# Part V: Advanced Text Mining Applications Empowered by Embeddings

KDD 2021 Tutorial On the Power of Pre-Trained Text Representations: Models and Applications in Text Mining Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han Computer Science, University of Illinois at Urbana-Champaign August 14, 2020

#### Outline

Aspect-based Sentiment Analysis

- Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding
- Text Summarization
- Summary & Future Directions

#### **Aspect-based Sentiment Analysis**

- Task definition
- Given an opinionated document about a target entity (e.g., a laptop, a restaurant or a hotel), the goal is to identify the opinion tuple of <aspect, sentiment> of the document

S1: Mermaid Inn is an overall good restaurant with really good seafood. (good, food)S2: Eye-pleasing with semi-private booths, place for a date.S3: It's to die for!

- Most previous studies deal with the tasks of aspect extraction and sentiment polarity classification individually or sequentially
- Other methods jointly solve these two sub-tasks by first separating target words from opinion words and then learning joint topic distributions over words

#### Motivation

#### Sample Reviews

S1: Mermaid Inn is an overall good restaurant with really good seafood. (good, food)S2: Eye-pleasing with semi-private booths, place for a date.S3: It's to die for!

- Pure aspect words are in red, and general opinion words are in blue
- Words implying both aspects and opinions (which we define as joint topics) are underlined and in purple

- □ S1: general aspect, opinion words
- S2 and S3: Target is not explicitly addressed. Fine-grained words are used to imply both aspect and polarity

## Joint "Sentiment-Aspect" topic



- If the semantics of each joint topic of <sentiment, aspect> can be automatically captured, machines will be able to identify representative terms of the joint topics such as "semi-private" for <good, ambience>
- □ Thus, it will benefit both aspect extraction and sentiment classification
- Our general idea is to learn and regularize the joint topics in the embedding space to enhance both tasks

### **Our Framework**

Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding [EMNLP'20]



- Step 1: Leverage the in-domain training corpus and user-given keywords to learn joint topic representation in the word embedding space
- Step 2: Embedding-based prediction on unlabeled data are then leveraged by neural models for pre-training and self-training

#### **Joint-Topic Representation Learning**



Regularizing Pure Aspect/Sentiment Topics. We regularize the aspect topic embeddings t<sub>a</sub> and sentiment topic embeddings t<sub>s</sub> so that different topics are pushed apart

Marginal topic regularization:

7

$$\mathcal{L}_{reg}^{A} = -\sum_{a \in A} \sum_{w_i \in l_a} \log P(t_a | w_i) \qquad \mathcal{L}_{reg}^{S} = -\sum_{s \in S} \sum_{w_i \in l_s} \log P(t_s | w_i) \qquad P(t | w_i) \propto \exp(\boldsymbol{u}_i^{\top} \boldsymbol{t})$$

Words can be "classified" into topics based on embedding similarity

User-provided keywords are used for initialization, and more keywords are expanded based on cosine similarity in each embedding training epoch

#### **Joint-Topic Representation Learning**



Regularizing Joint <Sentiment, Aspect> Topics

We connect the learning of joint topic embeddings with pure aspect/sentiment topics by exploring the relationship between marginal distribution and joint distribution

$$P(t_a|w_i) = \sum_{s \in S} P\left(t_{\langle s,a \rangle} \middle| w_i\right) \qquad P(t_s|w_i) = \sum_{a \in A} P\left(t_{\langle s,a \rangle} \middle| w_i\right)$$

To form the joint topic regularization objective, we can replace the probability term in the pure aspect/sentiment regularization objective with the sum of joint probability

## **Representative Terms for Joint Topics**

To evaluate the quality of the joint topic representation, we retrieve their representative terms by ranking the embedding cosine similarity between words and each joint topic vector

