Part IV: Weakly-Supervised Text Classification: Embeddings with Less Human Effort

KDD 2021 Tutorial

On the Power of Pre-Trained Text Representations: Models and Applications in Text Mining

Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han

Computer Science, University of Illinois at Urbana-Champaign

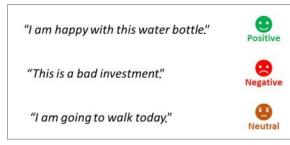
August 14, 2020

Outline

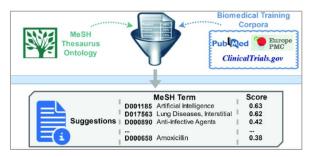
- What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]

Text Classification

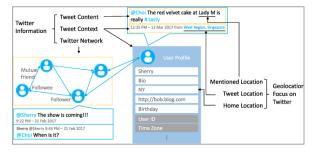
- Given a set of text units (e.g., documents, sentences) and a set of categories, the task is to assign relevant category/categories to each text unit
- Text Classification has a lot of downstream applications



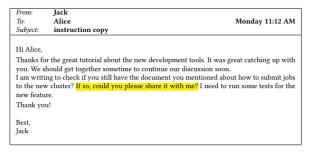
Sentiment Analysis



Paper Topic Classification



Location Prediction



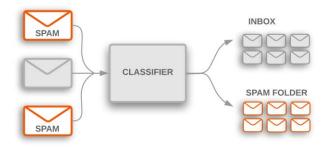
Email Intent Identification

News Topic Classification

Hate Speech Detection

Different Text Classification Settings: Single-Label vs. Multi-Label

- **Single-label**: Each document belongs to one category.
- **Ex. Spam Detection**



- Multi-label: Each document has multiple relevant labels.
 - **Ex.** Paper Topic Classification

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Related Topics ()

<u>A</u> Question answering A Language model	🔺 Natural language understanding	amed-entity recognition	🔺 SemEval 🛛	Inference	🛓 Winograd Schema Challenge	A Sequence labeling
Artificial intelligence	Transformer (machine learning model)) View Less ^ h'	ttps://acad	lemic.m	icrosoft.com/paper/2	2963341956/

4

Different Text Classification Settings: Flat vs. Hierarchical

- **Flat**: All labels are at the same granularity level.
- Ex. Sentiment Analysis of E-Commerce Reviews (1-5 stars)

★★★★★ It works, it's nice, comfortable, and easy to type on. Not loud (unless you're a key pounder)

This keyboard works. It's comfortable, sensitive enough for touch typers, very quiet by comparison to other mechanicals (unless, of course, you're a 'key pounder'), and the lit keys are excellent for people like me who tend to prefer to work in a cave-like environment. https://www.amazon.com/gp/product/B089YFHYYS/

Hierarchical: Labels are organized into a hierarchy representing their parent-child relationship.

Ex. Paper Topic Classification (the arXiv category taxonomy)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Subjects: Computation and Language (cs.CL) Cite as: arXiv:1810.04805 [cs.CL] (or arXiv:1810.04805v2 [cs.CL] for this version)

5

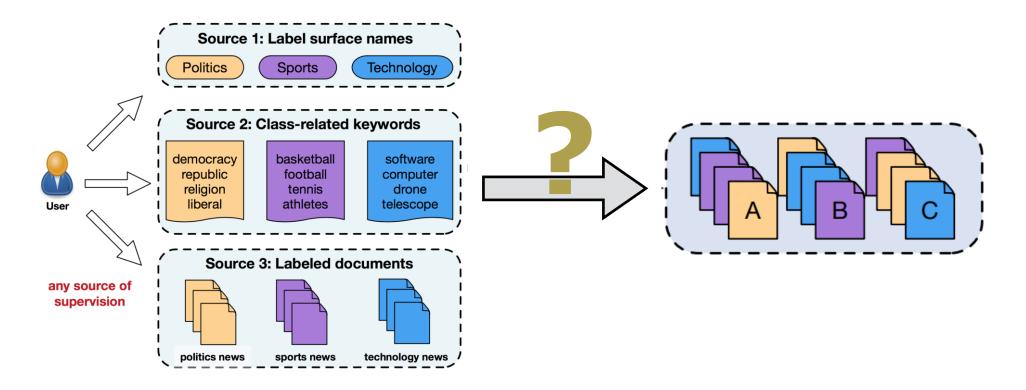
https://arxiv.org/abs/1810.04805

Weakly-Supervised Text Classification: Motivation

- Supervised text classification models (especially recent deep neural models) rely on a significant number of manually labeled training documents to achieve good performance.
- Collecting such training data is usually expensive and time-consuming. In some domains (e.g., scientific papers), annotations must be acquired from domain experts, which incurs additional cost.
- While users cannot afford to label sufficient documents for training a deep neural classifier, they can provide a small amount of seed information:
 - Category-related keywords
 - A small number of labeled documents

Weakly-Supervised Text Classification: Definition

- Text classification without massive human-annotated training data
 - **Keyword-level weak supervision**: label names or a few relevant keywords
 - Document-level weak supervision: a small set of labeled docs



General Ideas to Perform Weakly-Supervised Text Classification

Joint representation learning

Put words, labels, and/or documents into the same latent space using embedding learning or pre-trained language models

Pseudo training data generation

- Retrieve some unlabeled documents or synthesize some artificial documents using text embeddings or contextualized representations
- Give them pseudo labels to train a text classifier

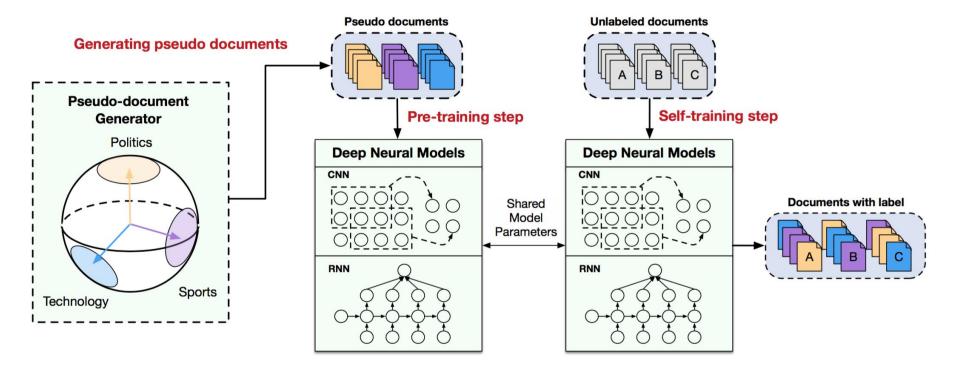
□ Transfer the knowledge of pre-trained language models to classification tasks

Outline

- □ What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]

WeSTClass: Pseudo Training Data + Self-Training

- Embed all words (including label names and keywords) into the same space
- Pseudo document generation: generate pseudo documents from seeds
- Self-training: train deep neural nets (CNN, RNN) with bootstrapping

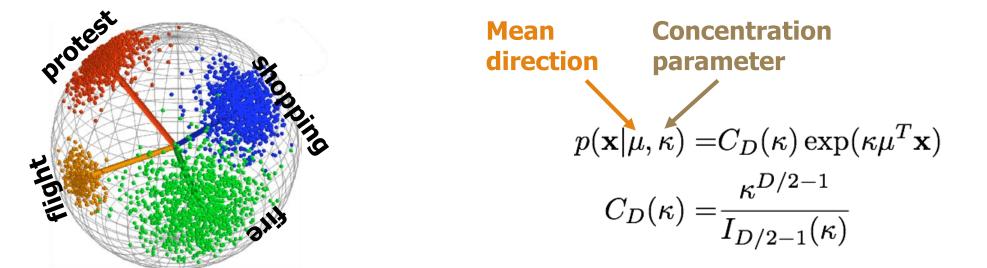


Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18. Applicable to both keyword-level and document-level supervision.

