.665	0.255(0.015)	0.564(0.012)	0.410	0.457	0.372(0.029)	0.407(0.015)
No-self-train	0.550	0.787	0.491 (0.036)	0.769 (0.039)	0.395	0.635	0.234 (0.013)	0.535 (0.010)	0.362	0.408	0.348(0.030)	0.382(0.022)
Our method	0.632	0.874	0.532(0.015)	0.827(0.012)	0.452	0.692	0.279 (0.010)	0.585(0.009)	0.423	0.461	0.375(0.021)	0.410(0.014)

Outline

- Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - □ Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - □ Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAI'19]
 - Incorporating Metadata: MetaCat [SIGIR'20]
 - Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

MetaCat: Incorporating Metadata for Categorization

- Metadata is prevalent in many text sources, especially social media platforms
 - GitHub Repositories: User, Tags; Tweets: User, Hashtags; Amazon Reviews: User, Product
- □ How to leverage these heterogenous signals in the categorization process?

© tensorlayer) ² degan USER © Issues a ∏Pull requests a ⊡Projects a ⊡ Wiki	Ø Watch ▼ 10 Ø Watch ▼ 10 Ø Security □ Security	Anna Mandelbaum @notdjAM	(Deep Learning (Adaptive Computation and Machine Learning series)) by Ian Goodfellow Product
The Simplest DCGAN Implementation Description	(Text) ags	NYC native, extreme food enthusiast, 'hospitalitarian', @Resy Events, and not a DJ.	Format: Hardcover Change Price: \$55.69 + Free shipping
(2) 51 commits (2) 1 branch Branch: master * New pull request	Create new file Upload files Find File Control or download +	NYC III Joined October 2010 377 Following 197 Followers	Construction of the second seco
in ing add image to readme giggnore TL compatibility and code readabality (#14) README.ind Update README.ind	Latest convert ficeBild on Aug 27 3 years ago last year 3 months ago	Anna Mandelbaum @notdjAM User Tweet (Text)	This book is possibly currently unique in its coverage of the latest ideas in the field of deep learning — and it is a very convenient and good survey of fundamental concepts (linear algebra, optimization, performance metrics, activation function types), different network types (multi-layer perceptron, convolutional neural networks, and recurrent neural networks), practical considerations (data set, training and validation,
dsta.py Update data.py Update model.py Update model.py Update train.py Update train.py	3 months ago last month README (Text) last month	(I don't care that it's August, I love my #ramen (#spicymiso #eeeeeats #eatupnyc #ilovesoup)@	implementation), and applications (comments on existing real-world/commercial uses). The final 235 pages of the content portion of the book is dedicated to topics in "Deep Learning Research", and these topics are truly at the current frontier. Another reviewer said that one could gain the same knowledge of cutting-edge research by reading all of the
DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional G Synthesis ? click here	enerative Adversarial Networks. Looking for Text to Image	Momofuku instagram.com/p/rLWKH5osfn/ Tags 8:22 PM · Aug 1, 2014 from New York, NY · Instagram	latest papers (from academia and industry), but the "research" section of this book offers the following: Selection of the most notable research by the very experienced authors of the book, and collection of similar research in to a broader discussion of themes, and the additional insights. The book covers very advanced and new ideas currently being explored, and it is very nice to be able to have a consistent and coherent presentation of all of those ideas.

(a) GITHUB REPOSITORY

(b) Tweet

(c) Amazon Review

Figure 1: Three examples of documents with metadata.

The Underlying Model: A Generative Process

- Two categories of metadata:
 - **Global metadata**: user/author, product
 - □ "Causes" the generation of documents. (E.g., User -> Document)
 - Local metadata: tag/hashtag
 - "Describes" the documents. (E.g., Document -> Tag)
 - We can also say "label" is global, and "words" are local

Figure 2: The generative process of text and metadata. The self loop of "Word" represents the step of words generating contexts.

