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Overview of Text Representation Development

1 Texts need to be represented as numbers/vectors so that computer
programs can process them

1 How were texts represented in history?
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Figure from: Liu Z., Lin Y., Sun M. (2020) Representation Learning and NLP. In: Representation Learning for Natural Language Processing. Springer, Singapore.



Symbol-Based Text Representations

1 One-to-one correspondence between text units and representation
elements

a e.g., “dogs”=[1,0,0,0,0]; “cats” =10, 1, 0, 0, 0]; “cars” =[0, 0, 1, O, O];
“like” =10,0,0,1,0]; “I"=10,0,0,0, 1]
1 Bag-of-words representation of documents: Describe a document
according to which words are present, ignoring word ordering
d  e.g., “llike dogs” may be represented as [1,0,0, 1, 1]

2 Can further weigh words with Term Frequency (TF) and/or Inverse Document
Frequency (IDF)

1 Issues: Many dimensions needed (curse of dimensionality!); vectors do not
reflect semantic similarity



Distributed Text Representations

a The Distributional Hypothesis: “a word is characterized by the company it
keeps”

- words that are used and occur in the same contexts tend to purport similar meanings
2 Distributed representations (i.e., embeddings)

- The representation of any text unit is distributed over all vector dimensions as
continuous values (instead of 0/1s)

- Advantage: Vectors are dense and lower-dimensional, better at capturing semantic
similarity
1 Distributed representations are usually learned based on the distributional
hypothesis—vector space similarity reflects semantic similarity

1 We focus on distributed representations in this tutorial
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Introduction to Text Embeddings

4

Unsupervised/Self-supervised learning of text representations—No annotation needed

Embed one-hot vectors into lower-dimensional space—Address “curse of
dimensionality”

Word embedding captures useful properties of word semantics
- Word similarity: Words with similar meanings are embedded closer

- Word analogy: Linear relationships between words (e.g., king - gueen = man -
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Word2Vec

d Many text embeddings are learned in the Euclidean space (without constraints on vectors)

d Word2Vec maximizes the probability of observing a word based on its

local contexts

d As a result, semantically similar terms are more likely to have close embeddings
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GloVe

1 GloVe factorizes a global co-occurrence matrix derived from the entire corpus

d Low-dimensional representations are obtained by solving a least-squares problem to “recover”
the co-occurrence matrix
|%
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Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.
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Hyperbolic Embedding: Poincaré embedding

Notebook

d Why non-Euclidean embedding space?

New York

- Data can have specific structures that Euclidean-space
models struggle to capture
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Texts in Hyperbolic Space: Poincaré GloVe

1 GloVe in hyperbolic space
1 Motivation: latent hierarchical structure of words exists among text
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Directional Analysis for Text Embeddings

1 How to use text embeddings? Mostly directional similarity (i.e., cosine
similarity)

- Word similarity is derived using cosine similarity

France ball
4 4
Ital .
6 taly 0 France - Paris
0
crocodile Rome - ltaly
France and ltaly are quite similar ball and crocodile are not similar the tW.O vectors are Sim“aT but opposite
the first one encodes (city - country)
9 is close to 0° 0 is close to 90° while the second one encodes (country - city)
cos(@) =1 cos(8)=0 @ is close to 180°

cos(8) = -1

- Better clustering performances when embeddings are normalized, and spherical clustering algorithms
are used (Spherical K-means)

- Vector direction is what actually matters!



Issues with Previous Embedding Frameworks

 Although directional similarity has shown effective for various applications, previous
embeddings (e.g., Word2Vec, GloVe, fastText) are trained in the Euclidean space

d A gap between training space and usage space: Trained in Euclidean space but used on

sphere
' Post-processing
(Normalization)
Embedding Training in Euclidean Space Embedding Usage on the Sphere

(Similarity, Clustering, etc.)
16
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Inconsistency Between Training and Usage

The objective we optimize during training is not really the one we use

Regardless of the different training objective, Word2Vec, GloVe and fastText all

optimize the embedding dot product during training, but cosine similarity is what used

in applications

Embedding dot product is optimized during training
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Spherical Text Embedding: Generative Model