WeSTClass: Pseudo Document Generation

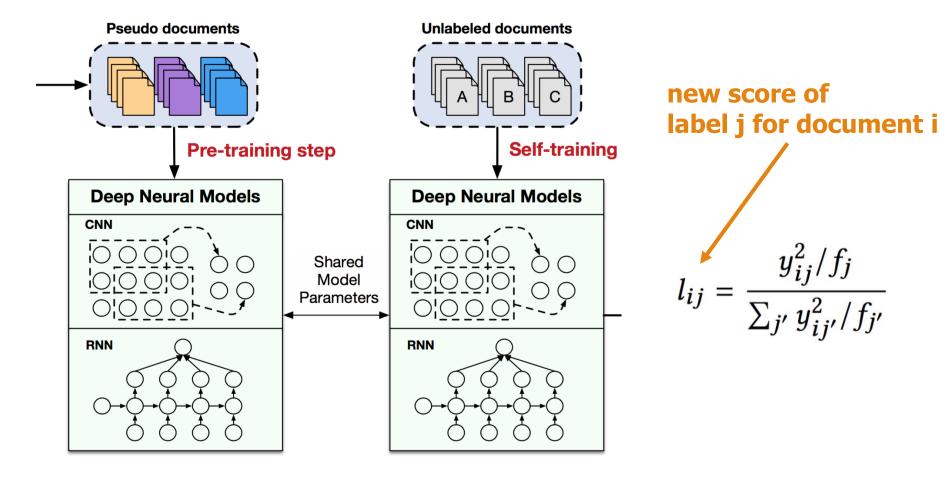
□ Fit a von-Mishes Fisher distribution for each category according to the keywords

- Category name as supervision? Find nearest words as keywords
- □ A few documents as supervision? Retrieve words with high TF-IDF scores
- Sample bag-of-keywords as pseudo documents for each class



WeSTClass: Self-Training Deep Neural Nets

Pre-training: Use pseudo documents to initialize DNNs (e.g., CNN, RNN)
 Self-training: Iteratively refine DNNs in a self-boosting fashion



WeSTClass: Experiment Results

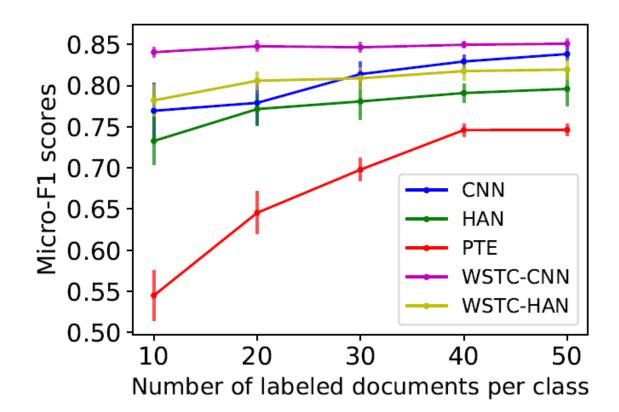
Datasets: (1) NYT, (2) AG's News, (3) Yelp

□ Evaluation: use different types of weak supervision and measure accuracies

	Methods	1	The New York T	limes		AG's News			Yelp Review		
		LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS	
	IR with tf-idf	0.319	0.509	-	0.187	0.258	-	0.533	0.638	_	
	Topic Model	0.301	0.253	-	0.496	0.723	-	0.333	0.333	-	
	Dataless	0.484	-	-	0.688	-	-	0.337	-	-	
Macro-F1 scores:	UNEC	0.690	-	-	0.659	-	-	0.602	-	-	
	PTE	-	-	0.834 (0.024)	-	-	0.542 (0.029)	-	-	0.658 (0.042)	
	HAN	0.348	0.534	0.740 (0.059)	0.498	0.621	0.731 (0.029)	0.519	0.631	0.686 (0.046)	
	CNN	0.338	0.632	0.702 (0.059)	0.758	0.770	0.766 (0.035)	0.523	0.633	0.634 (0.096)	
	NoST-HAN	0.515	0.213	0.823 (0.035)	0.590	0.727	0.745 (0.038)	0.731	0.338	0.682 (0.090)	
	NoST-CNN	0.701	0.702	0.833 (0.013)	0.534	0.759	0.759 (0.032)	0.639	0.740	0.717 (0.058)	
	WESTCLASS-HAN	0.754	0.640	0.832 (0.028)	0.816	0.820	0.782 (0.028)	0.769	0.736	0.729 (0.040)	
	WESTCLASS-CNN	0.830	0.837	0.835 (0.010)	0.822	0.821	0.839 (0.007)	0.735	0.816	0.775 (0.037)	
	IR with tf-idf	0.240	0.346	_	0.292	0.333	_	0.548	0.652	_	
	Topic Model	0.666	0.623	-	0.584	0.735	-	0.500	0.500	-	
	Dataless	0.710	-	-	0.699	-	-	0.500	-	-	
	UNEC	0.810	-	-	0.668	-	-	0.603	-	-	
Micro-F1 scores:	PTE	-	-	0.906 (0.020)	-	-	0.544 (0.031)	-	-	0.674 (0.029)	
	HAN	0.251	0.595	0.849 (0.038)	0.500	0.619	0.733 (0.029)	0.530	0.643	0.690 (0.042)	
	CNN	0.246	0.620	0.798 (0.085)	0.759	0.771	0.769 (0.034)	0.534	0.646	0.662 (0.062)	
	NoST-HAN	0.788	0.676	0.906 (0.021)	0.619	0.736	0.747 (0.037)	0.740	0.502	0.698 (0.066)	
	NoST-CNN	0.767	0.780	0.908 (0.013)	0.553	0.766	0.765 (0.031)	0.671	0.750	0.725 (0.050)	
	WESTCLASS-HAN	0.901	0.859	0.908 (0.019)	0.816	0.822	0.782 (0.028)	0.771	0.737	0.729 (0.040)	
	WESTCLASS-CNN	0.916	0.912	0.911 (0.007)	0.823	0.823	0.841 (0.007)	0.741	0.816	0.776 (0.037)	
13											

WeSTClass: Effect of # Labeled Documents

Compare the performances of five methods on the AG's News dataset by varying the number of labeled documents per class and



Outline

- □ What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]

Language Models for Weakly-Supervised Classification

- The previous approaches only use the local corpus
- □ Fail to take advantage of the general knowledge source (e.g., Wikipedia)
- Why general knowledge?
 - Humans can classify texts with general knowledge
 - Common linguistic features to understand texts better
 - Compensate for potential data scarcity of the local corpus
- □ How to use general knowledge?
 - Neural language models (e.g., BERT) are pre-trained on large-scale general knowledge texts
 - Their learned semantic/syntactic features can be transferred to downstream tasks

ConWea: Disambiguating User-Provided Keywords

- User-provided seed words may be ambiguous.
- Example:

