
Part I: Pretrained Language Models

KDD 2022 Tutorial
Adapting Pretrained Representations for Text Mining
Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han
Computer Science, University of Illinois at Urbana-Champaign
Aug 14, 2022



2

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models



Overview of Text Representation Development

❑ Texts need to be represented as numbers/vectors so that computer 
programs can process them

❑ How were texts represented in history?

Figure from: Liu Z., Lin Y., Sun M. (2020) Representation Learning and NLP. In: Representation Learning for Natural Language Processing. Springer, Singapore.

3

symbol-based representations distributed representations



Symbol-Based Text Representations

❑ One-to-one correspondence between text units and representation 
elements

❑ e.g., “dogs” = [1, 0, 0, 0, 0]; “cats” = [0, 1, 0, 0, 0]; “cars” = [0, 0, 1, 0, 0]; 
“like” = [0, 0, 0, 1, 0]; “I” = [0, 0, 0, 0, 1]

❑ Bag-of-words representation of documents: Describe a document 
according to which words are present, ignoring word ordering

❑ e.g., “I like dogs” may be represented as [1, 0, 0, 1, 1]
❑ Can further weigh words with Term Frequency (TF) and/or Inverse Document 

Frequency (IDF)
❑ Issues: Many dimensions needed (curse of dimensionality!); vectors do not 

reflect semantic similarity

4



Distributed Text Representations

❑ The Distributional Hypothesis: “a word is characterized by the company it 
keeps”

❑ words that are used and occur in the same contexts tend to purport similar meanings

❑ Distributed representations (i.e., embeddings)
❑ The representation of any text unit is distributed over all vector dimensions as 

continuous values (instead of 0/1s)
❑ Advantage: Vectors are dense and lower-dimensional, better at capturing semantic 

similarity

❑ Distributed representations are usually learned based on the distributional 
hypothesis—vector space similarity reflects semantic similarity 

❑ We focus on distributed representations in this tutorial

5



6

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models



7

Introduction to Text Embeddings
❑ Unsupervised/Self-supervised learning of text representations—No annotation needed

❑ Embed one-hot vectors into lower-dimensional space—Address “curse of 
dimensionality”

❑ Word embedding captures useful properties of word semantics

❑ Word similarity: Words with similar meanings are embedded closer

❑ Word analogy: Linear relationships between words (e.g., king - queen = man -
woman)

Word AnalogyWord Similarity



8

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Euclidean space: Word2Vec, GloVe

❑ Hyperbolic space: Poincaré embeddings

❑ Spherical space: JoSE

❑ Deep contextualized embeddings via neural language models



9

Word2Vec

❑ Many text embeddings are learned in the Euclidean space (without constraints on vectors)
❑ Word2Vec maximizes the probability of observing a word based on its local contexts
❑ As a result, semantically similar terms are more likely to have close embeddings

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their 
Compositionality. NIPS.



10

GloVe

❑ GloVe factorizes a global co-occurrence matrix derived from the entire corpus
❑ Low-dimensional representations are obtained by solving a least-squares problem to “recover” 

the co-occurrence matrix

Sparse, high dimensional Low dimensional representation

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.



11

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Euclidean space: Word2Vec, GloVe

❑ Hyperbolic space: Poincaré embeddings

❑ Spherical space: JoSE

❑ Deep contextualized embeddings via neural language models



12

Hyperbolic Embedding: Poincaré embedding 
❑ Why non-Euclidean embedding space?
❑ Data can have specific structures that Euclidean-space 

models struggle to capture

❑ The hyperbolic space
❑ Continuous version of trees
❑ Naturally equipped to model hierarchical structures

❑ Poincaré embedding
❑ Learn hierarchical representations by pushing general 

terms to the origin of the Poincaré ball, and specific 
terms to the boundary

Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.



