

Part III: Embedding-Driven Topic Discovery

KDD 2021 Tutorial On the Power of Pre-Trained Text Representations: Models and Applications in Text Mining Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han Computer Science, University of Illinois at Urbana-Champaign August 14, 2021

Outline

Unsupervised Topic Modeling

Supervised & Seed-Guided Topic Modeling

Clustering-Based Topic Discovery

Discriminative Topic Mining

Topic Modeling: Introduction

- How to effectively & efficiently comprehend a large text corpus?
- Knowing what important topics are there is a good starting point!
- Topic discovery facilitates a wide spectrum of applications
 - Document classification/organization
 - Document retrieval/ranking
 - Text summarization

Topic Modeling: Overview

- How to discover topics automatically from the corpus?
- By modeling the corpus statistics!
 - Each document has a latent topic distribution
 - Each topic is described by a different word distribution

Latent Dirichlet Allocation (LDA): Overview

- Each document is represented as a mixture of various topics
 - Ex. A news document may be 40% on politics, 50% on economics, and 10% on sports
- Each topic is represented as a probability distribution over words
 - Ex. The distribution of "politics" vs. "sports" might be like:

- Dirichlet priors are imposed to enforce sparse distributions:
 - Documents cover only a small set of topics (sparse document-topic distribution)
 - Topics use only a small set of words frequently (sparse topic-word distribution)

LDA: Generative Model

- Formulating the statistical relationship between words, documents and latent topics as a generative process describing how documents are created:
 - □ For the *i*th document, choose $\theta_i \sim \text{Dir}(\alpha)$
 - □ For the *k*th topic, choose $\varphi_k \sim \text{Dir}(\beta)$
 - For the *j*th word in the *i*th document,
 - **Choose topic** $z_{i,j} \sim \text{Categorical}(\theta_i)$ word's topic
 - \Box choose a word $w_{i,j} \sim \text{Categorical}(\varphi_{z_{i,j}})$

) document's topic distribution topic's word distribution

LDA: Inference

- Learning the LDA model (Inference)
- What need to be learned
 - \Box Document topic distribution θ (for assigning topics to documents)
 - Topic-word distribution φ (for topic interpretation)
 - □ Words' latent topic *z*
- How to learn the latent variables? complicated due to intractable posterior
 - Monte Carlo simulation
 - Gibbs sampling
 - Variational inference

Outline

Unsupervised Topic Modeling

Clustering-Based Topic Discovery

Discriminative Topic Mining

Issues with LDA

LDA is completely unsupervised (i.e., users only input number of topics)

Cannot take user supervision

Ex. What if a user is specifically interested in some topics but LDA doesn't discover

them?