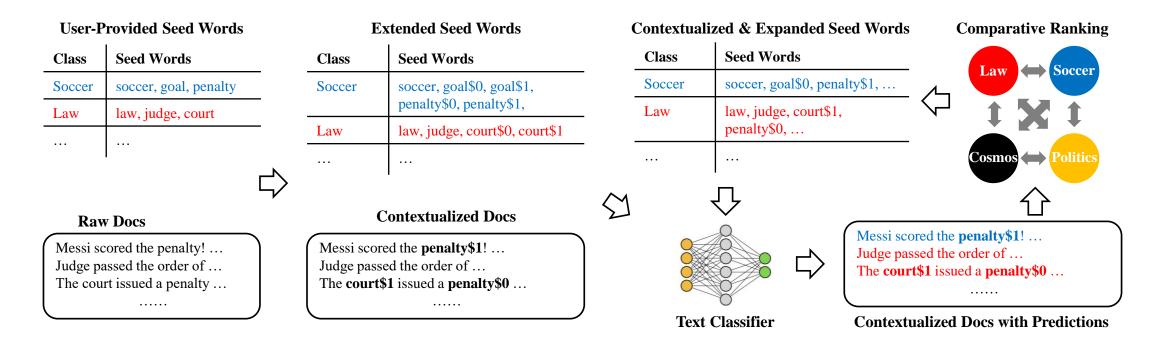
Class	Seed words
Soccer	soccer, goal, penalty
Law	law, judge, court

- Classify the following sentences:
 - Messi scored the penalty.
 - John was issued a death penalty.
- Disambiguate the "senses" based on contextualized representations

Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20. Keywords as supervision. ConWea-related slides credit to Jingbo Shang

ConWea: Clustering for Disambiguation

- For each word, find all its occurrences in the input corpus
 - Run BERT to get their contextualized representations
 - Run a clustering method (e.g., K-Means) to obtain clusters for different "senses"



ConWea: Experiment Results

□ Ablations:

- □ ConWea-NoCon: Variant of ConWea trained without contextualization.
- ConWea-NoExpan: Variant of ConWea trained without seed expansion.
- ConWea-WSD: Variant of ConWea with contextualization replaced by a word sense disambiguation algorithm.

			NYT					20 Newsgroup			
			5-Class	(Coarse)	25-Clas	ss (Fine)	6-Class	(Coarse)	20-Cla	ss (Fine)	
		Methods	Micro-F ₁	Macro-F ₁	Micro- F_1	Macro-F ₁	Micro-F ₁	Macro-F ₁	Micro-F ₁	Macro-F ₁	
	Γ	IR-TF-IDF	0.65	0.58	0.56	0.54	0.49	0.48	0.53	0.52	
		Dataless	0.71	0.48	0.59	0.37	0.50	0.47	0.61	0.53	
Baselines	4	Word2Vec	0.92	0.83	0.69	0.47	0.51	0.45	0.33	0.33	
		Doc2Cube	0.71	0.38	0.67	0.34	0.40	0.35	0.23	0.23	
	L	WeSTClass	0.91	0.84	0.50	0.36	0.53	0.43	0.49	0.46	
		ConWea	0.95	0.89	0.91	0.79	0.62	0.57	0.65	0.64	
	Г	ConWea-NoCon	0.91	0.83	0.89	0.74	0.53	0.50	0.58	0.57	
Ablations	4	ConWea-NoExpan	0.92	0.85	0.76	0.66	0.58	0.53	0.58	0.57	
Additions	L	ConWea-WSD	0.83	0.78	0.72	0.64	0.52	0.46	0.49	0.47	
Upper bound	{	HAN-Supervised	0.96	0.92	0.94	0.82	0.90	0.88	0.83	0.83	

LOTClass: Find Similar Meaning Words with Label Names

- Find topic words based on label names
 - Overcome the low semantic coverage of label names
- Use language models to predict what words can replace the label names
 - Interchangeable words are likely to have similar meanings

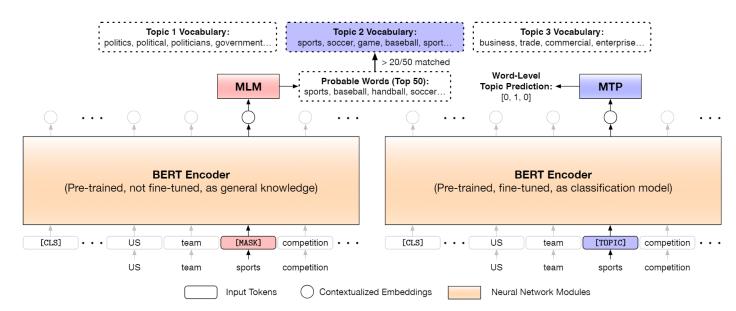
Sentence	Language Model Prediction
The oldest annual US team sports competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.	sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,
Samsung's new SPH-V5400 mobile phone sports a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.	has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers,

Table 1: BERT language model prediction (sorted by probability) for the word to appear at the position of "sports" under different contexts. The two sentences are from *AG News* corpus.

Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20. Category names as supervision.

LOTClass: Contextualized Word-Level Topic Prediction

- Context-free matching of topic words is inaccurate
- "Sports" does not always imply the topic "sports"
- Contextualized topic prediction:
 - Predict a word's implied topic under specific contexts
 - We regard a word as "topic indicative" only when its top replacing words have enough overlap with the topic vocabulary.



LOTClass: Experiment Results

- Achieve around 90% accuracy on four benchmark datasets by only using at most 3 words (1 in most cases) per class as the label name
 - Outperforming previous weakly-supervised approaches significantly
 - Comparable to state-of-the-art semi-supervised models

Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon
	Dataless (Chang et al., 2008)	0.696	0.634	0.505	0.501
Weakly-Sup.	WeSTClass (Meng et al., 2018)	0.823	0.811	0.774	0.753
	BERT w. simple match	0.752	0.722	0.677	0.654
	Ours w/o. self train	0.822	0.850	0.844	0.781
	Ours	0.864	0.889	0.894	0.906
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.986	0.887	0.960
Supervised	char-CNN (Zhang et al., 2015) BERT (Devlin et al., 2019)	0.872 0.944	0.983 0.993	0.853 0.937	0.945 0.972

How Powerful Are Vanilla BERT Representations in Category Prediction?

An average of BERT representations of all tokens in a sentence/document preserves domain information well

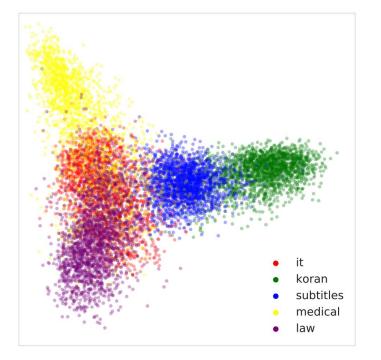
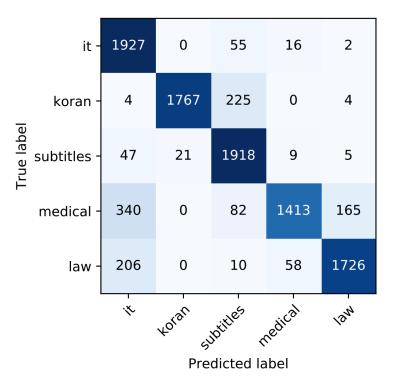
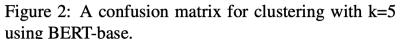


Figure 1: A 2D visualization of average-pooled BERT hidden-state sentence representations using PCA. The colors represent the domain for each sentence.

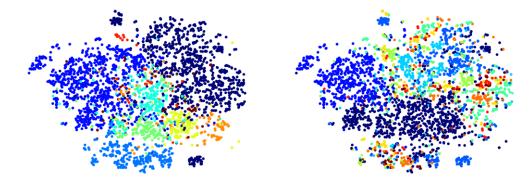




Aharoni, R., & Goldberg, Y. "Unsupervised domain clusters in pretrained language models." ACL'20.