13

Texts in Hyperbolic Space: Poincaré GloVe

❑ GloVe in hyperbolic space
❑ Motivation: latent hierarchical structure of words exists among text
❑ Hypernym-hyponym
❑ Textual entailment

❑ Approach: use hyperbolic kernels!
❑ Effectively model generality/specificity

Tifrea, A., Bécigneul, G., & Ganea, O. (2019). Poincaré GloVe: Hyperbolic Word Embeddings. ICLR.

GloVe

Poincaré GloVe

Hyperbolic metric

Specific

General



14

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Euclidean space: Word2Vec, GloVe

❑ Hyperbolic space: Poincaré embeddings

❑ Spherical space: JoSE

❑ Deep contextualized embeddings via neural language models



15

Directional Analysis for Text Embeddings

❑ How to use text embeddings? Mostly directional similarity (i.e., cosine 
similarity)

❑ Word similarity is derived using cosine similarity

❑ Better clustering performances when embeddings are normalized, and spherical clustering algorithms 
are used (Spherical K-means)

❑ Vector direction is what actually matters! 



16

Issues with Previous Embedding Frameworks
❑ Although directional similarity has shown effective for various applications, previous 

embeddings (e.g., Word2Vec, GloVe, fastText) are trained in the Euclidean space

❑ A gap between training space and usage space: Trained in Euclidean space but used on 
sphere

Embedding Training in Euclidean Space Embedding Usage on the Sphere 
(Similarity, Clustering, etc.)

Post-processing 
(Normalization)



17

Inconsistency Between Training and Usage

❑ The objective we optimize during training is not really the one we use

❑ Regardless of the different training objective, Word2Vec, GloVe and fastText all 
optimize the embedding dot product during training, but cosine similarity is what used 
in applications

Word2Vec GloVe fastText

Embedding dot product is optimized during training 



18

Spherical Text Embedding: Generative Model

❑ We design a generative model on the sphere that follows how humans 
write articles:

❑ We first have a general idea of the paragraph/document, and then start to write down each word in 
consistent with not only the paragraph/document, but also the surrounding words

❑ Assume a two-step generation process: 

Document/
Paragraph (𝑑)

Center Word 
(𝑢)

Surrounding Word 
(𝑣)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text 
Embedding. NeurIPS.



❑ Understanding the spherical generative model

19

Spherical Text Embedding: Illustration



20

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models



From Static Embedding to Contextualized Embedding

❑ Previous unsupervised word embeddings like Word2Vec and GloVe learn static
word embedding
❑ Each word has one representation regardless of specific contexts it appears in
❑ E.g., “bank” is a polysemy, but only has one representation

❑ Deep neural language models overcome this problem by learning contextualized
word semantics

“Open a bank account” “On the river bank”

21

Share representation



Pretrained Language Models: Overview

❑ The “pretrain-finetune” paradigm has become the prominent practice in a
wide variety of text applications

❑ “Pretraining”: Train deep language models (usually Transformer models)
via self-supervised objectives on large-scale general-domain corpora

❑ “Fine-tuning”: Adapt the pretrained language models (PLMs) to
downstream tasks using task-specific data

❑ The power of PLMs: Encode generic linguistic features and knowledge
learned through large-scale pretraining, which can be effectively 
transferred to the target applications

22



23

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Pretrained Language Models: Categorization by Architecture

❑ Language Model Deployment



Categorization of Pretrained Language Models

❑ There are multiple ways to categorize PLMs
❑ By pretraining objectives: Standard language modeling, masked language modeling, permuted

language modeling…
❑ By pretraining settings: Multilingual, knowledge-enriched, domain-specific…

❑ In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

❑ Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens, usually used for
language generation tasks (e.g., GPT)

❑ Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all other (uncorrupted)
tokens, usually used for language understanding/classification tasks (e.g., BERT, XLNet, ELECTRA)

❑ Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding and generation
tasks (e.g., T5, BART)

24



25

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Pretrained Language Models: Categorization by Architecture

❑ Decoder-Only (Unidirectional) PLM

❑ Encoder-Only (Bidirectional) PLM

❑ Encoder-Decoder (Sequence-to-Sequence) PLM

❑ Language Model Deployment



GPT-Style Pretraining: Introduction

26

❑ Generative Pretraining (GPT [1], GPT-2 [2], GPT-3 [3]): 
❑ Leverage unidirectional context (usually left-to-right) for 

next token prediction (i.e., language modeling)

❑ The Transformer uses unidirectional attention masks 
(i.e., every token can only attend to previous tokens)

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding 
by generative pre-training. OpenAI blog
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are 
unsupervised multitask learners. OpenAI blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). 
Language models are few-shot learners. NeurIPS.