1 We design a generative model on the sphere that follows how humans

write articles:

2 Wefirst have a general idea of the paragraph/document, and then start to write down each word in
consistent with not only the paragraph/document, but also the surrounding words

2  Assume a two-step generation process:

p(u | d) < exp(cos(u, d))

Document/

n

Paragraph (d)

| Center Word
(u)

p(v | u) o< exp(cos(v,u))

; Surrounding Word

(v)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text

Embedding. NeurlPS.
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Spherical Text Embedding: lllustration

1 Understanding the spherical generative model

Step 1 Step 2

Center word semantics
generate local contexts

Global context generates
center word semantics
A computer
graphics document

113

A “‘display”

| _ - I
: Step 1 » ~ Document d; :
| ... you create 8 grey level images and display them for... |
| S W - SNe LV |
 Otep 2 :
|
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From Static Embedding to Contextualized Embedding

a Previous unsupervised word embeddings like Word2Vec and GloVe learn static
word embedding

- Each word has one representation regardless of specific contexts it appears in
2 E.g., “bank” is a polysemy, but only has one representation

Share representation

d Deep neural language models overcome this problem by learning contextualized
word semantics
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Pretrained Language Models: Overview

The “pretrain-finetune” paradigm has become the prominent practice in a
wide variety of text applications

“Pretraining”: Train deep language models (usually Transformer models)
via self-supervised objectives on large-scale general-domain corpora

“Fine-tuning”: Adapt the pretrained language models (PLMs) to
downstream tasks using task-specific data

The power of PLMs: Encode generic linguistic features and knowledge
learned through large-scale pretraining, which can be effectively
transferred to the target applications
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Categorization of Pretrained Language Models

A There are multiple ways to categorize PLMs

a

A
d

a

a

By pretraining objectives: Standard language modeling, masked language modeling, permuted
language modeling...

By pretraining settings: Multilingual, knowledge-enriched, domain-specific...
In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens, usually used for
language generation tasks (e.g., GPT)

Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all other (uncorrupted)
tokens, usually used for language understanding/classification tasks (e.g., BERT, XLNet, ELECTRA)
Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding and generation
tasks (e.g., T5, BART)
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GPT-Style Pretraining: Introduction

2 Generative Pretraining (GPT [1], GPT-2 [2], GPT-3 [3]):

Output: Probabilities over tokens

1 Leverage unidirectional context (usually left-to-right) for T
next token prediction (i.e., language modeling) [ rarsosss ervang W |

( Add & Layer norm )47
+

( Pointwise feed forward )

E : QT t
EL:\I = — log p(mz |:$I ky« oy Li li) ( Add & Layer norm  J¢———
i )
C Masked multi-headed self-attention )

ad The Transformer uses unidirectional attention masks ——
(i.e., every token can only attend to previous tokens) ECTETEA

Input: x

k previous tokens as context

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding
by generative pre-training. OpenAl blog

[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are
unsupervised multitask learners. OpenAl blog, 1(8), 9.

[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020).
Language models are few-shot learners. NeurlPS.



GPT-Style Pretraining: Text Generation

1 Unidirectional LMs are commonly used for text generation tasks (e.g.,
summarization, translation, ...)

2 They can be very, very large (GPT-3 has 175 billion parameters!) and have
very strong text generation abilities (e.g., generated articles make human
evaluators difficult to distinguish from articles written by humans)

1 A demo of real articles vs. generated texts by GPT-2 trained on 10K Nature
Pa pers: httpS://StEfanZU Kin .Com/enigma/ COMPARISON: NLP PRE-TRAINED MODELS

175,000

SIZE (MILION

PARAMETER

11,000 177000

12 18 66 110 110 125 340 340 355 1,500 ==y

_— e e e e e . e . e~y

ODEL
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BERT: Masked Language Modeling

0 Bidirectional: BERT leverages a Masked LM learning to introduce real
bidirectionality training
d Masked LM: With 15% words randomly masked, the model learns bidirectional