|      | Ambience                                                   | Service         | Food                            | Support                    | Keyboard          | Battery           |
|------|------------------------------------------------------------|-----------------|---------------------------------|----------------------------|-------------------|-------------------|
| Good | cozy, professional,                                        |                 | huge portion, accidental damage |                            | tactile feedback, | lasts long,       |
|      | intimate, polite,                                          |                 | flavourful,                     | protection, accidental     | tactile feel,     | charges quickly,  |
|      | comfortable, knowledgable, supe                            |                 | super fresh,                    | damage warranty, generous, | classic,          | high performance, |
|      | loungy, informative,                                       |                 | husband loves,                  | guarantee,                 | nicely spaced,    | lasting,          |
|      | great music                                                | helpful         | authentic italian               | commitment                 | chiclet style     | great power       |
| Bad  | cramped,<br>unbearable,<br>uncomfortable,<br>dreary, chaos | inattentive,    | microwaved,                     | completely useless,        | large hands,      | completely dead,  |
|      |                                                            | ignoring,       | flavorless,                     | denied,                    | shallow,          | drained,          |
|      |                                                            | extremely rude, | vomit,                          | refused,                   | cramped,          | discharge,        |
|      |                                                            | condescending,  | frozen food,                    | blamed,                    | wrong key,        | unplugged,        |
|      |                                                            | inexperienced   | undercooked                     | apologize                  | typos             | torture           |

- Representative terms are not restricted to be adjectives, such as "vomit" in (bad, food)and "commitment" in (good, support)
- "Cramped" appears in both (bad, ambience) in restaurant domain and (bad, keyboard) in laptop domain

#### **Quantitative Evaluation**

#### Aspect Extraction

| Mathada                                | Restaurant |           |        |          | Laptop   |           |        |          |
|----------------------------------------|------------|-----------|--------|----------|----------|-----------|--------|----------|
| Methods                                | Accuracy   | Precision | Recall | macro-F1 | Accuracy | Precision | Recall | macro-F1 |
| CosSim                                 | 61.43      | 50.12     | 50.26  | 42.31    | 53.84    | 58.79     | 54.64  | 52.18    |
| ABAE(He et al., 2017)                  | 67.34      | 46.63     | 50.79  | 45.31    | 59.84    | 59.96     | 59.60  | 56.21    |
| CAt(Tulkens and van Cranenburgh, 2020) | 66.30      | 49.20     | 50.61  | 46.18    | 57.95    | 65.23     | 59.91  | 58.64    |
| W2VLDA(García-Pablos et al., 2018)     | 70.75      | 58.82     | 57.44  | 51.40    | 64.94    | 67.78     | 65.79  | 63.44    |
| BERT(Devlin et al., 2019)              | 72.98      | 58.20     | 74.63  | 55.72    | 67.52    | 68.26     | 67.29  | 65.45    |
| JASen w/o joint                        | 81.03      | 61.66     | 65.91  | 61.43    | 69.71    | 69.13     | 70.65  | 67.49    |
| JASen w/o self train                   | 82.90      | 63.15     | 72.51  | 64.94    | 70.36    | 68.77     | 70.91  | 68.79    |
| JASen                                  | 83.83      | 64.73     | 72.95  | 66.28    | 71.01    | 69.55     | 71.31  | 69.69    |

#### Sentiment Polarity Classification

| Mathada              | Restaurant |           |        |          | Laptop   |           |        |          |
|----------------------|------------|-----------|--------|----------|----------|-----------|--------|----------|
| Methods              | Accuracy   | Precision | Recall | macro-F1 | Accuracy | Precision | Recall | macro-F1 |
| CosSim               | 70.14      | 74.72     | 61.26  | 59.89    | 68.73    | 69.91     | 68.95  | 68.41    |
| W2VLDA               | 74.32      | 75.66     | 70.52  | 67.23    | 71.06    | 71.62     | 71.37  | 71.22    |
| BERT                 | 77.48      | 77.62     | 73.95  | 73.82    | 69.71    | 70.10     | 70.26  | 70.08    |
| JASen w/o joint      | 78.07      | 80.60     | 72.40  | 73.71    | 72.31    | 72.34     | 72.25  | 72.26    |
| JASen w/o self train | 79.16      | 81.31     | 73.94  | 75.34    | 73.29    | 73.69     | 73.42  | 73.24    |
| JASen                | 81.96      | 82.85     | 78.11  | 79.44    | 74.59    | 74.69     | 74.65  | 74.59    |

## Joint Topic Representation Visualization

Visualization of joint topics (purple stars), aspect topics (red crosses) and sentiment topics (blue dots) in the embedding space



An interesting observation is that some aspect topics (e.g., ambience) lie approximately in the middle of their joint topics ("good, ambience" and "bad, ambience"), showing that our embedding learning objective understands the joint topics as decomposition of their "marginal" topics