The underlying model: A generative process

- □ We use GitHub/Tweet as a specific example to illustrate the process.
- Step 1: User (Global Metadata) & Label -> Document

Step 2: Document -> Word

- Step 3: Document -> Tag (Local Metadata)
- Step 4: Word -> Context

$$p(C(w_i,h)|w_i) \propto \prod_{w_j \in C(w_i,h)} \exp(e_{w_j}'^T e_{w_i}).$$

 $p(d|u, l) \propto \exp(\boldsymbol{e}_d^T \boldsymbol{e}_u) \cdot \exp(\boldsymbol{e}_d^T \boldsymbol{e}_l).$

 $p(w|d) \propto \exp(\boldsymbol{e}_w^T \boldsymbol{e}_d).$

 $p(t|d) \propto \exp(\boldsymbol{e}_t^T \boldsymbol{e}_d).$

How do we use this underlying model?

- **Embedding** Learning Module:
 - □ All embedding vectors e_u, e_l, e_d, e_t, e_w are parameters of the generative process.
 - We can learn the embedding vectors through maximizing the likelihood of observing all text and metadata.
- □ Training Data Generation Module:
 - U We have learned e_u, e_l, e_d, e_t, e_w .
 - Given a label *l*, we can generate *d*, *w* and *t* according to the generative process.

Train a text classifier

- After the embedding and generation steps, what do we have?
 - A set of word embeddings which considers label and metadata information
 - For each category, we have a small set of "real" training data and a large set of synthesized training data
- Using both "real" and synthesized training data to train a text classifier; taking the pretrained embeddings as input features
- □ We use CNN as the text classifier; may be replaced by other architectures

Outline

- □ Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - □ Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - □ Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAI'19]
 - Incorporating Metadata: MetaCat [SIGIR'20]
 - Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

Language Models for Weakly-Supervised Classification

- □ The previous approaches only use the local corpus
- □ Fail to take advantage of the general knowledge source (e.g. Wikipedia)
- □ Why general knowledge?
 - Humans can classify texts with general knowledge
 - Common linguistic features to understand texts better
 - Compensate for potential data scarcity of the local corpus
- □ How to use general knowledge?
 - Neural language models (e.g. BERT) are pre-trained on large-scale general knowledge texts
 - □ Their learned semantic/syntactic features can be transferred to downstream tasks

Find Similar Meaning Words with Label Names

- □ Find topic words based on label names
- Overcome the low semantic coverage of label names
- Use language models to predict what words can replace the label names
 - Interchangeable words are likely to have similar meanings

Sentence	Language Model Prediction		
The oldest annual US team sports competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.	sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,		
Samsung's new SPH-V5400 mobile phone sports a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.	has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers,		

Table 1: BERT language model prediction (sorted by probability) for the word to appear at the position of "sports" under different contexts. The two sentences are from *AG News* corpus.

Contextualized Word-Level Topic Prediction

- Context-free matching of topic words is inaccurate
- "Sports" does not always imply the topic "sports"
- Contextualized topic prediction:
 - Predict a word's implied topic under specific contexts
 - We regard a word as "topic indicative" only when its top replacing words have enough overlap with the topic vocabulary

High-Quality Weakly-Supervised Classification

- Achieve around 90% accuracy on four benchmark datasets by only using at most 3 words (1 in most cases) per class as the label name
 - Outperforming previous weakly-supervised approaches significantly
 - Comparable to state-of-the-art semi-supervised models

Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon
	Dataless (Chang et al., 2008)	0.696	0.634	0.505	0.501
	WeSTClass (Meng et al., 2018)	0.823	0.811	0.774	0.753
Weakly-Sup.	BERT w. simple match	0.752	0.722	0.677	0.654
	Ours w/o. self train	0.822	0.850	0.844	0.781
	Ours	0.864	0.889	0.894	0.906
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.986	0.887	0.960
Supervised	char-CNN (Zhang et al., 2015)	0.872	0.983	0.853	0.945
L	BERT (Devlin et al., 2019)	0.944	0.993	0.937	0.972