I 1
| MAsK] | | MAsK) |
d V4 \|/ \l/ N / A 4 N V. /7 N
Input [CLS]] my [j| dog |[l| is (cute] [SEP] he [ likes \l( play 1 ##ing \] [SEP]
I I | | | |
Token : : : :
Embeddings E[CLS] Emy : s : Eis Eoe E[sep] Ee : Epuse : Eplay E, ing E[sep]
| S —— J e — J
+ + + + + + + + + + +
Sentence
Embedding EA EA EA EA EA EA EB EB EB EB EB
+ -+ -+ + + + + + + -+ +
Transformer
Positional
Embedding EO El E2 E3 E4 ES E6 E? E8 E9 ElO

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).
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BERT: Next Sentence Prediction

d Next Sentence Prediction: learn to predict if the second sentence in the pair is the
subsequent sentence in the original document

Class

Label
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K ][ T, | [ ) e | 7

BERT
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L I e I e gy
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I | |
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RoBERTa

1 Several simple modifications that make BERT more effective:

- train the model longer, with bigger batches over more data
- remove the next sentence prediction objective
- train on longer sequences
- dynamically change the masking pattern applied to the training data
SQuAD
Model data  bsz steps (v1.1/2.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer  160GB 8K 500K 94.6/89.4 90.2 96.4
BERT, arce
with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7
XLNet; srce
with BOOKS + WIKI 13GB 256 IM  94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A
robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.



ALBERT

4
u

4

Simple modifications that make BERT more efficient:

Factorized embedding parameterization: use lower-dimensional token embeddings;
project token embeddings to hidden layer dimension

Cross-layer parameter sharing: Share feed-forward network parameters/attention
parameters across layers

Inter-sentence coherence loss: change the next sentence prediction task to sentence
order prediction

Model Parameters SQuADI1.1 SQuAD2.0 MNLI SST-2 RACE | Avg | Speedup
base 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 | 82.3 4.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 7199 | 852 1.0
base 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 | 80.1 5.6x
ALBERT large 18M 90.6/83.9 82.3/79.4 83.5 91.7 68.5 | 824 | B7h <
xlarge 60M 92.5/86.1 86.1/83.1 86.4 92.4 74.8 | 85.5 0.6x
xxlarge 235M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 | 88.7 0.3x

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite BERT for
self-supervised learning of language representations. ICLR.
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XLNet: Autoregressive Language Modeling

2 Issues with BERT: Masked tokens are predicted independently, and [MASK] token
brings discrepancy between pretraining and fine-tuning

1 XLNet uses Permutation Language Modeling

d Permutes the text sequence
and predicts the target word
using the remaining words in
the sequence

 Since words in the original
sequence are permuted,
both forward direction
information and backward
direction information are
leveraged

Factorization order: 32> 2> 4> 1

mem(® Xy a g x

Factorization order: 1 242> 2> 3 Factorization order: 4 > 3> 1> 2

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive
Pretraining for Language Understanding. NeurlPS.
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XLNet: Two-Stream Self-Attention

d Content representation: Encodes both token position as well as content

d Query representation: Encodes only token position

Attention
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ELECTRA

d Change masked language modeling to a more sample-efficient pretraining task,
replaced token detection

d Why more efficient:
- Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
2 The generator trained with MLM is small (parameter size is ~1/10 of discriminator)

- The discriminator is trained with a binary classification task, instead of MLM (classification over the
entire vocabulary)

sample
the —> [MASK] —> --> the —> —> original
chef — chef —> Gen_erator chef —> Discriminator —> original
cooked —> [MASK] —> (typically a -> ate —> (ELECTRA) —> replaced
the —» the —»| small MLM) the —> —> original
meal — meal —> meal —> —> original

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training text encoders as
discriminators rather than generators. ICLR.