	Topic 1	Weight	Topic 2	Weight	Topic 3	Weight	Topic 4	Weight	Topic 5	Weight
0	life	0.018076	father	0.059603	official	0.017620	case	0.021908	art	0.010555
1	man	0.017714	graduate	0.048363	force	0.015388	law	0.020698	open	0.010413
2	woman	0.016657	son	0.042746	military	0.014587	court	0.019967	room	0.010363
3	book	0.010486	mrs	0.041379	war	0.011381	lawyer	0.016935	house	0.009002
4	family	0.010382	daughter	0.037156	government	0.010564	state	0.014501	building	0.008722
5	young	0.009896	mother	0.034542	troop	0.008949	judge	0.012487	artist	0.008264
6	write	0.009493	receive	0.029211	attack	0.008886	legal	0.011141	design	0.008162
7	child	0.009460	marry	0.029038	leader	0.008082	rule	0.009854	floor	0.008034
8	live	0.008819	yesterday	0.024107	peace	0.006835	decision	0.009261	museum	0.007917
9	love	0.007814	degree	0.022899	soldier	0.006562	file	0.008289	exhibition	0.007222
	Topic 6	Weight	Topic 7	Weight	Topic 8	Weight	Topic 9	Weight	Topic 10	Weight
0	Topic 6 group	Weight 0.051052	Topic 7 market	Weight 0.024976	Topic 8 serve	Weight 0.010918	Topic 9 change	Weight 0.007661	Topic 10 city	Weight 0.021776
0	Topic 6 group member	Weight 0.051052 0.040683	Topic 7 market stock	Weight 0.024976 0.024874	Topic 8 serve add	Weight 0.010918 0.010185	Topic 9 change system	Weight 0.007661 0.007233	Topic 10 city area	Weight 0.021776 0.014865
0	Topic 6 group member meeting	Weight 0.051052 0.040683 0.016390	Topic 7 market stock share	Weight 0.024976 0.024874 0.020583	Topic 8 serve add minute	Weight 0.010918 0.010185 0.009301	Topic 9 change system problem	Weight 0.007661 0.007233 0.006835	Topic 10 city area build	Weight 0.021776 0.014865 0.014361
0 1 2 3	Topic 6 group member meeting issue	Weight 0.051052 0.040683 0.016390 0.014988	Topic 7 market stock share price	Weight 0.024976 0.024874 0.020583 0.018141	Topic 8 serve add minute pepper	Weight 0.010918 0.010185 0.009301 0.009235	Topic 9 change system problem power	Weight 0.007661 0.007233 0.006835 0.005400	Topic 10 city area build building	Weight 0.021776 0.014865 0.014361 0.014326
0 1 2 3 4	Topic 6 group member meeting issue official	Weight 0.051052 0.040683 0.016390 0.014988 0.013069	Topic 7 market stock share price sell	Weight 0.024976 0.024874 0.020583 0.018141 0.016564	Topic 8 serve add minute pepper oil	Weight 0.010918 0.010185 0.009301 0.009235 0.008976	Topic 9 change system problem power create	Weight 0.007661 0.007233 0.006835 0.005400 0.005056	Topic 10 city area build building home	Weight 0.021776 0.014865 0.014361 0.014326 0.013632
0 1 2 3 4 5	Topic 6 group member meeting issue official support	Weight 0.051052 0.040683 0.016390 0.014988 0.013069 0.011994	Topic 7 market stock share price sell buy	Weight 0.024976 0.020583 0.018141 0.016564 0.015415	Topic 8 serve add minute pepper oil cook	Weight 0.010918 0.010185 0.009301 0.009235 0.008976 0.008711	Topic 9 change system problem power create research	Weight 0.007661 0.006835 0.005400 0.005056 0.004712	Topic 10 city area build building home resident	Weight 0.021776 0.014865 0.014361 0.014326 0.013632 0.013483
0 1 2 3 4 5 6	Topic 6 group member meeting issue official support leader	Weight 0.051052 0.040683 0.016390 0.014988 0.013069 0.011994 0.011799	Topic 7 market stock share price sell buy company	Weight 0.024976 0.024874 0.020583 0.018141 0.016564 0.015415 0.015249	Topic 8 serve add minute pepper oil cook food	Weight 0.010918 0.010185 0.009301 0.009235 0.008976 0.008711 0.008689	Topic 9 change system problem power create research produce	Weight 0.007661 0.007233 0.006835 0.005400 0.005056 0.004712 0.004574	Topic 10 city area build building home resident community	Weight 0.021776 0.014865 0.014361 0.014326 0.013632 0.013483 0.012479
0 1 2 3 4 5 6 7	Topic 6 group member meeting issue official support leader organization	Weight 0.051052 0.040683 0.016390 0.014988 0.013069 0.011994 0.011799 0.011135	Topic 7 market stock share price sell buy company investor	Weight 0.024976 0.024874 0.020583 0.018141 0.016564 0.015415 0.015249 0.015062	Topic 8 serve add minute pepper oil cook food cup	Weight 0.010918 0.010185 0.009301 0.009235 0.008976 0.008711 0.008689 0.008682	Topic 9 change system problem power create research produce far	Weight 0.007661 0.007233 0.006835 0.005400 0.005056 0.004712 0.004574 0.004447	Topic 10 city area build building home resident community local	Weight 0.021776 0.014865 0.014361 0.014326 0.013632 0.013483 0.012479 0.010686
0 1 2 3 4 5 6 7 8	Topic 6 group member meeting issue official support leader organization meet	Weight 0.051052 0.040683 0.016390 0.014988 0.013069 0.011994 0.011799 0.011135 0.010235	Topic 7 market stock share price sell buy company investor yesterday	Weight 0.024976 0.024874 0.020583 0.018141 0.016564 0.015415 0.015249 0.015062 0.012813	Topic 8 serve add minute pepper oil cook food cup sauce	Weight 0.010918 0.010185 0.009301 0.009235 0.008976 0.008711 0.008689 0.008682 0.008209	Topic 9 change system problem power create research produce far result	Weight 0.007661 0.007233 0.006835 0.005400 0.005056 0.004712 0.004574 0.004447 0.004280	Topic 10 city area build building home resident community local live	Weight 0.021776 0.014865 0.014361 0.014326 0.013632 0.013483 0.012479 0.010686 0.010661

10 topics generated by LDA on The New York Times dataset

Supervised LDA (sLDA)

- Allow users to provide document annotations/labels
- Incorporate document labels into the generative process
 - For the *i*th document, choose $heta_i \sim \operatorname{Dir}(lpha)$ document's topic distribution
- For the *j*th word in the *i*th document, ■ choose topic $z_{i,j} \sim \text{Categorical}(\theta_i)$ word's topic
 - \Box choose a word $w_{i,j} \sim \text{Categorical}(\beta_{z_{i,j}})$
- For the *i*th document, choose $y_i \sim N(\eta^{\top} \bar{z}_i, \sigma^2)$, $\bar{z}_i = \frac{1}{L} \sum_{i,j} z_{i,j}$

generate document's label

Seeded LDA: Guided Topic-Word Distribution

□ Another form of user supervision: several seed words for each topic

- 1. For each $k=1\cdots T$,
 - (a) Choose regular topic $\phi_k^r \sim \text{Dir}(\beta_r)$.
 - (b) Choose seed topic $\phi_k^s \sim \text{Dir}(\beta_s)$.
 - (c) Choose $\pi_k \sim \text{Beta}(1,1)$.
- 2. For each seed set $s = 1 \cdots S$,
 - (a) Choose group-topic distribution $\psi_s \sim \text{Dir}(\alpha)$.
- 3. For each document d,
 - (a) Choose a binary vector \vec{b} of length S.
 - (b) Choose a document-group distribution $\zeta^d \sim \text{Dir}(\tau \vec{b}).$
 - (c) Choose a group variable $g \sim \text{Mult}(\zeta^d)$.
 - (d) Choose $\theta_d \sim \text{Dir}(\psi_q)$. // of length T
 - (e) For each token $i = 1 \cdots N_d$:
 - i. Select a topic z_i ~ Mult(θ_d).
 ii. Select an indicator x_i ~ Bern(π_{z_i}).
 iii. if x_i is 0

 Select a word w_i ~ Mult(φ^r_{z_i}).

 iv. if x_i is 1
 - Select a word $w_i \sim \text{Mult}(\phi_{z_i}^s)$.