X-Class: Class-Oriented BERT Representations

- A simple idea for text classification
 - Learn representations for documents
 - Set the number of clusters as the number of classes
 - □ Hope their clustering results are almost the same as the desired classification
- However, the same corpus could be classified differently



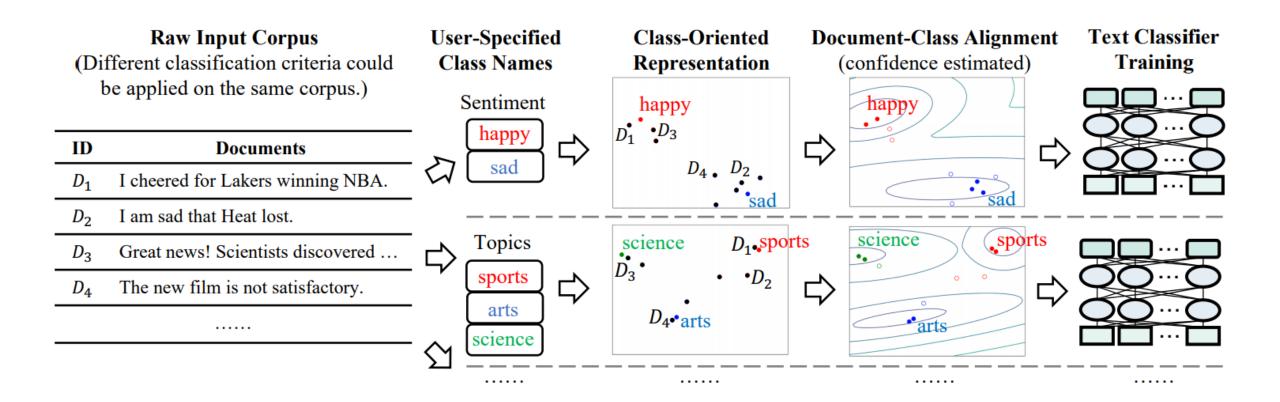
(a) NYT-Topics (b) NYT-Locations

Figure 1: Visualizations of News using Average BERT Representations. Colors denote different classes.

Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21. Category Names as supervision. X-Class-related slides credit to Jingbo Shang

X-Class: Class-Oriented BERT Representations

Clustering for classification based on class-oriented representations



X-Class: Experiment Results

WeSTClass & ConWea consume at least 3 seed words per class

LOTClass & X-Class use category names only

83.1/83.05

X-Class-Align

79.28/78.62

		AGNews	20News	NYT-Small	NYT-Topic	NYT-Location	Yelp	DBpec	lia
	rpus Domain ass Criterion	News Topics	News Topics	News Topics	News Topics	News Locations	Reviews Sentiment	Wikipe Ontolo	
# c	f Classes f Documents balance	4 120,000 1.0	5 17,871 2.02	5 13,081 16.65	9 31,997 27.09	10 31,997 15.84	2 38,000 1.0	14 560,00 1.0	
Model	AGN	ews	20News	NYT-Small	NYT-Topio	e NYT-Locati	ion Ye	elp	DBpedia
Supervised	93.99/	93.99 9	5.45/96.42	97.95/95.46	94.29/89.90) 95.99/94.9	9 95.7	/95.7	98.96/98.96
WeSTClass ConWea	82.3/ 74.6/		1.28/69.90 5.73/73.26	91.2/83.7 95.23/90.79	68.26/57.02 81.67/71.5 4			/81.6 /71.2	81.1/ N/A N/A
LOTClass X-Class	86.89 / 84.8/8		3.78/72.53 3 1.36/80.6	78.12/56.05 96.67/92.98	67.11/43.58 80.6/69.92			/87.68 / 88.32	86.66/85.98 91.33/91.14
X-Class-Re	p 77.92/	77.03 7:	5.14/73.24	92.13/83.94	77.85/65.38	8 86.7/87.36	5 77.87	/77.05	74.06/71.75

79.64/67.85

88.58/88.02

87.16/87.1

87.37/87.28

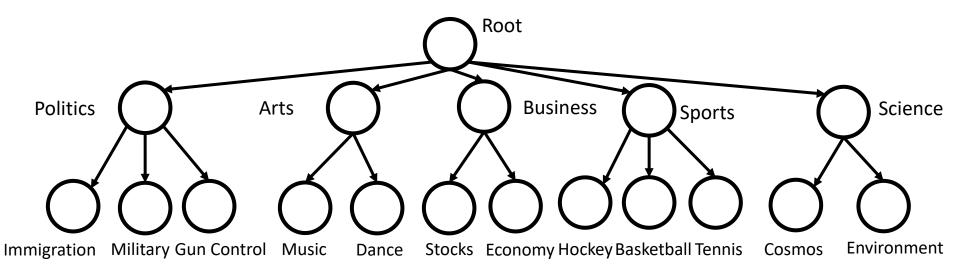
96.34/92.08

Outline

- □ What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]

WeSHClass: Weakly-Supervised Hierarchical Text Classification

□ The hierarchy has a **tree** structure. Each document is associated with **one path** starting from the root node. (E.g., the main subject of each arXiv paper.)



- Keyword-level weak supervision: The name of each node in the taxonomy, or a few keywords for each leaf category
- Document-level weak supervision: A few labeled documents for each leaf category

WeSHClass: Hierarchical Classification Model

Local Classifier Pre-training

- □ Generate β pseudo documents per class (recall WeSTClass) to pre-train the local classifier
- \Box A naive way of creating the label for a pseudo document D_i^* :
 - Directly use the associated class label it is generated from; one-hot encodings;
 - Problem: classifier overfitting to pseudo documents
- □ Instead, use pseudo labels:

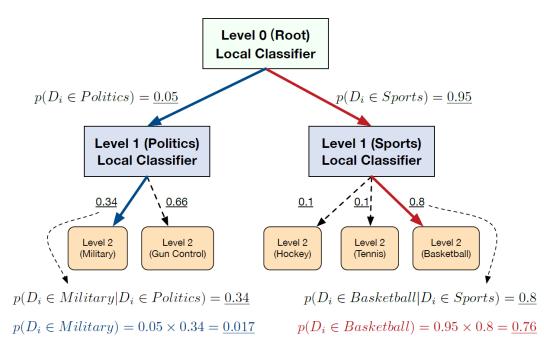
 $\Box l_{ij} = \begin{cases} (1 - \alpha) + \alpha/m & D_i^* \text{ is generated from class } j \\ \alpha/m & \text{otherwise} \end{cases}$

- $\square \alpha$ accounts for the "noises" in pseudo documents; it is evenly split into all m classes
- Pre-training is performed by minimizing KL divergence loss to pseudo labels

WeSHClass: Hierarchical Classification Model

Global Classifier Per Level

- At each level k in the class taxonomy, construct a global classifier by ensembling all local classifiers from root to level k
- Use unlabeled documents to bootstrap the global classifier



WeSHClass: Hierarchical Classification Model

Global Classifier Construction

□ The multiplication operation can be explained by the conditional probability formula:

 $p(D_i \in C_{child}) = p(D_i \in C_{child} \mid D_i \in C_{parent})p(D_i \in C_{parent})$

- All local classifiers from root to to level k are fine-tuned simultaneously via back-propagation during self-training; misclassifications at higher levels can be corrected
- Global Classifier Self-training
 - Step 1: Use the pre-trained global classifier to classify all unlabeled documents in the corpus;
 - Step 2: Compute pseudo labels based on current predictions:

$$l_{ij} = \frac{y_{ij}^2/f_j}{\sum_{j'} y_{ij'}^2/f_{j'}}$$
 where $f_j = \sum_i y_{ij}$ and y_{ij} is the current prediction

- Step 3: Minimize KL divergence loss to pseudo labels
- □ Iterate between Steps 2 and 3 until less than δ% of documents in the corpus have class assignment changes