ELECTRA

1 Better GLUE (General Language Understanding Evaluation) test
performance than previous MLM-based models under the same compute
(measured by Floating Point Operations)

Model Train FLOPs CoLA SST MRPC STS QQP MNLI QNLI RTE WNLI Avg.* Score

BERT 1.9e¢20 (0.06x) 60.5 949 854 86.5 89.3 86.7 927 70.1 65.1 79.8 80.5
RoBERTa 3.2¢21 (1.02x) 67.8 96.7 89.8 919 90.2 90.8 954 882 89.0 88.1 &8.1
ALBERT 3.1e22 (10x) 69.1 97.1 91.2 920 90.5 913 - 89.2 918 89.0 -
XLNet 3.9¢e21 (1.26x) 70.2 97.1 90.5 92.6 904 909 - 88.5 925 89.1 -

ELECTRA 3.1e21 (1x) i1 911 90.7 925 90.8 913 958 898 925 895 894
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Challenges with ELECTRA-Style Pretraining

What are the potential issues with ELECTRA-style pretraining?

The main model (i.e., discriminator) in ELECTRA is trained via a binary classification task,
which is simpler than language modeling tasks (usually over-30,000-way classification
tasks), but raises two challenges:

- Lack of the language modeling capability of the main model which is a necessity in some tasks (e.g.,

prompt-based fine-tuning)

- The binary classification task may not be fine-grained enough to capture certain word-level semantics

that are critical for token-level tasks

MLM | great (label:positive)
head (label:negative) v/

Label mapping M(Y

[[CLS] No reason to watch . It was [MASK . [SEP] Afunride. It was great . [SEP] The drama discloses nothing . It was . [SEP] ]

Input Template — —— Demonstration for label:positive — F——————— Demonstration for label:negative ———

Prompt-based fine-tuning transfers the PLMs’ language modeling ability to downstream tasks



Challenges with ELECTRA-Style Pretraining

d What are the potential issues with ELECTRA-style pretraining?

O Representations from Transformer-based language models often reside in a narrow
cone in the embedding space, which raises the risk of degeneration and requires post-
adjustment for meaningful sequence representations

- Two random sentences have high similarity scores (lack of uniformity)

- Two closely related sentences may have more different representations (lack of alignhment)

O Plots: Distribution of cosine similarities between sequence pairs using their [CLS]
embeddings from pretrained models

- random: random sentence pairs from pretraining corpus

2 similar: semantically similar pairs annotated with maximum similarity from STS-B

20 -~ random

W~
(en}
]

ELECTRA sequence
embedding space:

RoBERTa sequence
embedding space:

Estimated Density
)
=)
1

Estimated Densit
[u—y
o
1

Y ———

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Cosine Similarity Cosine Similarity
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COCO-LM: Method

d COCO-LM has two new pretraining tasks upon the corrupted sequences that address
the challenges in ELECTRA-style pretraining

- Corrective Language Modeling (CLM)
- Sequence Contrastive Learning (SCL)

Corrective Language Modeling

; A B Cc)DIF —(tes1)_ A J(B J)( ¢ J(D ) E)
: COCO-LM Pretraining Tasks: R A T §----- LR 3 3 3 3 5
! Corrective Language Modeling (CLM) samplng sampling Main Transt
ESequence Contrastive Learning (SCL) Auxiliary Transformer Sequeﬁi;?:gtyraﬁwe ; aln*ran :rmerf ;
LR EEREES SN S S S S S SR N mput B e (D F
(A Jousa ¢ )0 )mess) CaJle JCc JCo JLF ]
A nput — »| [CLS]

Random Mask Masked Sequence: A_CD_ .
| a ) Main Transformer

1 1 f ¥
B JLC J( D J(tpan]](pap]]

Original Sequence: ABCDE

Random Crop Cropped Sequence: BCD  [------=--=---=--==---oosooooooo- >(

Meng, Y., Xiong, C., Bajaj, P., Bennett, P., Han, J., & Song, X. (2021). COCO-LM: Correcting and contrasting text
sequences for language model pretraining. NeurlPS.