Seed topics used to improve the topic-word distribution: Each word comes from either "regular topics" with a distribution over all word like in LDA, or "seed topics" which only generate words from the seed set

11

Seeded LDA: Guided Document-Topic Distribution

Another form of user supervision: several seed words for each topic

1. For each $k=1\cdots T$,

- (a) Choose regular topic $\phi_k^r \sim \text{Dir}(\beta_r)$.
- (b) Choose seed topic $\phi_k^s \sim \text{Dir}(\beta_s)$.
- (c) Choose $\pi_k \sim \text{Beta}(1, 1)$.
- 2. For each seed set $s = 1 \cdots S$,
 - (a) Choose group-topic distribution $\psi_s \sim \text{Dir}(\alpha)$.
- 3. For each document d,
 - (a) Choose a binary vector \$\vec{b}\$ of length S.
 (b) Choose a document-group distribution
 - (b) Choose a document-group distribution $\zeta^d \sim \text{Dir}(\tau \vec{b}).$
 - (c) Choose a group variable $g \sim \text{Mult}(\zeta^d)$.
 - (d) Choose $\theta_d \sim \text{Dir}(\psi_g)$. // of length T
 - (e) For each token $i = 1 \cdots N_d$:
 - i. Select a topic $z_i \sim \text{Mult}(\theta_d)$.

ii. Select an indicator
$$x_i \sim \text{Bern}(\pi_{z_i})$$
.

iii. if x_i is 0

• Select a word
$$w_i \sim \text{Mult}(\phi_{z_i}^r)$$
.

- iv. if x_i is 1
 - Select a word $w_i \sim \operatorname{Mult}(\phi_{z_i}^s)$.

Seed topics used to improve the document-topic distribution: Group-topic distribution = seed set distribution over regular topics Group-topic distribution used as prior to draw document-topic distribution

Outline

Unsupervised Topic Modeling

Supervised & Seed-Guided Topic Modeling

Clustering-Based Topic Discovery

Discriminative Topic Mining

Clustering-Based Topic Discovery

- Topic modeling frameworks use bag-of-words features (i.e., only word counts in documents matter; word ordering is ignored)
- In Part I of the tutorial, we introduced distributed text representations (text embeddings and language models) that better model sequential information in text
- Can we take advantage of those advanced text representations for the topic discovery task, as an alternative to topic modeling?

Word Embedding + Clustering

- Cast "topics" as clusters of word types similar to taking the top-ranked words from each topic's distribution in topic modeling
- How to obtain word clusters? Run clustering algorithms on word embeddings
- Since the text embedding space captures word semantic similarity (i.e., high vector similarity implies high semantic similarity), using distancebased clustering algorithms (like K-means) will naturally group semantically similar words into the same cluster

Clustering-Based Topic Discovery: A benchmark study

- Clustering algorithms:
 - k-means (KM)
 - Gaussian Mixture Models (GMM)
- Embeddings:
 - Word2Vec
 - GloVe
 - fastText
 - Spherical text embedding
 - ELMo
 - BERT

Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too! EMNLP

Clustering-Based Topic Discovery: Word Frequency

- One thing to consider is that text embeddings do not explicitly encode frequency information, which is important for topic discovery (i.e., more frequent words in the corpus may be more representative)
- Two ways to incorporate frequency information
- U Weighted clustering: Frequent words weigh more when computing cluster centroids
- Rerank words in clusters: Rerank terms by frequency in each cluster when selecting representative terms

Clustering-Based Topic Discovery: Results

- Using k-means (KM)/Gaussian Mixture Models (GMM) as clustering algorithm and using Spherical text embedding/BERT as representations leads to comparable results with LDA
- Future work
 - More advanced clustering algorithms?
 - Joint modeling of document-topic distribution via clustering?

	1	Reuters						wei	ghteo	d clu	steri	ng + 20 News	rera	nkin	g	
	<	>	0	w	0	r	0	w		>	0	w	<	r	<	\sum_{r}^{w}
	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM
Word2vec	-0.39	-0.47	-0.21	-0.09	0.02	0.01	0.03	0.08	-0.21	-0.10	-0.11	0.13	0.18	0.16	0.19	0.20
ELMo	-0.73	-0.55	-0.43	0.00	-0.10	-0.08	-0.02	0.06	-0.56	-0.13	-0.38	0.18	0.13	0.14	0.16	0.19
GloVe	-0.67	-0.59	-0.04	0.01	-0.27	-0.03	0.01	0.05	-0.18	-0.12	0.06	0.24	0.22	0.23	0.23	0.23
Fasttext	-0.68	-0.70	-0.46	-0.08	0.00	0.00	0.06	0.11	-0.32	-0.20	-0.18	0.21	0.24	0.23	0.25	0.24
Spherical	-0.53	-0.65	-0.07	0.09	0.01	-0.05	0.10	0.12	-0.05	-0.24	0.24	0.23	0.25	0.22	0.26	0.24
BERT	-0.43	-0.19	-0.07	0.12	0.00	-0.01	0.12	0.15	0.04	0.14	0.25	0.25	0.17	0.19	0.25	0.25
average	-0.57	-0.52	-0.21	0.01	-0.06	-0.03	0.05	0.10	-0.21	-0.11	-0.02	0.21	0.20	0.20	0.23	0.23
std. dev.	0.14	0.18	0.19	0.09	0.12	0.03	0.05	0.04	0.21	0.13	0.25	0.05	0.04	0.04	0.04	0.02
17																