𝑘 previous tokens as context



GPT-Style Pretraining: Text Generation

27

❑ Unidirectional LMs are commonly used for text generation tasks (e.g., 
summarization, translation, …)

❑ They can be very, very large (GPT-3 has 175 billion parameters!) and have 
very strong text generation abilities (e.g., generated articles make human 
evaluators difficult to distinguish from articles written by humans)

❑ A demo of real articles vs. generated texts by GPT-2 trained on 10K Nature 
Papers: https://stefanzukin.com/enigma/

https://stefanzukin.com/enigma/


28

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Pretrained Language Models: Categorization by Architecture

❑ Decoder-Only (Unidirectional) PLM

❑ Encoder-Only (Bidirectional) PLM

❑ Encoder-Decoder (Sequence-to-Sequence) PLM

❑ Language Model Deployment



BERT: Masked Language Modeling
❑ Bidirectional: BERT leverages a Masked LM learning to introduce real 

bidirectionality training
❑ Masked LM: With 15% words randomly masked, the model learns bidirectional

contextual information to predict the masked words

29
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).



BERT: Next Sentence Prediction
❑ Next Sentence Prediction: learn to predict if the second sentence in the pair is the 

subsequent sentence in the original document

30



RoBERTa

❑ Several simple modifications that make BERT more effective:
❑ train the model longer, with bigger batches over more data
❑ remove the next sentence prediction objective
❑ train on longer sequences
❑ dynamically change the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A 
robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.



ALBERT

❑ Simple modifications that make BERT more efficient:
❑ Factorized embedding parameterization: use lower-dimensional token embeddings; 

project token embeddings to hidden layer dimension
❑ Cross-layer parameter sharing: Share feed-forward network parameters/attention 

parameters across layers
❑ Inter-sentence coherence loss: change the next sentence prediction task to sentence 

order prediction

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite BERT for 
self-supervised learning of language representations. ICLR.



XLNet: Autoregressive Language Modeling
❑ Issues with BERT: Masked tokens are predicted independently, and [MASK] token 

brings discrepancy between pretraining and fine-tuning
❑ XLNet uses Permutation Language Modeling 

33

q Permutes the text sequence 
and predicts the target word 
using the remaining words in 
the sequence

q Since words in the original 
sequence are permuted, 
both forward direction 
information and backward 
direction information are 
leveraged

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive 
Pretraining for Language Understanding. NeurIPS.



XLNet: Two-Stream Self-Attention
❑ Content representation: Encodes both token position as well as content
❑ Query representation: Encodes only token position

34

Content representation

Query representation



ELECTRA
❑ Change masked language modeling to a more sample-efficient pretraining task, 

replaced token detection
❑ Why more efficient:
❑ Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
❑ The generator trained with MLM is small (parameter size is ~1/10 of discriminator)
❑ The discriminator is trained with a binary classification task, instead of MLM (classification over the 

entire vocabulary)

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training text encoders as 
discriminators rather than generators. ICLR.35



ELECTRA

❑ Better GLUE (General Language Understanding Evaluation) test 
performance than previous MLM-based models under the same compute 
(measured by Floating Point Operations)

36



Challenges with ELECTRA-Style Pretraining
❑ What are the potential issues with ELECTRA-style pretraining?
❑ The main model (i.e., discriminator) in ELECTRA is trained via a binary classification task,

which is simpler than language modeling tasks (usually over-30,000-way classification
tasks), but raises two challenges:

❑ Lack of the language modeling capability of the main model which is a necessity in some tasks (e.g.,
prompt-based fine-tuning)

❑ The binary classification task may not be fine-grained enough to capture certain word-level semantics 
that are critical for token-level tasks

37

Prompt-based fine-tuning transfers the PLMs’ language modeling ability to downstream tasks



Challenges with ELECTRA-Style Pretraining
❑ What are the potential issues with ELECTRA-style pretraining?
❑ Representations from Transformer-based language models often reside in a narrow 

cone in the embedding space, which raises the risk of degeneration and requires post-
adjustment for meaningful sequence representations

❑ Two random sentences have high similarity scores (lack of uniformity)
❑ Two closely related sentences may have more different representations (lack of alignment)

❑ Plots: Distribution of cosine similarities between sequence pairs using their [CLS] 
embeddings from pretrained models

❑ random: random sentence pairs from pretraining corpus
❑ similar: semantically similar pairs annotated with maximum similarity from STS-B

38

RoBERTa sequence
embedding space:

ELECTRA sequence
embedding space:



COCO-LM: Method
❑ COCO-LM has two new pretraining tasks upon the corrupted sequences that address 

the challenges in ELECTRA-style pretraining
❑ Corrective Language Modeling (CLM)
❑ Sequence Contrastive Learning (SCL)

Meng, Y., Xiong, C., Bajaj, P., Bennett, P., Han, J., & Song, X. (2021). COCO-LM: Correcting and contrasting text 
sequences for language model pretraining. NeurIPS.

39



COCO-LM: Results
❑ Outperforming previous PLMs on GLUE and SQuAD 2.0 dev sets
❑ One of the state-of-the-art PLMs for NLU tasks (Blog Post by Microsoft)

40

https://www.microsoft.com/en-us/research/blog/efficiently-and-effectively-scaling-up-language-model-pretraining-for-best-language-representation-model-on-glue-and-superglue/


AMOS: Adversarial Curriculum for Pretraining
❑ Use a multi-layer MLM generator to create training signals (i.e., replaced tokens) of

different levels of difficulty
❑ Automatically learn a mixture of the multi-layer MLM generator’s outputs to construct

the most difficult signals for the discriminator learning for better sample efficiency

Meng, Y., Xiong, C., Bajaj, P., Bennett, P. N., Han, J., & Song, X. (2022). Pretraining Text Encoders with Adversarial 
Mixture of Training Signal Generators. ICLR.

41



AMOS: Results

42

❑ Further improvements over COCO-LM on GLUE



43

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Pretrained Language Models: Categorization by Architecture

❑ Decoder-Only (Unidirectional) PLM

❑ Encoder-Only (Bidirectional) PLM

❑ Encoder-Decoder (Sequence-to-Sequence) PLM

❑ Language Model Deployment



T5

❑ T5: Text-to-Text Transfer Transformer
❑ Pretraining: Mask out spans of texts; generate the original spans
❑ Fine-Tuning: Convert every task into a sequence-to-sequence generation

problem

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of 
transfer learning with a unified text-to-text transformer. JMLR.



BART
❑ BART: Denoising autoencoder for pretraining sequence-to-sequence models
❑ Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations…)

to input sequences and train the model to recover the original sequences
❑ Fine-Tuning:
❑ For classification tasks: Feed the same input into the encoder and decoder, and use the final decoder 

token for classification
❑ For generation tasks: The encoder takes the input sequence, and the decoder generates outputs 

autoregressively

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising 
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.