COCO-LM: Results

ad Outperforming previous PLMs on GLUE and SQUAD 2.0 dev sets
d One of the state-of-the-art PLMs for NLU tasks (Blog Post by Microsoft)

Model Params GLUE DEY Single Task SQuAD 2.0 DEV
MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG | EM F1
Base Setting: BERT Base Size, Wikipedia + Book Corpus (16GB)
BERT [11] 110M 84.5/- 91.3 91.7 93.2 58.9 68.6 87.3 89.5 83.1 737 76.3
RoBERTa [31] 125M 84.7/- - - 92.7 - - - - - - 79.7
XLNet [62] 110M 85.8/85.4 - - 92.7 - - - - - 78.5 81.3
ELECTRA [7] 110M 86.0/85.3 90.0 91.9 934 64.3 70.8 849 89.1 83.7 80.5 83.3
MC-BERT [61] 110M 85.7/85.2 89.7 91.3 92.3 62.1 75.0 86.0 88.0 83.7 | - -
DeBERTa [24] 134M 86.3/86.2 - - - - - - - - 79.3 825
TUPE [27] 110M 86.2/86.2 91.3 92.2 93.3 63.6 73.6 899 89.2 849 | - -
RoBERTa (Ours) 110M 85.8/85.5 91.3 92.0 93.7 60.1 68.2 873 88.5 83.3 777 80.5
ELECTRA (Ours) 110M 86.9/86.7 91.9 92.6 93.6 66.2 75.1 88.2 89.7 85.5 79.7 82.6
COCO-LM 110M 88.5/88.3 92.0 93.1 93.2 63.9 848 914 90.3 87.2 | 824 85.2
Base++ Setting: BERT Base Size, Bigger Training Data, and/or More Training Steps
XLNet [62] 110M 86.8/- 91.4 91.7 94.7 60.2 740 88.2 89.5 84.6 80.2 -
RoBERTa [31] 125M 87.6/- 91.9 92.8 94.8 63.6 78.7 90.2 91.2 86.4 80.5 83.7
UniLM V2 [1] 110M 88.5/- 91.7 93.5 95.1 65.2 813 918 91.0 87.1 83.3 86.1
DeBERTa [24] 134M 88.8/88.5 - - - - - - - - 83.1 86.2
CLEAR [59] 110M 86.7/- 90.0 929 94.5 64.3 78.3 89.2 89.8 85.7 | - -
COCO-LM 134M 90.2/90.0 92.2 94.2 94.6 67.3 874 912 91.8 88.6 | 854 88.1
Large++ Setting: BERT Large Size, Bigger Training Data, and More Training Steps
XLNet [62] 360M 90.8/90.8 92.3 949 97.0 69.0 859 90.8 92.5 89.2 879 90.6
RoBERTa [31] 356M 90.2/90.2 92.2 94.7 96.4 68.0 86.6 90.9 924 88.9 86.5 894
ELECTRA [7] 335M 90.9/- 92.4 95.0 96.9 69.1 88.0 90.8 92.6 89.4 88.0 90.6
DeBERTa [24] 384M 91.1/91.1 92.3 95.3 96.8 70.5 - - - - 88.0 90.7
COCO-LM 36TM 91.4/91.6 92.8 95.7 96.9 73.9 91.0 922 92.7 90.8 | 88.2 91.0
Megatron; 3p [48] 1.3B 90.9/91.0 92.6 - - - - - - - 87.1 90.2
Megatronsz op [48] 3.9B 91.4/91.4 92.7 - - - - - - - 88.5 91.2



https://www.microsoft.com/en-us/research/blog/efficiently-and-effectively-scaling-up-language-model-pretraining-for-best-language-representation-model-on-glue-and-superglue/

AMOS: Adversarial Curriculum for Pretraining

d  Use a multi-layer MLM generator to create training signals (i.e., replaced tokens) of
different levels of difficulty

d Automatically learn a mixture of the multi-layer MLM generator’s outputs to construct
the most difficult signals for the discriminator learning for better sample efficiency

---------------------------------------------------------------------------------------------------