Table 1: NPMI Results (higher is better) for pre-trained word embeddings and k-means (KM), and Gaussian Mixture Models (GMM). \diamond^w indicates weighted and \diamond_r indicates reranking of top words. For Reuters (left table), LDA has an NPMI score of 0.12, while GMM^w_r BERT achieves 0.15. For 20NG (right), both LDA and KM^w_r Spherical achieve a score of 0.26. All results are averaged across 5 random seeds.

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Clustering-Based Topic Discovery
- Discriminative Topic Mining
 - Introduction of the Task

- Demo: TopicMine (based on CatE)
- JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]

Motivations

- □ What are the limitations of topic models?
- □ Failure to incorporate user guidance: Topic models tend to retrieve the most general and prominent topics from a text collection
 - may not be of a user's particular interest
 - provide a skewed and biased summarization of the corpus
- Failure to enforce distinctiveness among retrieved topics: Topic models do not impose discriminative constraints
 - concepts are most effectively interpreted via their uniquely defining features
 - e.g. Egypt is known for pyramids and China is known for the Great Wall

Motivations

(Cont'd) Failure to enforce distinctiveness among retrieved topics: Topic models do not impose discriminative constraints

□ three retrieved topics from the New York Times annotated corpus via LDA:

Table 1: LDA retrieved topics on NYT dataset. The meanings of the retrieved topics have overlap with each other.

Topic 1	Topic 2	Topic 3
canada, united states	sports, united states	united states, iraq
canadian, economy	olympic, games	government, president

it is difficult to clearly define the meaning of the three topics due to an overlap of their semantics (e.g., the term "united states" appears in all three topics)

Introduction

A New Task: Discriminative Topic Mining

- Given a text corpus and a set of category names, discriminative topic mining aims to retrieve a set of terms that exclusively belong to each category
- **L** Ex. Given c_1 : "The United States", c_2 : "France", c_3 : "Canada"
 - correct to retrieve "Ontario" under c₃: Ontario is a province in Canada and exclusively belongs to Canada
 - □ incorrect to retrieve "North America" under c₃: North America is a continent and does not belong to any countries (reversed belonging relationship)
 - □ incorrect to retrieve "English" under c₃: English is also the national language of the United States (not discriminative)

Discriminative Topic Mining

□ A New Task: Discriminative Topic Mining

- Difference from topic modeling
 - requires a set of user provided category names and only focuses on retrieving terms belonging to the given categories
 - imposes strong discriminative requirements that each retrieved term under the corresponding category must belong to and only belong to that category semantically

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Clustering-based Topic Discovery
- Discriminative Topic Mining
 - Introduction of the Task
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - Demo: TopicMine (based on CatE)
 - JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]

CatE Embedding: Overview

□ Motivation:

- Topic models use document-topic and topic-word distributions to model the text generation process
- □ able to discover hidden topic semantics
- □ bag-of-words generation assumption
- Word embeddings capture word semantic correlations via the distributional hypothesis
 - captures local context similarity
 - not exploit document-level statistics (global context)
 - not model topics
- □ Take advantage of both frameworks!

CatE Embedding: Discriminative Embedding

- Intuitively, with different categories to be discriminated, the embedding space should have different distribution
- □ How to achieve this property?

CatE Embedding: Text Generation Modeling

- Modeling text generation under user guidance
- □ A three-step process:
 - **1**. A document d is generated conditioned on one of the n categories **1**. Topic assignment
 - 2. Each word w_i is generated conditioned on the semantics of the document d 2. Global context
 - 3. Surrounding words w_{i+j} in the local context window of w_i are generated conditioned on the semantics of the center word w_i 3. Local context
- Likelihood of corpus generation conditioned on user-given categories

CatE Embedding: Objective

Objective: negative log-likelihood

$$P(\mathcal{D} \mid C) = \prod_{d \in \mathcal{D}} p(d \mid c_d) \prod_{w_i \in d} p(w_i \mid d) \prod_{\substack{w_{i+j} \in d \\ -h \leq j \leq h, j \neq 0}} p(w_{i+j} \mid w_i)$$
1. Topic assignment 2. Global context 3. Local context
$$p(d \mid c_d) \propto p(c_d \mid d)p(d) \propto p(c_d \mid d) \propto \prod_{w \in d} p(c_d \mid w), \text{ Decompose into word-topic distribution}$$

□ How do we know which word belongs to which category (word-topic distribution)?

Category Representative Word Retrieval

- As a starting point, we propose to retrieve representative words by jointly considering two separate aspects:
 - Relatedness: measured by embedding cosine similarity
 - Specificity: category representative words should be more specific than the category name
- Ex. "Ontario" can be selected as a category representative word of "Canada" since it is related to "Canada" and more specific than "Canada".
- □ How do we know the specificity of words?