#### Outline

- Aspect-based Sentiment Analysis
- Text Summarization
  - **SUMDocs:** Extractive Summarization with Background Corpus
  - Pre-trained Language Models on Summarization
- Summary & Future Directions

## SUMDocS

- SUMDocS: Surrounding-aware Unsupervised Multi-Document Summarization (SDM'21)
- Leverage surrounding documents from the background corpus to obtain salient and discriminative extractive summarization



## SUMDocS

- How to leverage the background corpus?
  - Twin documents: Documents belonging to the same category
  - Sibling documents: Documents belonging to orthogonal categories
- Consider three factors when generating extractive summarizations
  - Global novelty: Category-level frequent and discriminative phrases are likely to be salient phrases
  - Local consistency: Frequently co-occurred phrases should have similar salient score
  - Local saliency: Phrases that are salient in target documents but less salient in twin documents should be promoted

#### **SUMDocS: Results**

Identified keywords and generated summaries on NLP corpus (left) and news corpus (right)

|         | SUMDocS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | SUMDocS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eywords | left-to-right, representation, mlm,<br>context, bidirectional, state-of-the-<br>art, left, feature-based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | keywords | 79, abbott, god, february, patriot,<br>statement, 13, appeared, natural,<br>2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ımmary  | Unlike left-to-right language model<br>pre-training, the mlm objective en-<br>ables the representation to fuse the<br>left and the right context, which<br>allows us to pretrain a deep bidi-<br>rectional Transformer. both bert-<br>base and bertlarge outperform all<br>systems on all tasks by a substan-<br>tial margin , obtaining 4.5% and<br>7.0% respective average accuracy<br>improvement over the prior state-<br>of-the-art. input/output represen-<br>tations to make bert handle a vari-<br>ety of down-stream tasks , our in-<br>put representation is able to unam-<br>biguously represent both a single<br>sentence and a pair of sentences in<br>one token sequence. | summary  | breaking : u.s. supreme court jus-<br>tice antonin scalia found dead at<br>west texas ranch at 79 cbs news<br>(@cbsnews) february 13, 2016 cbs<br>news reported scalia appeared to<br>die of natural causes, according to<br>a u.s. marshals service spokesper-<br>son. bush said scalia will be<br>missed. scalia was nominated to<br>the u.s. supreme court in 1986 by<br>president ronald reagan. abbott<br>said scalia set an example for cit-<br>izens. scalia's legacy is enormous.<br>greg abbott released a statement<br>saturday afternoon, calling scalia<br>a man of god, a patriot and |

#### Outline

- Aspect-based Sentiment Analysis
- Text Summarization
  - SUMDocs: Extractive Summarization with Background Corpus
  - Pre-trained Language Models on Summarization
- **Gammary & Future Directions**

#### **Self-supervised Pre-trained Summarization Model**

- PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization (ICML'20)
- Transformer based encoder decoder framework
- **Two Pre-training objectives:**
- **Encoder**: masked language model
- **Decoder**: gap sentence generation
  - Choose important sentence by rouge score with remaining sentences in the document



#### **Selected Sentence for Gap Sentence Generation**

INVITATION ONLY We are very excited to be co-hosting a major drinks reception with our friends at Progress. This event will sell out, so make sure to register at the link above. Speakers include Rajesh Agrawal, the London Deputy Mayor for Business, Alison McGovern, the Chair of Progress, and Seema Malhotra MP. Huge thanks to the our friends at the ACCA, who have supported this event. The Labour Business Fringe at this year's Labour Annual Conference is being co-sponsored by Labour in the City and the Industry Forum. Speakers include John McDonnell, Shadow Chancellor, and Rebecca Long-Bailey, the Shadow Chief Secretary to the Treasury, and our own Chair, Kitty Ussher. Attendance is free, and refreshments will be provided.

Figure 2: An example of sentences (from the C4 corpus) selected by Random, Lead and Ind-Orig respectively. Best viewed in color.



Fine-tuning with limited supervised samples Solid: few-shot with pre-trained weights Dashed: supervised with initial weights

### **Keyword-Guided Summarization**

- Self-Supervised and Controlled Opinion Summarization [EACL'21]
  - Control tokens are used to let the generated summary align with the input documents.
- Inputs to the model:



Summary guided by tokens:



#### **Aspect-based Summarization**

- Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach [EMNLP'20]
- uses external knowledge base such as Concept-Net and Wikipedia to construct weak supervision and an aspect modeling scheme.