Generator h. > DMLM sampl.e 2 Ve — Gradient Backpropagation
(Multi-Layer MLM) ‘ R I I I I I I i
—VLpisc Gumbel-Softmax ' Gradient Reversal
<4——  Gradient Estimate
(d1) 4 Z i : _V£DISC - ‘( :) VEDISC
hz‘ 1 ",‘ 2 \ :
[ mm | : . N
(dy) A X L1 > T ™
ti Y .
o Layer [MASK]. Generator > }> Discriminator
.. ds : .
I . ;—ﬂ/ 1 —>

---------------------------------------------

Meng, Y., Xiong, C., Bajaj, P., Bennett, P. N., Han, J., & Song, X. (2022). Pretraining Text Encoders with Adversarial
Mixture of Training Signal Generators. ICLR.
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AMOS: Results

A  Further improvements over COCO-LM on GLUE

Model Params GLUE DEY Single Task SQuAD 2.0
MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG | EM Fl1
Base Setting: BERT Base Size, Wikipedia + Book Corpus (16GB)
BERT (Devlin et al., 2019) 110M 84.5/- 913 917 93.2 58.9 68.6 873 89.5 83.1 | 73.7 763
RoBERTa (Liu et al., 2019) 110M 85.8/85.5 913 920 93.7 60.1 682 873 88.5 833 | 77.7 805
XLNet (Yang et al., 2019) 110M 85.8/85.4 - - 92.7 - - - - - 78.5 813
DeBERTa (He et al., 2021) 134M 86.3/86.2 - i = i - - = = 793 825
TUPE (Ke et al., 2020) 110M 86.2/86.2 913 922 93.3 63.6 73.6 899 89.2 849 | - -
ELECTRA (Clark et al., 2020) 110M 86.9/86.7 919 926 93.6 66.2 75.1 882 89.7 855 | 797 82.6
+HPy . +Focal (Hao et al., 2021) 110M 87.0/86.9 92.7 91.7 92.6 66.7 90.7 813 91.0 86.7 | 83.0 856
MC-BERT (Xu et al., 2020) 110M 85.7/85.2 89.7 913 92.3 62.1 75.0 86.0 88.0 83.7 | - -
COCO-LM (Meng et al., 2021) 110M 88.5/88.3 92.0 93.1 93.2 63.9 84.8 914 90.3 872 | 824 852
AMOS 110M 88.9/88.7 923 93.6 94.2 70.7 86.6 90.9 91.6 88.6 | 84.2 87.2
Base++ Setting: BERT Base Size, Bigger Training Data, and/or More Training Steps
XLNet (Yang et al., 2019) 110M 86.8/- 914 917 94.7 60.2 740 882 89.5 846 | 802 -
RoBERTa (Liu et al., 2019) 125M 87.6/- 919 928 94.8 63.6 787 90.2 91.2 8.4 | 805 83.7
UniLM V2 (Bao et al., 2020) 110M 88.5/- 91.7 935 95.1 65.2 81.3 918 91.0 87.1 | 833 86.1
DeBERTa (He et al., 2021) 134M 88.8/88.5 - I = I - - = = 83.1 86.2
CLEAR Wu et al. (2020) 110M 86.7/- 90.0 929 94.5 64.3 783 89.2 89.8 85.7 | - -
COCO-LM (Meng et al., 2021) 134M 90.2/90.0 922 942 94.6 67.3 874 912 91.8 88.6 | 854 88.1
AMOS 134M 90.5/90.4 924 944 95.5 71.8 86.6 91.7 92.0 894 | 850 879
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Outline

4 Introduction to text representations
d Static word embeddings

d Deep contextualized embeddings via neural language models

- Pretrained Language Models: Categorization by Architecture

0 Decoder-Only (Unidirectional) PLM
1 Encoder-Only (Bidirectional) PLM

1 Encoder-Decoder (Sequence-to-Sequence) PLM 2

2 Language Model Deployment



T5

3 T5: Text-to-Text Transfer Transformer

 Pretraining: Mask out spans of texts; generate the original spans

1 Fine-Tuning: Convert every task into a sequence-to-sequence generation
problem

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in

[Lily couldn't <M>. The waitress

had brought the largest <M> of believe her eyes <M=
chocolate cake <M> seen. piece <M> she had ever

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

peaches are <M> at our]

President Franklin D.
Roosevelt was born
in January 1882. A= = = = = = = = = = -

D

When was Franklin D.
[ Roosevelt born? . |5 i

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer. JMLR.