Word Semantic Specificity

□ Word distributional specificity:

Definition 2 (Word Distributional Specificity). We assume there is a scalar $\kappa_w \ge 0$ correlated with each word *w* indicating how specific the word meaning is. The bigger κ_w is, the more specific meaning word *w* has, and the less varying contexts *w* appears in.

Ex. "seafood" has a higher word distributional specificity than "food", because seafood is a specific type of food

Jointly Learning Word Embedding and Specificity

• Our model:

$$p(w_i \mid d) = \frac{\exp[\kappa_{w_i} \boldsymbol{u}_{w_i}^{\top} d]}{\sum_{d' \in \mathcal{D}} \exp(\kappa_{w_i} \boldsymbol{u}_{w_i}^{\top} d')},$$
$$p(w_{i+j} \mid w_i) = \frac{\exp[\kappa_{w_i} \boldsymbol{u}_{w_i}^{\top} \boldsymbol{v}_{w_{i+j}})}{\sum_{w' \in V} \exp(\kappa_{w_i} \boldsymbol{u}_{w_i}^{\top} \boldsymbol{v}_{w'})},$$
$$s.t. \quad \forall w, d, c, \quad \|\boldsymbol{u}_w\| = \|\boldsymbol{v}_w\| = \|\boldsymbol{d}\| = \|\boldsymbol{c}\| = 1.$$

 $\Box \kappa_w$ is the distributional specificity of w.

Interpreting The Model

□ Preliminary: The vMF distribution – A distribution defined on unit sphere

Interpreting The Model

(Theorem) Our model essentially learns both word embedding and word distributional specificity that maximize the probability of the context vectors getting generated by the center word's vMF distribution

Category Representative Word Retrieval

Ranking Measure for Selecting Class Representative Words:

 \Box We find a representative word of category c_i and add it to the set S by

Overall Algorithm

Algorithm 1: Discriminative Topic Mining.				
Input: A text corpus \mathcal{D} ; a set of category names				
$C = \{c_i\} _{i=1}^n.$				
Output: Discriminative topic mining results $S_i _{i=1}^n$.				
for $i \leftarrow 1$ to n do				
$S_i \leftarrow \{c_i\}$ \triangleright initialize S_i with category names;				
for $t \leftarrow 1$ to max_iter do				
Train \mathcal{W}, \mathcal{C} on \mathcal{D} according to Equation (2);				
for $i \leftarrow 1$ to n do				
$w \leftarrow$ Select representative word of c_i by Eq. (12);				
$S_i \leftarrow S_i \cup \{w\};$				
for $i \leftarrow 1$ to n do				
$S_i \leftarrow S_i \setminus \{c_i\}$ \triangleright exclude category names;				
Return $S_i _{i=1}^n$;				

Experiment Settings

Datasets

- New York Times annotated corpus (Sandhaus, 2008)
 - topic
 - Iocation
- Recently released Yelp Dataset Challenge
 - food type
 - sentiment

Figure 2: Dataset statistics.

Experiments

- Discriminative Topic Mining:
- Baselines
 - LDA (NIPS 2003) Manual select
 - □ Seeded LDA (EACL 2012) Seed-guided
 - TWE (AAAI 2015) Embedding-based
 - □ Anchored CorEx (TACL 2017) Seed-guided
 - □ Labeled ETM (arXiv 2019) Embedding-based

Metrics:

- Averaged topic coherence: how coherent the mined topics are
- Mean accuracy: how accurately the retrieved terms belong to the category

Qualitative Results

Mathada	NYT-L	ocation	NYT	-Topic	Ye	lp -Food	Yelp-Se	ntiment
Methods	britain	canada	education	politics	burger	desserts	good	bad
LDA	company (×) companies (×) british shares (×) great britain	percent (×) economy (×) canadian united states (×) trade (×)	school students city (×) state (×) schools	campaign clinton mayor election political	fatburger dos (×) liar (×) cheeseburgers bearing (×)	ice cream chocolate gelato tea (×) sweet	great place (×) love friendly breakfast	valet (×) peter (×) aid (×) relief (×) rowdy
Seeded LDA	british industry (×) deal (×) billion (×) business (×)	city (×) building (×) street (×) buildings (×) york (×)	state (×) school students city (×) board (×)	republican political senator president democrats	like (×) fries just (×) great (×) time (×)	great (×) like (×) ice cream delicious (×) just (×)	place (×) great service (×) just (×) ordered (×)	service (×) did (×) order (×) time (×) ordered (×)
TWE	germany (×) spain (×) manufacturing (×) south korea (×) markets (×)	toronto osaka (×) booming (×) asia (×) alberta	arts (×) fourth graders musicians (×) advisors regents	religion race attraction (×) era (×) tale (×)	burgers fries hamburger cheeseburger patty	chocolate complimentary (×) green tea (×) sundae whipped cream	tasty decent darned (×) great suffered (×)	subpar positive (×) awful crappy honest (×)
Anchored CorEx	moscow (×) british london german (×) russian (×)	sports (×) games (×) players (×) canadian coach	republican (×) senator (×) democratic (×) school schools	military (×) war (×) troops (×) baghdad (×) iraq (×)	order (×) know (×) called (×) fries going (×)	make (×) chocolate people (×) right (×) want (×)	selection (×) prices (×) great reasonable mac (×)	did (×) just (×) came (×) asked (×) table (×)
Labeled ETM	france (×) germany (×) canada (×) british europe (×)	canadian british columbia britain (×) quebec north america (×)	higher education educational school schools regents	political expediency (×) perceptions (×) foreign affairs ideology	hamburger cheeseburger burgers patty steak (×)	pana gelato tiramisu cheesecake ice cream	decent great tasty bad (×) delicious	horrible terrible good (×) awful appallingly
CatE	england london britons scottish great britain	ontario toronto quebec montreal ottawa	educational schools higher education secondary education teachers	political international politics liberalism political philosophy geopolitics	burgers cheeseburger hamburger burger king smash burger	dessert pastries cheesecakes scones ice cream	delicious mindful excellent wonderful faithful	sickening nasty dreadful freaks cheapskates