BART architecture BART pretraining objectives



46

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Language Model Pretraining

❑ Language Model Deployment



Deployment of Pretrained Language Models

❑ Pretrained language models (PLMs) are usually trained on large-scale 
general domain corpora to learn generic linguistic features that can be 
transferred to downstream tasks

❑ Common usages of PLMs in downstream tasks
❑ Fine-tuning: Update all parameters in the PLM encoder and task-specific layers

(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

❑ Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

❑ Parameter-efficient tuning: Only update a small portion of PLM parameters and keep
other (majority) parameters unchanged

47



48

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Language Model Pretraining

❑ Language Model Deployment

❑ Standard fine-tuning

❑ Prompt-based methods

❑ Parameter-efficient tuning



Standard Fine-Tuning of PLMs

❑ Add task-specific layers (usually one or two linear layers) on top of the 
embeddings produced by the PLMs (sequence-level tasks use [CLS] token 
embeddings; token-level tasks use real token embeddings)

❑ Task-specific layers and the PLMs are jointly fine-tuned with task-specific 
training data

49



50

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Language Model Pretraining

❑ Language Model Deployment

❑ Standard fine-tuning

❑ Prompt-based methods

❑ Parameter-efficient tuning



Prompt-Based Fine-Tuning of PLMs
❑ Task descriptions are created to convert 

training examples to cloze questions
❑ Highly resemble the pretraining tasks (MLM) 

so that pretraining knowledge could be 
better leveraged

❑ Better than standard fine-tuning especially 
for few-shot settings

51

Schick, T., & Schütze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.
Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.



Prompt-Based Fine-Tuning of PLMs

❑ Further improve prompt-based few-shot fine-tuning:
❑ Prompt templates and label words can be automatically generated
❑ Demonstrations can be concatenated with target sequences to provide hints

52
Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL



Prompt-Based Zero-Shot Inference

53

❑ Even without any training, knowledge can be 
extracted from PLMs through cloze patterns

❑ PLMs can serve as knowledge bases
❑ Pros: require no schema engineering, and support an 

open set of queries
❑ Cons: retrieved answers are not guaranteed to be 

accurate

❑ Could be used for unsupervised open-domain QA 
systems

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models 
as knowledge bases? EMNLP.



Prompt-Based Few-Shot Inference

54

❑ Large PLMs (e.g., GPT-3) 
have strong few-shot 
learning ability without any
tuning on large task-specific 
training sets

❑ Generate answers based on 
natural language 
descriptions and prompts



Zero-Shot Fine-Tuning of PLMs

55

❑ Prompt-based approaches have remarkable few-shot fine-tuning
performance, but their zero-shot performance is significantly worse

❑ Without any task-specific samples, it is challenging for PLMs to interpret 
the prompts that come in different formats and are unseen in the 
pretraining data

❑ The current mainstream of zero-shot learning is based on transfer 
learning

❑ Train PLMs on a large variety of different tasks with abundant annotations, and
transfer to unseen tasks

❑ Require many cross-task annotations and gigantic model sizes which are not
practical for common application scenarios



Zero-Shot Fine-Tuning of PLMs

56

❑ Can we do fully zero-shot learning, without any task-related or cross-
task annotations?

❑ When there are no training data, we can create them from scratch using
PLMs!

❑ Humans can generate training data pertaining to a specific label upon
given a label-descriptive prompt (e.g., “write a negative review:”)

❑ We can leverage the strong text generation power of PLMs to do the
same job



Prompt-Based Zero-Shot Training Data Generation

57

❑ SuperGen: A Supervision Generation approach
❑ Use a unidirectional PLM to generate class-conditioned texts guided by prompts
❑ Fine-tune a bidirectional PLM on the generated data for the corresponding task

Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models: 
Towards Zero-Shot Language Understanding. arXiv preprint arXiv:2202.04538.