Pre-training

Fine-tuning




BART

O BART: Denoising autoencoder for pretraining sequence-to-sequence models

4 Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
to input sequences and train the model to recover the original sequences

Q Fine-Tuning:
- For classification tasks: Feed the same input into the encoder and decoder, and use the final decoder
token for classification

- For generation tasks: The encoder takes the input sequence, and the decoder generates outputs
autoregressively

????E CAicElED) (DE.ABC.) (c.DE.AB)
. _ Token Masking  Sentence Permutation Document Rotation
C Bidirectional Autoregressive
Encoder Decoder
 EEETE ERERS (a.c.e. ) ) (aBC.DE.) <3 (A_.D_E.)
A_B_E <s>A B C D Token Deletion Text Infilling
BART architecture BART pretraining objectives

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising
seguence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.
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1 Introduction to text representations
1 Static word embeddings

1 Deep contextualized embeddings via neural language models

- Language Model Pretraining

- Language Model Deployment @
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Deployment of Pretrained Language Models

J

4
u

Pretrained language models (PLMs) are usually trained on large-scale
general domain corpora to learn generic linguistic features that can be
transferred to downstream tasks

Common usages of PLMs in downstream tasks

Fine-tuning: Update all parameters in the PLM encoder and task-specific layers
(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

Parameter-efficient tuning: Only update a small portion of PLM parameters and keep
other (majority) parameters unchanged
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Introduction to text representations

d Static word embeddings

d Deep contextualized embeddings via neural language models

4

4

4

4

4

Language Model Pretraining

Language Model Deployment

Standard fine-tuning @

Prompt-based methods

Parameter-efficient tuning
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Standard Fine-Tuning of PLMs

1 Add task-specific layers (usually one or two linear layers) on top of the
embeddings produced by the PLMs (sequence-level tasks use [CLS] token
embeddings; token-level tasks use real token embeddings)

1 Task-specific layers and the PLMs are jointly fine-tuned with task-specific

training data

Class
Label

BERT

el ElE=E]- =]

T —

Tk L. b [SEP] Tk L. L

Sentence 1

Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

E;s:, Start/End Span 0  B-PER : 0
— 20— < F R ﬁ
Ce 1 =) [~ ] OEE
BERT BERT BERT
=] - [=] o]~ Lol - [&] e =] =]
?ﬁ: 1T ir - {1 —
[CLS] Tok 1 2 m Tok 1 2

Tok Tol [SEP] T“"‘ 7&“ CLS] Tok

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, CoLA

(c) Question Answering Tasks:
SQUAD v1.1

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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4
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4
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Language Model Pretraining

Language Model Deployment

Standard fine-tuning
Prompt-based methods ;

Parameter-efficient tuning



Prompt-Based Fine-Tuning of PLMs

0 Task descriptions are created to convert

( Best pizzaever! +1 )

training examples to cloze questions l
...................... RTE
Q Highly resemble the pretraining tasks (MLM) : ge pizzaevert 085
.. : Itwas ____. : :
so that pretraining knowledge could be ' ‘“l ; -
better leveraged . . o
H H H . e « classifier run
Q Better than standard fine-tuning especially | 5 oo wwa il
. . = rompting run
for few-shot settings . N : 055 5 o o
I 0 500 1000 1500 2000
S e i .......... .- training points
+1: 0.8
MLM .| great (label:positive) -1:0.2
g (label:negative) V}
Label mapping M (Y
[ [CLS] No reason to watch . It was MASK [SEP] A funride . It was great . [SEP] The drama discloses nothing . It was . [SEP] J
F———— Input — —— Template —1 F— Demonstration for label:positive — F———————— Demonstration for label:negative ——

Schick, T., & Schiitze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.

61 Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.