 With generic summary provided, the authors synthesize aspect-based summary by extracting aspectrelated words in the generic summary.
To extract aspect-related words in the document, the authors use the words in the wikipedia page of an entity to intersect with highly ranked TF-IDF words in the document.
They fine-tune the pre-trained BART model with input: entity and related words in the document. output: synthesized summary.

#### **Example Results**

**Document** In an exclusive interview with Breitbart News, Republican presidential nominee Donald Trump blasted Bill Clinton's suggestion that the United States use Syrian refugees to rebuild Detroit. The populist billionaire denounced Clinton's suggested proposal as "crazy" and "unfair" to American workers who are already living there and are in need of jobs. "It's very unfair to the people that are living there. I think it's crazy," Trump told Breitbart on Thursday. "I mean, these people ... ... "There are plenty of people in Detroit who you could almost look at as refugees," Carson said. "I mean, we need to take care of our own people. We need to create jobs for them. " Clinton's suggestion that the U.S. ought to give Detroit jobs to foreign refugees came during a February discussion at the Clinton Global Initiative with Chobani billionaire and mass migration enthusiast, Hamdi Ulukaya. "The truth is that the big loser in this over the long run is ... ... a pretty good deal." During the discussion, **Clinton** praised Ulukaya for his efforts to fill his yogurt plants with imported foreign refugees. Ulukaya suggested that the U.S. ought to be taking in more refugees and said that he was "proud" of Turkey's decision to accept 2 million Syrian refugees. Ulukaya told Clinton that Syrian refugees "bring flavors to the community just like in ... Twin Falls, [Idaho]" where Ulukaya's yogurt factory is based. Clinton's controversial suggestion that ... ... millions of more illegal immigrants, thousands of more violent crimes, and total chaos and lawlessness. According to Pew polling data, Hillary Clinton's plan to expand immigration is opposed by at least 83 percent of the American electorate — voters whom Clinton has suggested are racist for opposing immigration. According to a September 2015 Rasmussen survey, 85 percent black voters oppose Clinton's refugee agenda to admit more than 100, 000 Middle Eastern refugees with less than one percent of black voters (. 56 percent) in favor of her refugee plan.

#### Aspect: vote

**Summary:** Polls show that at least 83 percent of the U.S. electorate is opposed to expanding immigration and that 85 percent of black voters oppose the plan to admit more than 100,000 middle eastern refugees to the country.



# Summary & Future Directions

KDD 2021 Tutorial On the Power of Pre-Trained Text Representations: Models and Applications in Text Mining Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han Computer Science, University of Illinois at Urbana-Champaign August 14, 2021

#### **Our Roadmap of This Tutorial**



### **Summary: from Unstructured Text to Knowledge**

- Leverage the Power of Text Embedding and Language Models to Transform Unstructured Text into Structured Knowledge
- □ Mining Structures from Massive Unstructured Text (Texts  $\rightarrow$  Structures)
  - Automated Text Representation Learning
  - Automated Multi-Faceted Taxonomy Construction
  - Automated Topic Mining
  - Automated Text Classification for Document Assignment
  - Automated Comparative Summarization in Multidimensional Text Cube
- Still a lot of work to do from unstructured text to structured knowledge

#### Our Journey: From Big Data to Big Structures & Knowledge



MORGAN & CLAYPOOL PUBLISHERS

Multidimensional Mining of Massive **Text Data** 

Chao Zhang Jiawei Han

 $\&^{\vee}$ 

Synthesis Lectures on DATA MINING AND KNOWLEDGE DISCOVERY

Information Networks, 2012 Y. Sun: SIGKDD'13 Dissertation Award

MORGAN&CLAYPOOL PUBLISHERS hrase Minino from ssive Text and from plications nt Entity

RGAN & CLAYPOOL PUBLISHERS

JRES ON ND KNOWLEDGE DISCOVERY

ig and Han, Mining Latent Entity Structures, 2015 Wang: SIGKDD'15 Dissertation Award

PLERY

#### Acknowledgement

□ Thanks for the research support from: ARL/NSCTA, NIH, NSF, DHS, ARO, DTRA





# Thank you ! Q&A