WeSHClass: Experiment Results

Datasets

□ New York Times; arXiv; Yelp Review

Evaluation: Micro-F1 and Macro-F1 among all classes

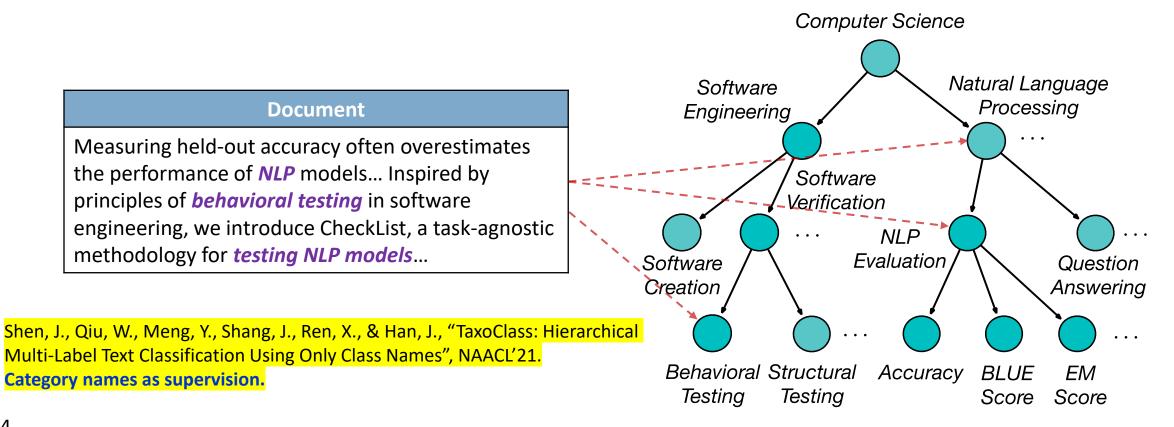
Methods	NYT			arXiv					Yelp Review			
	KEYW	ORDS	DOCS		KEYWORDS DOCS		OCS	KEYWORDS		DOCS		
	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)
Hier-Dataless	0.593	0.811	-	-	0.374	0.594	-	-	0.284	0.312	-	-
Hier-SVM	-	-	0.142(0.016)	0.469(0.012)	-	-	0.049(0.001)	0.443(0.006)	-	-	0.220(0.082)	0.310(0.113)
CNN	-	-	0.165(0.027)	0.329(0.097)	-	-	0.124(0.014)	0.456(0.023)	-	-	0.306(0.028)	0.372(0.028)
WeSTClass	0.386	0.772	0.479(0.027)	0.728(0.036)	0.412	0.642	0.264(0.016)	0.547(0.009)	0.348	0.389	0.345(0.027)	0.388(0.033)
No-global	0.618	0.843	0.520(0.065)	0.768(0.100)	0.442	0.673	0.264(0.020)	0.581(0.017)	0.391	0.424	0.369(0.022)	0.403(0.016)
No-vMF	0.628	0.862	0.527(0.031)	0.825(0.032)	0.406	0.665	0.255(0.015)	0.564(0.012)	0.410	0.457	0.372(0.029)	0.407(0.015)
No-self-train	0.550	0.787	0.491~(0.036)	0.769~(0.039)	0.395	0.635	0.234~(0.013)	0.535~(0.010)	0.362	0.408	0.348~(0.030)	0.382~(0.022)
Our method	0.632	0.874	0.532(0.015)	0.827(0.012)	0.452	0.692	0.279 (0.010)	0.585(0.009)	0.423	0.461	0.375(0.021)	$0.410\ (0.014)$

Outline

- □ What Weakly-Supervised Text Classification Is, and Why It Matters
- Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]

TaxoClass: Weakly-supervised Hierarchical Multi-Label Text Classification

- The taxonomy is a directed acyclic graph (DAG)
- Each paper can have multiple categories distributed on different paths
- Category names can be phrases and may not appear in the corpus



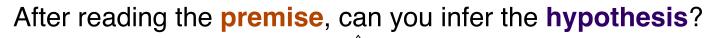
TaxoClass: Why Category Names Only?

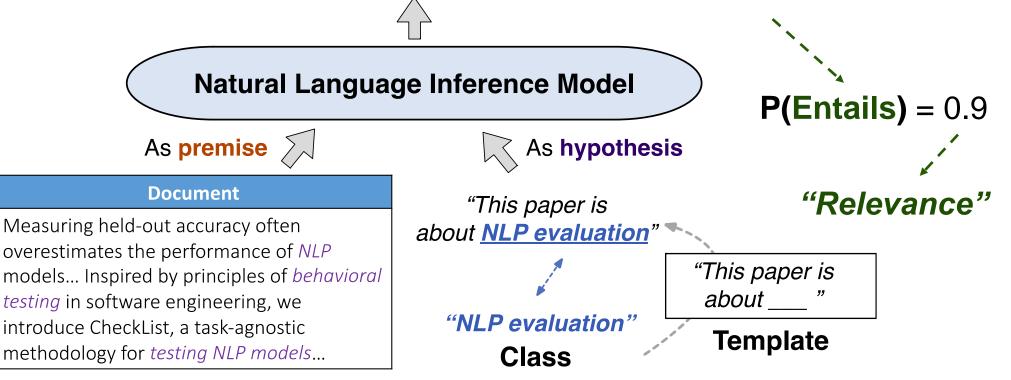
- Taxonomies for multi-label text classification are often big.
 - □ Amazon Product Catalog: $\times 10^4$ categories
 - □ MeSH Taxonomy (for medical papers): $\times 10^4$ categories
 - □ Microsoft Academic Taxonomy: $\times 10^5$ labels
- Impossible for users to provide even a small set of (e.g., 3) keywords/labeled documents for each category

Explore	Entity Analytics
	262,960,769 Publications
2	271,407,867 Authors
<u>д</u>	713,789 Topics
•	4,541 Conferences
	49,036 Journals ()
	27,033 Institutions

TaxoClass: Document-Class Relevance Calculation

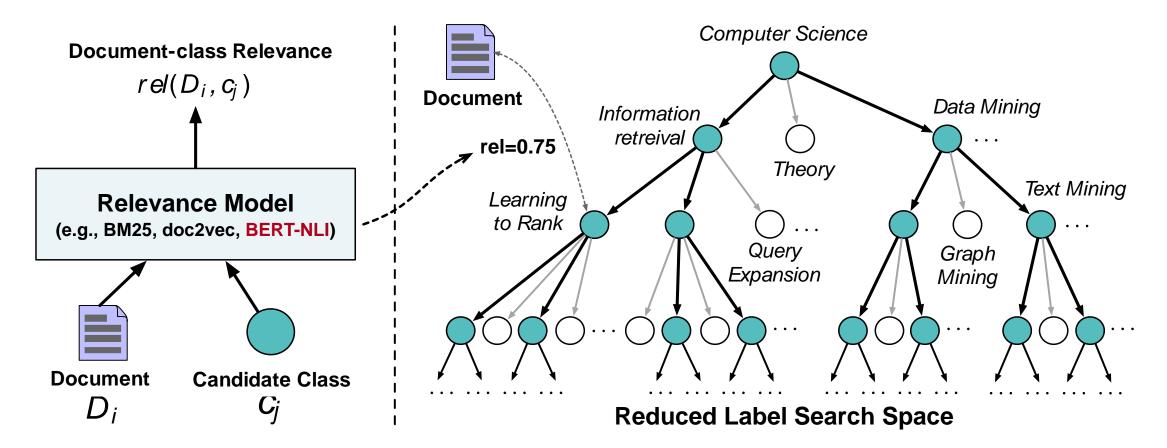
- How to use the knowledge from pre-trained LMs?
- □ Relevance model: BERT/RoBERTa fine-tuned on the NLI task
 - https://huggingface.co/roberta-large-mnli