Zero-Shot Learning Results

58

❑ Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned
on generated training data) is comparable or even better than strong few-shot
methods (fine-tuned on 32 manually annotated training samples per class)



59

Outline

❑ Introduction to text representations

❑ Static word embeddings

❑ Deep contextualized embeddings via neural language models

❑ Language Model Pretraining

❑ Language Model Deployment

❑ Standard fine-tuning

❑ Prompt-based methods

❑ Parameter-efficient tuning



Parameter-Efficient Tuning of PLMs

60

❑ Fine-tuning updates all PLM parameters at the same time
❑ Large PLMs can have an enormous amount of parameters that are

costly to optimize
❑ Can we optimize only a small set of parameters in PLMs while still

achieving comparable performance to fine-tuning?
❑ A few strategies:
❑ Adapter: Insert small bottleneck modules and only update adapter + layer norm

parameters
❑ Prefix Tuning: Prepend tunable prefix vectors to every Transformer layer and keep

other parameters unchanged
❑ Low-Rank Adaptation: Use trainable low-rank matrices to approximate weight 

updates



Adapter for Parameter-Efficient Tuning

61

❑ Adapters are added twice to each 
Transformer layer

❑ Consist of a bottleneck structure
(down-project + up-project)

❑ Only adapter parameters + layer
norm parameters are updated
during tuning

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019). 
Parameter-efficient transfer learning for NLP. ICML



Prefix Tuning

62

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.

❑ Prefix tuning prepends trainable vectors to each Transformer layer
❑ Only update prefix vectors and keep other pretrained parameters

unchanged
❑ Similar to prompt-based fine-tuning except that the prefix vectors are

continuous parameters instead of natural language words



Low-Rank Adaptation

63

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank 
adaptation of large language models. ICLR.

❑ Inject trainable low-rank matrices into transformer layers to approximate 
the weight updates

❑ Since low-rank matrices have far less parameters than full-rank ones,
training them is much more efficient than standard fine-tuning

A and B are low-rank matrices



References I
❑ Abu-El-Haija, S., Perozzi, B., Al-Rfou', R., & Alemi, A.A. (2018). Watch Your Step: Learning Node Embeddings via Graph Attention. 

NeurIPS.
❑ Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the 

Association for Computational Linguistics, 5, 135-146.
❑ Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot 

learners. NeurIPS.
❑ Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training text encoders as discriminators rather than 

generators. ICLR.

❑ Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding. NAACL-HLT. 

❑ Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL
❑ Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019). Parameter-efficient 

transfer learning for NLP. ICML

❑ Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank adaptation of large language 
models. ICLR.

❑ Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite bert for self-supervised learning of 
language representations. ICLR.

❑ Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.



References II
❑ Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising sequence-to-

sequence pre-training for natural language generation, translation, and comprehension. ACL.
❑ Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.

❑ Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining 
approach. arXiv preprint arXiv:1907.11692.

❑ Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their 
Compositionality. NIPS.

❑ Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. CoRR, 
abs/1301.3781.

❑ Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text Embedding. NeurIPS.
❑ Meng, Y., Xiong, C., Bajaj, P., Bennett, P., Han, J., & Song, X. (2021). COCO-LM: Correcting and contrasting text sequences for 

language model pretraining. NeurIPS.
❑ Meng, Y., Xiong, C., Bajaj, P., Bennett, P. N., Han, J., & Song, X. (2022). Pretraining Text Encoders with Adversarial Mixture of 

Training Signal Generators. ICLR.
❑ Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models: Towards Zero-Shot Language 

Understanding. arXiv preprint arXiv:2202.04538.
❑ Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.
❑ Nickel, M., & Kiela, D. (2018). Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. ICML.



References III
❑ Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.
❑ Peters, M.E., Neumann, M., Iyyer, M., Gardner, M.P., Clark, C., Lee, K., & Zettlemoyer, L.S. (2018). Deep contextualized word 

representations. NAACL.

❑ Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models as knowledge bases? 
EMNLP.

❑ Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. 
OpenAI blog.

❑ Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. 
OpenAI blog, 1(8), 9.

❑ Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with 
a unified text-to-text transformer. JMLR.

❑ Schick, T., & Schütze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.
❑ Tifrea, A., Bécigneul, G., & Ganea, O. (2019). Poincare Glove: Hyperbolic Word Embeddings. ICLR.

❑ Turian, J.P., Ratinov, L., & Bengio, Y. (2010). Word Representations: A Simple and General Method for Semi-Supervised Learning. 
ACL.

❑ Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive Pretraining for 
Language Understanding. NeurIPS.



Q&A