Outline

- □ Why Multi-Dimensional Text Analysis?
- Automatic Document Allocation for Text Cube construction
 - □ Weakly-Supervised Embedding-Based Classification: Doc2Cube [ICDM'18]
 - □ Weak-Supervised Neural Text Classification: WeSTClass [CIKM'18]
 - Weakly-Supervised Hierarchical Document Classification: WeSHClass [AAAI'19]
 - Incorporating Metadata: MetaCat [SIGIR'20]
 - Using Neural Language Models for Weakly-Supervised Classification
- Cube-based Multidimensional Analysis

Exploration of Text Cube—Semantic Analysis

Londo

Basketbal

Beijing

Soccer

- EventCube [KDD'13 demo]: Point Query
 - Simple summary to support keyword/document search
- CASeOLAP [EngBul'16]: Plane Query

EventCube [KDD'13 demo]

Multiple functions supported by EventCube (on Avi. Safety Report System DataSet)

State w.r.t. keyword Distribution

Similar Document Finding: based on Contextual Search

Keyword Frequency Distribution

Top 20 similar documents

Chosen document

Where we have learned that at a particular point in the service we will have to break for t...

All or most passenger were seated .flight attendants were gathered at the back of the aircraft preparing service carts for movement into the aisles .slight bumps occurred; whic... Similar documents

Year: 2003 Weather: Unknown State: South:TX

Of particular concern is that a flight attendant chose to ignore the turbulence and was inj...

Prior to fit; passenger notified to expect some turbulence enroute .when descent commenced weather radar turned on due to thunderstorm in ohio valley .prior to fl180; a... Similar documents

Year: 2001 Weather: Thunderstorm State: Unknown

Cabin crew picked up remaining service items when rough turbulence started approxima...

Captain called back to cabin to inform flight attendants it would be turbulent descending into dfw; so i suggested we go ahead and prepare cabin for landing .we had been experi... Similar documents

Year: 2004 Weather: Thunderstorm State: South:TX

A flight attendant told one of our 2 jumpseating captains that a seat was now available in...

At departure time; my cabin crew advised me of an open seat .i sent one of my 2 jumpseat riders back .after pushback; i was told by my cabin crew that a deadheading flight attend... Similar documents

Year: 2003 Weather: Unknown State: South:TX

No title

All or most passenger were seated .flight attendants were gathered at the back of the aircraft preparing service carts for movement into the aisles .slight bumps occurred; whic.. Event Anomaly: cabin eventother Weather: Unknown Year: 2003 State: South:TX Airport: atc facility : zhu.artcc Make Model: Boeing:B767-300 and 300 ER Resolutory Action: none taken : insufficient time Detector: flight attendant : on duty Light: Daylight Problem Area: Weather Flight Phase: cruise : level

37

CASE (Context-Aware SEmantic) OLAP

- A cell has comparative context
- Comparative study is meaningful
 - Given a query <**China**, Economy>
 - Target documents have frequent phrases
 - Be specific to "China"+"Economy"

Fangbo Tao, Honglei Zhuang, Chi Wang Yu, Qi Wang, Taylor Cassidy, Lance Kaplan, Clare Voss, Jiawei Han, "Multi-Dimensional, Phrase-Based Summarization in Text Cubes", Data Eng. Bull. 39(3), Sept. 2016

Design Question I: Which Comparative Groups to Pick?

- Option 1: User-specified (too much burden to users): undesirable
- Option 2: Sibling cells in every dimension (comparable cells)

Design Question II: How to Score Important Phrases?

- Three ingredients
 - Integrity: meaningful, high-quality phrase
 - □ Using SegPhrase as score (>0.7)
 - Popularity: large # of occurrences in the cell

$$pop(p,c) = \frac{\log(tf(p,c)+1)}{\log cntP(c)}$$
(2)

- Distinctness: distinguish the target cell from context cells
 - A key to have a crisp definition
- Combining with geometric mean:

$$r(p,c) = \sqrt[3]{int(p,c) \cdot pop(p,c) \cdot disti(p,c)}$$
(1)

How to Find or Evaluate Distinct Phrases in a Cell?