TaxoClass: Top-Down Exploration

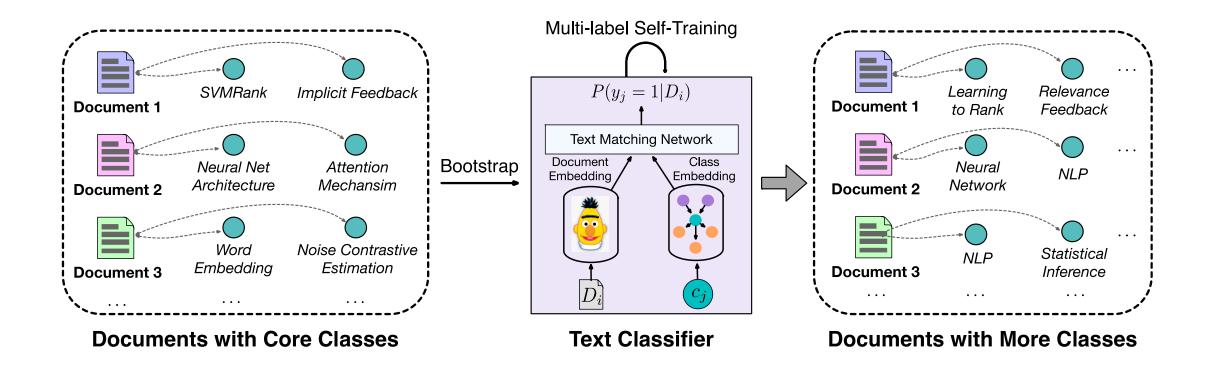
- □ How to use the taxonomy?
- □ Shrink the label search space with top-down exploration
 - Use a relevance model to filter out completely irrelevant classes



TaxoClass: Identify Core Classes and More Classes

Identify document core classes in reduced label search space

Generalize from core classes with bootstrapping and self-training



TaxoClass: Experiment Results

		Methods	Amazo	n	DBPedia		
Weakly-supervised multi-		Internous	Example-F1	P@1	Example-F1	P@1	
Weakly-supervised multi- class classification method	V	WeSHClass (Meng et al., AAAI'19)	0.246	0.577	0.305	0.536	
Semi-supervised methods	Γ	SS-PCEM (Xiao et al., WebConf'19)	0.292	0.537	0.385	0.742	
using 30% of training set		Semi-BERT (Devlin et al., NAACL'19)	0.339	0.592	0.428	0.761	
Zero-shot method		Hier-0Shot-TC (Yin et al., EMNLP'19)	0.474	0.714	0.677	0.787	
		TaxoClass (ours)	0.593	0.812	0.816	0.894	

- vs. WeSHClass: better model document-class relevance
- vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy
- vs. Hier-OShot-TC: better capture domain-specific information from core classes

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes **DBPedia**: 245K Wiki articles (196K training + 49K testing), 298 classes

Example-F1 =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{2|true_i \cap pred_i|}{|true_i| + |pred_i|}$$
, P@1 = $\frac{\#docs \ with \ top-1 \ pred \ dorrect}{\#total \ docs}$

Outline

- □ What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]

MetaCat: Incorporating Metadata for Categorization

- Metadata is prevalent in many text sources
 - GitHub repositories: User, Tag
 - Tweets: User, Hashtag
 - Amazon reviews: User, Product
 - Scientific papers: Author, Venue
- How to leverage these heterogenous signals in the categorization process?

Anna Mandelbaum

12 \$1 commits	j21 trianch	© 5 robiatum Alt 4 c	ontributors
ech mater + New pal	Lesquest	Create new file Upload files Find File	Case or stownized -
zidonghaa update traing	r -	Latest core	ret PLONIE in Aug 21
ing.	add image to readine		3 years ago
gitignore	TL compatibility and code readabality ()	11-0	inst year
READMEnd	Update #EADME.md		3 months ago
data.py	Update data py		3 months ago
model.py	Update modelpy		last month
train.py	Update training	README (Text)	last month
READ/NE md			

(a) GITHUB REPOSITORY

Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally Supervised Categorization of Text with Metadata", SIGIR'20. A few labeled documents as supervision.

(c) AMAZON REVIEW

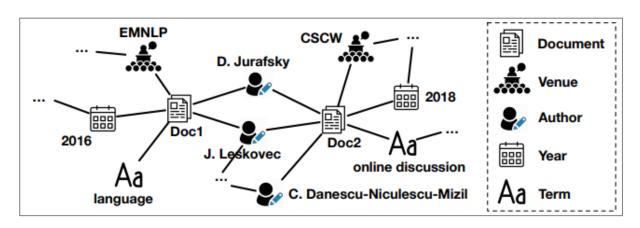
Deep Learning (Adaptive Computation and Machine Learning series)

Product

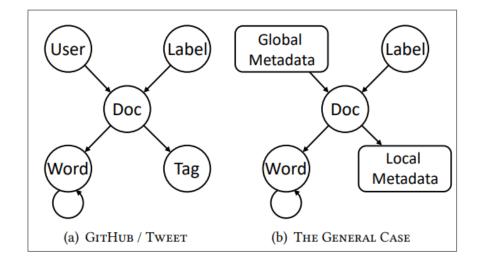
Review (lext

MetaCat: The Underlying Generative Process

- Two categories of metadata:
 - **Global metadata**: user/author, product
 - □ "Causes" the generation of documents. (E.g., User/Author -> Document)
 - Local metadata: tag/hashtag
 - "Describes" the documents. (E.g., Document -> Tag)
 - We can also say "labels" are global, and "words" are local



A network view of corpus with metadata

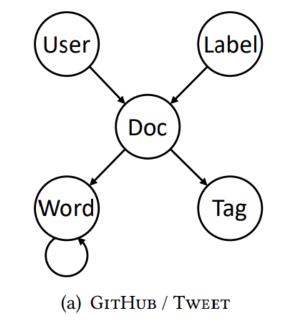


A generative-process view of corpus with metadata

43

MetaCat: The Underlying Generative Process

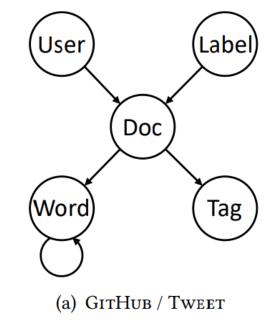
- We use GitHub/Tweet as a specific example to illustrate the process.
- □ Step 1: User (Global Metadata) & Label -> Document $p(d|u, l) \propto \exp(e_d^T e_u) \cdot \exp(e_d^T e_l)$
- Step 2: Document -> Word $p(w|d) \propto \exp(\boldsymbol{e}_w^T \boldsymbol{e}_d)$
- Step 3: Document -> Tag (Local Metadata)
 Step 4: Word -> Context



MetaCat: How to use this underlying model?

Embedding Learning Module

- All embedding vectors e_u, e_l, e_d, e_t, e_w are parameters of the generative process
- Learn the embedding vectors through maximizing the likelihood of observing all text and metadata
- **Training Data Generation Module**
 - \Box e_u, e_l, e_d, e_t, e_w have been learned
 - Given a label *l*, generate *d*, *w* and *t* according to the generative process



MetaCat: Experiment Results

Metadata is more helpful on smaller corpora.

Datasets

- GitHub-Bio: 10 categories;876 docs
- GitHub-AI: 14 categories;
 1,596 docs
- GitHub-Sec: 3 categories;
 84,950 docs
- Amazon: 10 categories; 100,000 docs
- Twitter: 9 categories;135,619 docs

Table 2: Micro F1 scores of compared algorithms on the five datasets. "-": excessive memory requirements.