Quantitative Results

Mathada	NYT-I	Location	NYT	-Topic	Yelp	-Food	Yelp-S	entiment
Methods	TC	MACC	TC	MACC	TC	MACC	TC	MACC
LDA	0.007	0.489	0.027	0.744	-0.033	0.213	-0.197	0.350
Seeded LDA	0.024	0.168	0.031	0.456	0.016	0.188	0.049	0.223
TWE	0.002	0.171	-0.011	0.289	0.004	0.688	-0.077	0.748
Anchored CorEx	0.029	0.190	0.035	0.533	0.025	0.313	0.067	0.250
Labeled ETM	0.032	0.493	0.025	0.889	0.012	0.775	0.026	0.852
CatE	0.049	0.972	0.048	0.967	0.034	0.913	0.086	1.000

Experiments: Weakly-Supervised Text Classification:

Use different embedding features to WeSTClass model

- Baselines:
 - Word2Vec (NIPS 2013)
 - GloVe (EMNLP 2014)
 - □ fastText (TACL 2017)
 - BERT (NAACL 2019)

Experiments: Weakly-Supervised Text Classification:

Text Classification results

Embodding	NYT-L	ocation	NYT-Topic		Yelp	-Food	Yelp-Sentiment	
Embedding	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
Word2Vec	0.533	0.467	0.588	0.695	0.540	0.528	0.723	0.715
GloVe	0.521	0.455	0.563	0.688	0.515	0.503	0.720	0.711
fastText	0.543	0.485	0.575	0.693	0.544	0.529	0.738	0.743
BERT	0.301	0.288	0.328	0.451	0.330	0.404	0.695	0.674
CatE	0.655	0.613	0.611	0.739	0.656	0.648	0.838	0.836

Table 4: Weakly-supervised text classification evaluation based on WeSTClass [31] model.

Case Study

Discriminative Embedding Space

Case Study

Coarse-to-Fine Topic Presentation

Range of κ	Science ($\kappa_c = 0.539$)	Technology ($\kappa_c = 0.566$)	Health ($\kappa_c = 0.527$)	
$\kappa_c < \kappa < 1.25 \kappa_c$	scientist, academic, research, laboratory	machine, equipment, devices, engineering	medical, hospitals, patients, treatment	
1.95r < r < 1.5r	physics, sociology,	information technology, computing,	mental hygiene, infectious diseases,	
$1.23K_C \leq K \leq 1.3K_C$	biology, astronomy	telecommunication, biotechnology	hospitalizations, immunizations	
1.5r < r < 1.75r	microbiology, anthropology,	wireless technology, nanotechnology,	dental care, chronic illnesses,	
$1.5\kappa_{C} < \kappa < 1.75\kappa_{C}$	physiology, cosmology	semiconductor industry, microelectronics	cardiovascular disease, diabetes	
	national science foundation,	integrated circuits,	juvenile diabetes,	
x > 1 75 x	george washington university,	assemblers,	high blood pressure,	
$\kappa > 1.75\kappa_c$	hong kong university,	circuit board,	family violence,	
	american academy	advanced micro devices	kidney failure	

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Clustering-based Topic Discovery
- Discriminative Topic Mining
 - Introduction of the Task
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - Demo: TopicMine (based on CatE)

Project Goal

- Topic discovery in massive text corpora presents a holistic view to users of the contents
- However, traditional unsupervised methods like Latent Dirichlet Allocation (LDA) fail to provide completely meaningful and user-interested topics
- We develop TopicMine, a user-guided topic mining system that takes user-interested category names as input and retrieve category representative phrases to form coherent topics

Project Goal

- TopicMine presents a category in a coarse-to-fine manner: The category representative phrases are first selected by category relevance, and then ranked by semantic specificity
- Our framework learns an additional parameter κ for each phrase which reflects how specific the phrase meaning is based on how variant the phrase's local contexts are in the entire corpus
- For example, "California" will be ranked higher than "Log Angeles" as representative phrases for category "The United States"

$$\kappa_{United \ States} < \kappa_{California} < \kappa_{Los \ Angeles} < \kappa_{USC}$$

Input --- Output

Category: United States — California, Los Angeles, USC, ...