- Judge if a phrase p is distinct in cell c: Transform it into a dual problem
 - Original problem: Find distinctive phrases for cell c, compared to sibling cells
 - **Transformed problem: Classify phrases into one of the most relevant cell**
- □ For a distinct phrase p, if we measure relevance(p, c) for all c
- rel(p, c*) >> rel(p, sibling)
- Adopt Softmax function as

How to Design Relevance Score for a Phrase to a Cell?

- Normalized Term Frequency
 - **Treat each cell as a super document**
 - Apply BM25

$$ntf(p,c) = \frac{tf(p,c) \cdot (k_1 + 1)}{tf(p,c) + k_1 \cdot (1 - b + b \cdot \frac{cntP(c)}{avgCP(c)})}$$
(5)

Balance cell size

Normalized Document Frequency

$$ndf(p,c) = \frac{\log(1 + df(p,c))}{\log(1 + maxDF(c))}$$
(6)
Guarantee spread out

Combine:
$$rel(p,c) = ndf(p,c) \cdot ntf(p,c)$$
 (7)

CaseOLAP on Real-World Datasets

Distinct phrases on 2016 news data Top-10 representative phrases for five example queries

\langle US, Gun Control $ angle$	\langle US, Immigration $ angle$	\langle US, Domestic Politics \rangle	\langle US, Law and Crime $ angle$	\langle US, Military $ angle$	
gun laws	immigration debate	gun laws	district attorney	sexual assault in the military	
the national rifle association	border security	insurance plans	shot and killed	military prosecutors	
gun rights	guest worker program	background check	federal court	armed services committee	
background check	immigration legislation	health coverage	life in prison	armed forces	
gun owners	undocumented immigrants	tax increases	death row	defense secretary	
assault waapans han	overhaul of the	the national	grand jury	military porconnol	
assault weapons ban	nation's immigration laws	rifle association	grand Jury	mintary personner	
mass shootings	legal status	assault weapons ban	department of justice	sexually assaulted	
high capacity magazines	path to citizenship	immigration debate	child abuse	fort meade	
gun legislation	immigration status	the federal exchange	plea deal	private manning	
gun control advocates	immigration reform	medicaid program	second degree murder	pentagon officials	

PubMed Abstracts: Distinct relationships between subcategories of cardiovascular diseases and proteins

Table 2: Top representative phrases for 6 cardiac diseases

(Cerebrovascular Accident)	(Ischemic Heart Disease)	(Cardiomyopathy)	⟨Arrhythmia ⟩	(Valve Dysfunction)	(Congenital Heart Disease)			
alpha-galactosidase a	Cholesteryl ester transfer protein	Interferon gamma	Methionine synthase	Mineralocorticoid receptor	fibrillin-1			
brain neurotrophic factor	apolipoprotein a-I	interleukin-4	ryanodine receptor 2	tropomyosin alpha-1 chain	plakophilin-2			
tissue-type activator	integrin alpha-iib	interleukin-17a	potassium v.g. h member 2	elastin	tyrosine-protein type 11			
apolipoprotein e	adiponectin	titin	inward rectifier channel 2	beta-2-glycoprotein 1	arachidonate 5-1-a protein			
neurogenic 1.n.h.p. 3	p2y purinoceptor 12	tumor necrosis factor	beta-2-glycoprotein 1	myosin-binding protein c	catechol o-methyltransferase			

MissionCube: Ukraine-Russia Crisis & Hong Kong Demonstration Analysis @ NSCTA Demo 2019

- Demo Scenario: Ukraine-Russia Crisis & Hong Kong Demonstration
 - Data Source: News text data and images crawled from multiple news agencies
 - Dimensions included in the Cube
 - □ Time, location, and topic mentioned in the news

LINE CHART VISUALIZATION (KIEV CITY, 2014, MILITARY)

THE LINE CHART REPRESENTS THE DISTRIBUTION OF NEWS OF DIFFERENT CATEGORIES IN DIFFERENT MONTHS.