Туре	Method	GitHub-Bio	GitHub-AI	GitHub-Sec	Amazon	Twitter
	CNN [12]	0.2227 ± 0.0195	0.2404 ± 0.0404	0.4909 ± 0.0489	0.4915 ± 0.0374	0.3106 ± 0.0613
	HAN [38]	0.1409 ± 0.0145	0.1900 ± 0.0299	0.4677 ± 0.0334	0.4809 ± 0.0372	0.3163 ± 0.0878
Text-based	PTE [32]	0.3170 ± 0.0516	0.3511 ± 0.0403	0.4551 ± 0.0249	0.2997 ± 0.0786	0.1945 ± 0.0250
Text-Daseu	WeSTClass [23]	0.3680 ± 0.0138	0.5036 ± 0.0287	0.6146 ± 0.0084	0.5312 ± 0.0161	0.3568 ± 0.0178
	PCEM [36]	0.3426 ± 0.0160	0.4820 ± 0.0292	0.5912 ± 0.0341	0.4645 ± 0.0163	0.2387 ± 0.0344
	BERT [4]	0.2680 ± 0.0303	0.2451 ± 0.0273	0.5538 ± 0.0368	0.5240 ± 0.0261	0.3312 ± 0.0860
	ESim [27]	0.2925 ± 0.0223	0.4376 ± 0.0323	0.5480 ± 0.0109	0.5320 ± 0.0246	0.3512 ± 0.0226
Graph-based	Metapath2vec [5]	0.3956 ± 0.0141	0.4444 ± 0.0231	0.5772 ± 0.0594	0.5256 ± 0.0335	0.3516 ± 0.0407
Graph-based	HIN2vec [6]	0.2564 ± 0.0131	0.3614 ± 0.0234	0.5218 ± 0.0466	0.4987 ± 0.0252	0.2944 ± 0.0614
	TextGCN [39]	0.4759 ± 0.0126	0.6353 ± 0.0059	-	-	0.3361 ± 0.0032
	MetaCat	0.5258 ± 0.0090	$\textbf{0.6889} \pm \textbf{0.0128}$	0.7243 ± 0.0336	0.6422 ± 0.0058	0.3971 ± 0.0169

Table 3: Macro F1 scores of compared algorithms on the five datasets. "-": excessive memory requirements.

Туре	Method	GitHub-Bio	GitHub-AI	GitHub-Sec	Amazon	Twitter
	CNN [12]	0.1896 ± 0.0133	0.1796 ± 0.0216	0.4268 ± 0.0584	0.5056 ± 0.0376	0.2858 ± 0.0559
	HAN [38]	0.0677 ± 0.0208	0.0961 ± 0.0254	0.4095 ± 0.0590	0.4644 ± 0.0597	0.2592 ± 0.0826
Text-based	PTE [32]	0.2630 ± 0.0371	0.3363 ± 0.0250	0.3803 ± 0.0218	0.2563 ± 0.0810	0.1739 ± 0.0190
Text-based	WeSTClass [23]	0.3414 ± 0.0129	0.4056 ± 0.0248	0.5497 ± 0.0054	0.5234 ± 0.0147	0.3085 ± 0.0398
	PCEM [36]	0.2977 ± 0.0281	0.3751 ± 0.0350	0.4033 ± 0.0336	0.4239 ± 0.0237	0.2039 ± 0.0472
	BERT [4]	0.1740 ± 0.0164	0.2083 ± 0.0415	0.4956 ± 0.0164	0.4911 ± 0.0544	0.2834 ± 0.0550
	ESim [27]	0.2598 ± 0.0182	0.3209 ± 0.0202	0.4672 ± 0.0171	0.5336 ± 0.0220	0.3399 ± 0.0113
Graph-based	Metapath2vec [5]	0.3214 ± 0.0128	0.3220 ± 0.0290	0.5140 ± 0.0637	0.5239 ± 0.0437	0.3443 ± 0.0208
Graph-based	HIN2vec [6]	0.2742 ± 0.0136	0.2513 ± 0.0211	0.4000 ± 0.0115	0.4261 ± 0.0284	0.2411 ± 0.0142
	TextGCN [39]	0.4817 ± 0.0078	0.5997 ± 0.0013	-	-	0.3191 ± 0.0029
	MetaCat	0.5230 ± 0.0080	0.6154 ± 0.0079	0.6323 ± 0.0235	0.6496 ± 0.0091	0.3612 ± 0.0067

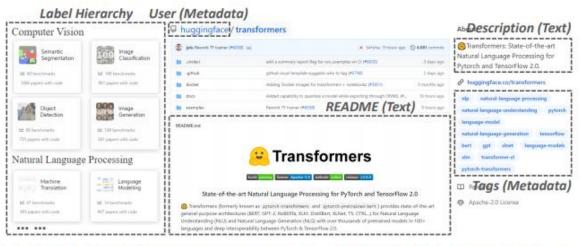
HIMECat: Jointly Modeling Metadata and Hierarchy

How to jointly leverage the label hierarchy, metadata, and text information?

Zhang, Y., Chen, X., Meng, Y., & Han, J. "Hierarchical Metadata-Aware Document Categorization under Weak Supervision", WSDM'21. A few labeled documents (for each leaf category) as supervision.

Computer Science	Computer Science > Computation and Language	
CS.AI (Anticle Intelligence)	Language Models are Few-Shot Learners, Title (Text)	Authors (Metadata)
cs.AR (Hardware Architecture)	Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulia Dhariw Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henigi	
CS.CC ~(Computational Complexity)	Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Lit Christopher Berner, Sam McCandlish, Alec Radford, Ilva Sutskever, Dario Amodel	win, Scott Gray, Benjamin Chess, Jack Clark
Mathematics	Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on	a large corpus of text followed by fine-tuning on a
math.AC (Commutative Algebra)	specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-bunin examples. By contrast, humans can generally perform a new language task from only a few examples or t	rom simple instructions - something which current
math.AG (Agebraic Geometry)	NLP systems still largely struggle to do. Here we show that scaling up language models greatly we train GP swen reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GP billion parameters. Tox more than any previous non-sparse language model, and best its performance in the specific parameters. Tox more than any previous non-sparse language model, and best its performance in the specific parameters. Tox more than any previous non-sparse language model, and best its performance in the specific parameters. Tox more than any previous non-sparse language model.	T-3, an autoregressive language model with 175
Quantitative Biology	without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via to performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as	et interaction with the model. GPT-3 achieves strong
q-bio.BM (Gonolecules)	domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit a datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces me	thodological issues related to training on large web
q-bio.CB (Call Bahavor)	corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have humans. We discuss broader societal impacts of this finding and of GPT-3 in general.	difficulty distinguishing from articles written by
abel Hierarchy	Abstract (Text)	

(b) **arXiv Paper.** Label Hierarchy: arXiv Category Taxonomy (https://arxiv.org/ category_taxonomy); Text: Title and Abstract; Metadata: Author.



(a) **GitHub Repository.** Label Hierarchy: PaperWithCode Task Taxonomy (https: //paperswithcode.com/sota); Text: Description and README; Metadata: User and Tag.