Category Representative Phrases

User Inputs: (truth discovery, text mining, pattern mining)

TRUTH DISCOVERY	TEXT MINING	PATTERN MINING
misinformation	text_analysis	sequential_pattern_mining
faitcrowd	document_retrieval	frequent_sequence_mining
rumors	text_processing	frequent_itemset_mining
veracity	text_analytics	motif_discovery
missing_values	information_extraction	pattern_discovery
untrustworthy	biomedical_informatics	minimum_spanning_tree
multiple_sources	latent_semantic_analysis	a-priori
multi-source	unstructured_text	pattern_matching

Category Phrases Sort By Specificity Range

Coarse-to-fine topic presentation

RANGE OF ĸ	TRUTH DISCOVERY	TEXT MINING	PATTERN MINING
$1 < \frac{\kappa}{\kappa_c} < 1.25$	misinformation	text_analysis	sequential_pattern_mining
	common_sense_knowledge	text_processing	frequent_sequence_mining
	rumors	unstructured_text	frequent_itemset_mining
$1.25 < \frac{\kappa}{\kappa_c} < 1.5$	multiple_sources	document_retrieval	minimum_spanning_tree
	decision_problem	information_extraction	pruning_techniques
	fact-checking	topic_extraction	association_rules
$1.5 < \frac{\kappa}{\kappa_c} < 1.75$	faitcrowd	latent_semantic_analysis	trajectory-based
	hyptrails	tf-idf	a-priori
	timing_information	semeval-2015	community-level

Demo System Showcase

Demo System Showcase

CATEGORY REPRESENTATIVE PHRASES

DATA_MINING	NATURAL_LANGUAGE_PROCESSING	MACHINE_LEARNING
scientific_data	language_processing	machine_learning_algorithms
pattern_mining	natural_language_understanding	hyperparameter_optimization
data_analysis	linguistic	supervised_learning
text_mining	linguistic_resources	multinomial_naive_bayes
data_warehousing	nlp_tasks	nonlinear_regression
biomedical_informatics	language_acquisition	hyperparameters
data_visualization	text_understanding	regression
information_network	lexical_semantics	variational_bayesian_inference
scientific_applications	computational_linguistics	nonparametric_regression
correlation_analysis	natural_languages	poisson_regression

Demo System Showcase

CATEGORY PHRASES SORT BY SPECIFICITY RANGE

RANGE OF K	DATA_MINING	NATURAL_LANGUAGE_PROCESSING	MACHINE_LEARNING
1.0 <k<1.25< td=""><td>data_mining</td><td>natural_language_processing</td><td>machine_learning</td></k<1.25<>	data_mining	natural_language_processing	machine_learning
	scientific_data	computational_linguistics	statistical_methods
	data_analysis	linguistic_resources	regression
	data_warehousing	semantic_representation	hyperparameter
	data_visualization	spoken_dialogue	kernel_machines
1.25 <k<1.5< td=""><td>web_mining</td><td>language_identification</td><td>machine_learning_algorithms</td></k<1.5<>	web_mining	language_identification	machine_learning_algorithms
	graph_mining	natural_language_understanding	hyperparameter_optimization
	pattern_mining	semantic_relations	bayesian_optimization
	market_analysis	natural_language_generation	supervised_learning
	bioinformatics	knowledge_extraction	logistic_regression
1.5 <k<1.75< td=""><td>social_network_analysis</td><td>named_entity_recognition</td><td>online_learning_algorithms</td></k<1.75<>	social_network_analysis	named_entity_recognition	online_learning_algorithms
	biological_networks	word_sense_disambiguation	kernel_ridge_regression
	sequential_pattern_mining	semantic_role_labeling	em_algorithm
	frequent_itemset_mining	visual_question_answering	support_vector_machines
	community_discovery	sentiment_analysis	variational_inference

Outline

- Unsupervised Topic Modeling
- Supervised & Seed-Guided Topic Modeling
- Clustering-based Topic Discovery
- Discriminative Topic Mining
 - Introduction of the Task
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - Demo: TopicMine (based on CatE)
 - JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]

Motivation

- Mining a set of meaningful topics organized into a hierarchy is intuitively appealing and has broad applications
 - Coarse-to-fine topic understanding
 - Hierarchical corpus summarization
 - Hierarchical text classification

• ...

Hierarchical topic models discover topic structures from text corpora via modeling the text generative process with a latent hierarchy

JoSH Embedding

Difference from hyperbolic models (e.g., Poincare, Lorentz)

- Hyperbolic embeddings preserve absolute tree distance (similar embedding distance => similar tree distance)
- We do not aim to preserve the absolute tree distance, but rather use it as a relative measure

Although $d_{\text{tree}}(\text{sports, arts}) = d_{\text{tree}}(\text{baseball, soccer})$, "baseball" and "soccer" should be embedded closer than "sports" and "arts" to reflect semantic similarity.

Use tree distance in a relative manner: Since $d_{\text{tree}}(\text{sports, baseball}) < d_{\text{tree}}(\text{baseball, soccer})$, "baseball" and "soccer" should be embedded closer than "baseball" and "soccer".

JoSH Tree Embedding

Intra-Category Coherence: Representative terms of each category should be highly semantically relevant to each other, reflected by high directional similarity in the spherical space

$$\mathcal{L}_{\text{intra}} = \sum_{c_i \in \mathcal{T}} \sum_{w_j \in C_i} \min(0, \boldsymbol{u}_{w_j}^{\top} \boldsymbol{c}_i - m_{\text{intra}}),$$

Inter-Category Distinctiveness: Encourage distinctiveness across different categories to avoid semantic overlaps so that the retrieved terms provide a clear and distinctive description

$$\mathcal{L}_{\text{inter}} = \sum_{c_i \in \mathcal{T}} \sum_{c_j \in \mathcal{T} \setminus \{c_i\}} \min(0, 1 - c_i^\top c_j - m_{\text{inter}}).$$

(a) Intra- & Inter-Category Configuration.