Images, Top-K Keywords and Summary

Cube Demo Time: 2014-07

-07 Category: infrastructure

· (· ·

PROVINCE NAME UPDATE

CURRENT: CHERKASY

Ξ

IMAGE & TOP-K KEYWORDS & SUMMARY

IT SHOWS THE RELATED IMAGE AND KEYWORDS.

Malaysia Airlines flight MH17 crash: 'Nine Britons, 23 Americans and 80 children' feared dead after Boeing passenger jet is 'shot down' near Ukraine-Russia border Rescuers stand on the site of the crash of a Malaysian airliner near the town of Shaktarsk, in rebel-held east Ukraine Nine Britons, 23 US citizens and 80 children are reported to be among the 298 people killed when a Malaysia Airlines jet crashed near the eastern Ukraine border on Thursday.

NEXT >

CATEGORY REPRESENTATIVE PHRASES

IT SHOWS RELEVANT WORDS OF DIFFERENT CATEGORIES;

category names and three

examples from the experts

POLITICAL	MILITARY	ECONOMIC	SOCIAL	INFORMA	TION	IVILIAN
Political power	Military forces	Employment	Demographic	Infowars		rban areas
Dictator	Infantry	Economic activity	Ethnic	Information	warfare	Residential area
Anarchy	Insurgents	Market	Population	Radio)	Utilities
Pro government	Combatants	Finance	Language	Information	security	Transportation
Neo nazi	National guard	European union	Ethnic russians	Ekho mo	skvy	Nuclear power plants
Viktor yanukovych	Armored vehicles	Foreign policy	Soviet union	Ukraine http empr		Power plants
Right sector	Special forces	Sergei ivanov	Western ukraine	Social media		Nuclear fuel
Pro russian	Self defense	Interior ministry	Russian language	News me	edia	Crash site
Opposition politicians	Armored personnel	Economic sanctions	Police state	Novaya ga	azeta	Civil aviation
Maidan movement	Pro russian separatists	Rinat akhmetov	Anglo zionist empire	Ria novo	osti	Surface to air missile
Pro western	Donetsk oblast	Billion dollars	Maidan supporters	Rfe rl		Contaminated water
Kulikovo pole	Heavy fighting	Right sector	The vast majority	Mainstream	media	Main entrance
Communist party	Peoples militia	Closer ties	Social media	Main st	Catego	ory representative phrases
Civil war	Automatic rifles	Magnitsky act	Martial law	Intellig	gei	nerated automatically

IMAGE & TOP-K KEYWORDS & SUMMARY

IT SHOWS THE RELATED IMAGE AND KEYWORDS.

Text and Visual Summarization for Hong Kong Protests @ 2019 Demonstrators don eye patches at Lantau Island hub, one of the world's busiest international airports, in anger that a girl allegedly shot with a police beanbag round could lose an eye \n Sit-in comes after night of escalated violence inside subway stations \n Demonstrators don eye patches at Lantau Island hub, one of the world's busiest international airports, in anger that a girl allegedly shot with a police beanbag round could lose an eye.

CATEGORY REPRESENTATIVE PHRASES

IT SHOWS RELEVANT WORDS OF DIFFERENT CATEGORIES;

	POLITICAL	POLICE	ECONOMIC	INFORMATION	INFRASTRUCTURE
~	pro democracy	tear gas	financial crisis	cbc news	hong kong university
C	pro beijing	hong kong police	economic downturn	cbs news	transportation
	hong kong government	riot police	economic growth	fox news	international aiport
	Chief executive	Water cannon	Infrastructure	Chinese state media	Mass transit railway
Ľ	Mainland china	Pepper spray	Real estate	Bbc news	Lantau link
⊞	Pro establishment	Petrol bombs	Affordable housing	Global times	Flight cancellations
	Mainland chinese	Hong kong government	Trade war	News media	Victoria harbour
	Chief executive carrie lam	Beanbag rounds	The united states	Sina weibo	Rail operator
	Carrie lam	Firing tear gas	Financial secretary	Internet censorship	Busiest airports
	The chinese government	Tsuen wan	Global financial	Local media	Public transport