0000000000	Crave Coffee Flavored Coffee Variety Pack, Compatible with 2.0 K-Cup Brewers, 100
୲ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼	
XXXXXXXXXX	
A MENA ANNA ANNA APPA APPA APPA APPA APPA	By Crave Coffee
ାଜିଭିଜିଭିଭିଭିଭିଭିଭିଭି ଭିଭିଭିଭିଭିଭିଭିଭିଭିଭ	会会会会会 - 7,370 ratings 215 annuurul quanturu Anacora Chuica / Nr (R cara)
	Price: \$33.00 (50.55 / Gound & FREE Shipping, Details
	and the second
	Get \$20 off instantly: Pey \$13.00 upon approval for the Amazon.com Store Card.
	Flavor Assorted Variety Pack
	The state of the s
LJsquared 😋 User (Metadata)	
r: Southern Pecan Size: 40 Count Verified Purchase	Review (Text)
eelicious! I was skeptical because I'm a diehard Starbucks fan and	prefer my medium roast to be strong. I love
ings butter pecan so I just had to try this Southern Pecan versior	. It smells amazing and is strong enough for
	Control of the second sec

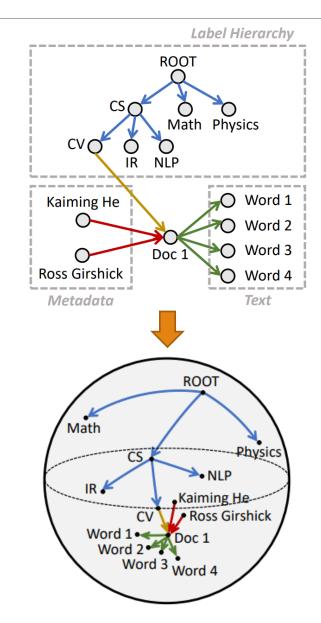
(c) **Amazon Review.** Label Hierarchy: Amazon Product Catalog [24]; Text: Title and Review; Metadata: User and Product.

HIMECat: A Hierarchical Generative Process

- □ Step 1: Parent Label -> Child Label
- □ Step 2: Leaf label & Metadata -> Document
- Step 3: Document -> Word

Joint Representation Learning

- Embeddings are the parameters of the generative process.
- Maximum likelihood estimation of the parameters when observing the hierarchy, metadata and text
- Hierarchical Data Augmentation
 - After representation learning, how to synthesize training data for each class?
 - Follow the generative process



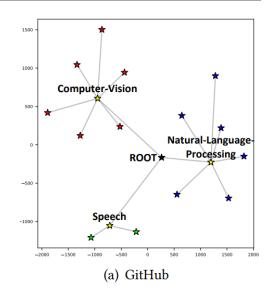
HIMECat: Experimental Results

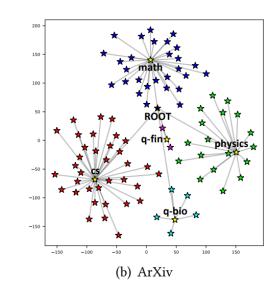
Datasets

- GitHub: 3+14 categories; 1,596 docs
- ArXiv: 5+88 categories; 25,960 docs
- Amazon: 18+147 categories; 147,000 docs
- Metrics
 - □ F1 scores on leaf categories
 - □ F1 scores on all non-root categories

Table 2: {Leaf, Overall}×{Micro, Macro} F1 scores of compared algorithms on the three datasets. *: significantly worse than HIMECAT (p-value < 0.05). **: significantly worse than HIMECAT (p-value < 0.01).

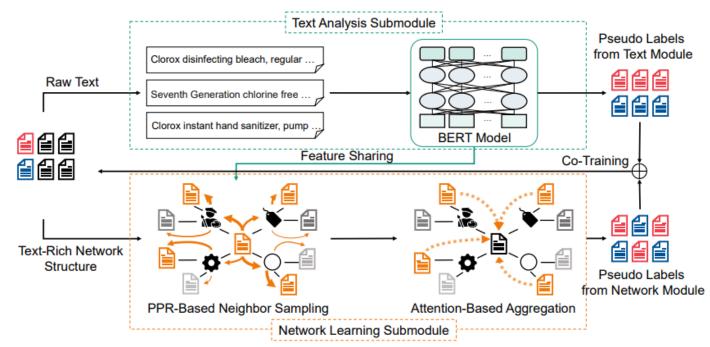
	GitHub					Ar	Xiv		Amazon			
	Leaf		Leaf Overall Leaf		af	Overall		Leaf		Overall		
	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro
HierSVM [7]	0.1861**	0.1388**	0.4862**	0.2457**	0.0538**	0.0460**	0.4066**	0.0750**	0.0248**	0.0217**	0.2218**	0.0494**
WeSHClass [29]	0.1727**	0.1559**	0.3332**	0.1924**	0.0604**	0.0602**	0.3077**	0.0797**	0.0483**	0.0500**	0.1234**	0.0640**
PCEM [48]	0.2519**	0.1234**	0.5299*	0.1786**	0.1090**	0.0717**	0.4440	0.0963**	0.0675**	0.0439**	0.2189**	0.0659**
HiGitClass [53]	0.3984	0.3902*	0.5073**	0.4084^{**}	0.1738**	0.1656**	0.3928**	0.1880**	0.0903**	0.0876**	0.1677**	0.1040**
MetaCat [51]	0.3762**	0.3403**	0.5411*	0.3863**	0.0790**	0.0768**	0.3071**	0.0935**	0.1008**	0.0994**	0.1703**	0.1083**
Metapath2vec [6]	0.2814**	0.2805**	0.4592**	0.3212**	0.1360**	0.1344**	0.3419**	0.1534**	0.0669**	0.0666**	0.1334**	0.0800**
Poincaré [32]	0.2750**	0.1980**	0.4302**	0.2218**	0.1336**	0.1296**	0.2995**	0.1454**	0.0645**	0.0607**	0.1202**	0.0739**
BERT [5]	0.2889**	0.2561**	0.4675**	0.3007**	0.1316**	0.0812**	0.4203**	0.1100**	0.0891**	0.0520**	0.2361**	0.0771**
HIMECAT	0.4254	0.4209	0.5820	0.4535	0.2038	0.1938	0.4509	0.2191	0.1552	0.1553	0.2748	0.1770





Using Pretrained LMs for Metadata-Aware Text Classification

- Difficulty: How to let pretrained LMs encode metadata/network information
- The limited vocabulary can hardly identify some types of metadata (e.g., author names, product IDs)
- Related study:
- Co-training GNN and BERT to deal with metadata and text, respectively



Zhang, X., Zhang, C., Dong, X. L., Shang, J., & Han, J. "Minimally-Supervised Structure-Rich Text Categorization via Learning on Text-Rich Networks", WWW'21.

Summary

Method	Flat vs. Hierarchical	Single-label vs. Multi-label	Supervision Format	Embedding vs. Pretrained LM
WeSTClass	Flat	Single-label	All 3 types	Embedding
ConWea	Flat	Single-label	Keywords	Pretrained LM
LOTClass	Flat	Single-label	Category Names	Pretrained LM
X-Class	Flat & Hierarchical	Single-label & Path	Category Names	Pretrained LM
WeSHClass	Hierarchical	Path	All 3 types	Embedding
TaxoClass	Hierarchical	Multi-label	Category Names	Pretrained LM
MetaCat	Flat	Single-label	A Few Labeled Docs	Embedding
HIMECat	Hierarchical	Path	A Few Labeled Docs	Embedding
LTRN	Flat	Single-label	A Few Labeled Docs	Pretrained LM

References

- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18
- □ Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20
- Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20
- □ Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21
- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-Supervised Hierarchical Text Classification", AAAI'19
- Shen, J., Qiu, W., Meng, Y., Shang, J., Ren, X., & Han, J., "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21
- Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally Supervised Categorization of Text with Metadata", SIGIR'20
- Zhang, Y., Chen, X., Meng, Y., & Han, J. "Hierarchical Metadata-Aware Document Categorization under Weak Supervision", WSDM'21
- Zhang, X., Zhang, C., Dong, X. L., Shang, J., & Han, J. "Minimally-Supervised Structure-Rich Text Categorization via Learning on Text-Rich Networks", WWW'21

Q&A