JoSH Tree Embedding

- Recursive Local Tree Embedding: Recursively embed local structures of the category tree onto the sphere
- □ Local tree: A local tree T_r rooted at node $c_r \in T$ consists of node c_r and all of its direct children nodes

JoSH Tree Embedding

Preserving Relative Tree Distance Within Local Trees: A category should be closer to its parent category than to its sibling categories in the embedding space

JoSH Text Embedding

Modeling Text Generation Conditioned on the Category Tree (Similar to CatE)

- □ A three-step process:
 - 1. A document d_i is generated conditioned on one of the *n* categories 1. Topic assignment

$$p(d_i \mid c_i) = \text{vMF}(\boldsymbol{d}_i; \boldsymbol{c}_i, \kappa_{c_i}) = n_p(\kappa_{c_i}) \exp\left(\kappa_{c_i} \cdot \cos(\boldsymbol{d}_i, \boldsymbol{c}_i)\right)$$

- 2. Each word w_j is generated conditioned on the semantics of the document d_i $p(w_j \mid d_i) \propto \exp(\cos(u_{w_i}, d_i))$
- 3. Surrounding words w_{j+k} in the local context window of w_i are generated conditioned on the semantics of the center word w_i

 $p(w_{j+k} \mid w_j) \propto \exp(\cos(\boldsymbol{v}_{w_{j+k}}, \boldsymbol{u}_{w_j}))$

3. Local context

Optimization

- Overall algorithm
- □ Complexity w.r.t. tree size *n*:
 - \Box $O(nB^2)$ for tree embedding
 - \Box O(nK) for text embedding
- □ Scales linearly w.r.t tree size

Algorithm 1: Hierarchical Topic Mining. **Input:** A text corpus \mathcal{D} ; a category tree $\mathcal{T} = \{c_i\}|_{i=1}^n$; number of terms K to retrieve per category . **Output:** Hierarchical Topic Mining results $C_i|_{i=1}^n$. $\boldsymbol{u}_{w}, \boldsymbol{v}_{w}, \boldsymbol{d}, \boldsymbol{c} \leftarrow$ random initialization on \mathbb{S}^{p-1} ; $t \leftarrow 1;$ $C_i^{(1)} \leftarrow w_{c_i}|_{i=1}^n \qquad \triangleright$ initialize with category name; while True do $t \leftarrow t + 1;$ // E-Step (representative term retrieval); $C_{i}^{(t)}|_{i=1}^{n} \leftarrow \text{Eq. (11)};$ // M-Step (embedding training); $u_{w}, v_{w}, d, c \leftarrow \text{Eqs.} (12), (13), (14), (15), (16);$ if $\forall i, C_i^{(t)}$ agrees with $C_i^{(t-1)}$ on top-*K* terms **then** Break; Return $C_i^{(t)}|_{i=1}^n$;

Experiments: Quantitative results

Table 2: Quantitative evaluation: hierarchical topic mining.

Models	NYT		arXiv	
	TC	MACC	TC	MACC
hLDA	-0.0070	0.1636	-0.0124	0.1471
hPAM	0.0074	0.3091	0.0037	0.1824
JoSE	0.0140	0.6818	0.0051	0.7412
Poincaré GloVe	0.0092	0.6182	-0.0050	0.5588
Anchored CorEx	0.0117	0.3909	0.0060	0.4941
CatE	0.0149	0.9000	0.0066	0.8176
JoSH	0.0166	0.9091	0.0074	0.8324

Experiments: Qualitative Results

Figure 3: Hierarchical Topic Mining results on NYT.

Experiments: Qualitative Results

(c) "Computer Science" subtree.

Experiments: Joint Embedding Space Visualization

□ T-SNE visualization (stars=category embeddings; dots=representative word embeddings)

(a) NYT joint embedding space.

Experiments: Joint Embedding Space Visualization

□ T-SNE visualization (stars=category embeddings; dots=representative word embeddings)

(b) **arXiv** joint embedding space.

References

- Blei, D. M., Griffiths, T. L., Jordan, M. I., & Tenenbaum, J. B. (2003). Hierarchical topic models and the nested Chinese restaurant process. NIPS.
- Blei, D. M., & McAuliffe, J. D. (2007). Supervised topic models. NIPS.
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research.
- Mimno, D., Li, W., & McCallum, A. (2007). Mixtures of hierarchical topics with pachinko allocation. ICML.
- Jagarlamudi, J., Daumé III, H., & Udupa, R. (2012). Incorporating lexical priors into topic models.
 EACL.
- Meng, Y., Huang, J., Wang, G., Wang, Z., Zhang, C., Zhang, Y., & Han, J. (2020). Discriminative topic mining via category-name guided text embedding. WWW.
- Meng, Y., Zhang, Y., Huang, J., Zhang, Y., Zhang, C., & Han, J. (2020). Hierarchical topic mining via joint spherical tree and text embedding. KDD.
- Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too! EMNLP.