Q COVID-19, remdesivir

EvidenceMiner: retrieving related documents

◄

◄

⊡

COVID 19 Cancer And Heart Disease

COVID 19 Cancer And Heart Disease

HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63 cause mild, self-limiting upper respiratory tract infections. Context

🗸 Evidence Score 19.00 🛱 2019 Jan 16 🖪 Viruses 🔗 PMID30654597 💄 Yan, Bingpeng 🗧

Title: Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication

BACKGROUND: Coronavirus causes respiratory infections in humans. Context

Title: Molecular epidemiology and characterization of human coronavirus in Thailand, 2012–2013

BACKGROUND: Porcine deltacoronavirus (PDCoV) is a novel coronavirus that can cause diarrhea in nursing piglets. Context

🗸 Evidence Score 18.30 🛱 2019 Apr 16 📕 BMC Vet Res 🔗 PMID30992015 💄 Wu, Jiao L. 🗧

Title: Expression profile analysis of 5-day-old neonatal piglets infected with porcine Deltacoronavirus

Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. [Context]

Title: Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites

The SARS coronavirus causes lung injury and inflammation in part through actions on the nonclassical renin angiotensin pathway. Context

✓ Evidence Score 17.69 🗎 No Date 🗐 No journal info 🚨 Hendrickson, Carolyn M. 🗧

Title: Viral Pathogens and Acute Lung Injury: Investigations Inspired by the SARS Epidemic and the 2009 H1N1 Influenza Pandemic

21 Choi et al. Context

E,

Title: Epidemiology, Outcome and Risk Factors Analysis of Viral Infections in Children and Adolescents Undergoing Hematopoietic Cell Transplantation: Antiviral Drugs Do Not Prevent Epstein–Barr Virus Reactivation

<u>M iddle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus that can cause severe lower respiratory tract infection</u> in humans (1,2). Context

Title: Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014

References

- W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, J. Huang, "STREAMCUBE: Hierarchical Spatio-temporal Hashtag Clustering for Event Exploration over the Twitter Stream", ICDE'15.
- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18
- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-Supervised Hierarchical Text Classification", AAAI'19
- F. Ravat, O. Teste, R. Tournier, and G. Zurfluh. "Top_keyword: An aggregation function for textual document OLAP". In Data Warehousing and Knowledge Discovery, pages 55–64, 2008.
- F. Tao, K. H. Lei, J. Han, C. Zhai, X. Cheng, M. Danilevsky, N. Desai, B. Ding, J. Ge, H. Ji, R. Kanade, A. Kao, Q. Li, Y. Li, C. X. Lin, J. Liu, N. C. Oza, A. N. Srivastava, R. Tjoelker, C. Wang, D. Zhang, and B. Zhao. Eventcube: multi-dimensional search and mining of structured and text data. KDD'13 (demo)
- F. Tao, C. Zhang, X. Chen, M. Jiang, T. Hanratty, L. Kaplan, and J. Han. "Doc2cube: Automated document allocation to text cube via dimension-aware joint embedding". ICDM'18
- F. Tao, H. Zhuang, C. Wang, Q. Wang, T. Cassidy, L. Kaplan, C. Voss, J. Han, "Multi-Dimensional, Phrase-Based Summarization in Text Cubes", Data Eng. Bulletin 39(3):74-84, 2016
- Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally Supervised Categorization of Text with Metadata", SIGIR'20
- Xuan Wang, Yingjun Guan, Weili Liu, Aabhas Chauhan, Enyi Jiang, Qi Li, David Liem, Dibakar Sigdel, John Caufield, Peipei Ping, Jiawei Han, "EVIDENCEMINER: Textual Evidence Discovery for Life Sciences", ACL'20 (demo)

Q&A