End of dataset
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Prompt-Based Fine-Tuning of PLMs

1 Further improve prompt-based few-shot fine-tuning:

- Prompt templates and label words can be automatically generated
- Demonstrations can be concatenated with target sequences to provide hints
SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
MajorityJr 50.9 23.1 50.0 50.0 50.0 50.0 18.8 0.0
Prompt-based zero-shot! 83.6 35.0 80.8 79.5 67.6 514 32.0 2.0
“GPT-3” in-context learning 84.8 (1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 262(24) -1524
Fine-tuning 81.4(3.8) 439200 769(59) 758(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1) 33.9(14.3)
Prompt-based FT (man) 92.7(09) 47425) 87.0(1.2) 903(1.0) 84.7(222) 91.2(1.1) 84.8(5.1) 93(73)
+ demonstrations 92.6 (0.5) 50.6(1.4) 86.6(22) 90.2(1.2) 87.0(l.1) 92.3(0.8) 87.5(32) 18.7(8.8)
Prompt-based FT (auto) 923(1.0) 492(1.6) 85.5(2.8) 89.0(1.4) 858(1.9) 91.2(l.1) 88.2(20) 14.0(14.1)
+ demonstrations 93.0 (0.6) 49.5(1.7) 87.7(1.4) 91.0(0.9) 86.5(2.6) 91.4(1.8) 89.4(1.7) 21.8(15.9)
Fine-tuning (full)f 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6
MNLI MNLI-mm SNLI QNLI RTE MRPC QQpP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)
Majority! 32.7 33.0 33.8 49.5 52.7 87:2 0.0 .
Prompt-based zero-shot* 50.8 51.7 49.5 50.8 513 61.9 49.7 -3.2
“GPT-3” in-context learning  52.0 (0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 604 (1.4) 457(6.0) 36.1(52) 143 (2.8)
Fine-tuning 458 (6.4) 47.8(6.8) 484 (4.8) 60.2(6.5) 54.4(39) 76.6(2.5) 60.7(43) 53.5(8.5)
Prompt-based FT (man) 68.3(2.3) 70.5(1.9) 7727 645(42) 69.1(3.6) 745(53) 655(53) 71.0(7.0)
+ demonstrations 70.7 (1.3) 72.0(1.2) 79.7(1.5) 69.2(19) 68.72.3) 77.8(2.0) 69.8(1.8) 73.5(5.1)
Prompt-based FT (auto) 68.3(2.5) 70.1(26) 77.1(2.1) 683(74) 73922) 762(123) 67.03.00 750(3.3)
+ demonstrations 700 (3.6) 720(3.1) 775(35) 68.5(54) 71.1(53) 781(34) 67.7(58) 764 (6.2)
Fine-tuning (full)t 89.8 89.5 92.6 93.3 80.9 91.4 81.7 91.9

Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL



Prompt-Based Zero-$hot Inference

4

d
4

d

Even without any training, knowledge can be
extracted from PLMs through cloze patterns

PLMs can serve as knowledge bases

Pros: require no schema engineering, and support an
open set of queries

Cons: retrieved answers are not guaranteed to be
accurate

Memory Query Answer

(DANTE, born-in, X)
Y
Symbolic

KG DANTE et . ~___—» FLORENCE
Memory Access

Neural LM

> Florence
Memory Access

e.g. ELMo/BERT

Figure 1: Querying knowledge bases (KB) and lan-
guage models (LM) for factual knowledge.

1 Could be used for unsupervised open-domain QA

systems

as knowledge bases? EMNLP.

Petroni, F., Rocktaschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models
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Prompt-Based Few-Shot Inference

2 Large PLMs (e.g., GPT-3)
have strong few-shot
learning ability without any
tuning on large task-specific
training sets

1 Generate answers based on

natural language
descriptions and prompts

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language

description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => prompt

> loutre de mer examples

Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1

peppermint =>

plush giraffe =>

cheese => prompt

menthe poivrée example #:

girafe peluche example #N
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Zero-$hot Fine~-Tuning of PLMs

1 Prompt-based approaches have remarkable few-shot fine-tuning
performance, but their zero-shot performance is significantly worse

1 Without any task-specific samples, it is challenging for PLMs to interpret
the prompts that come in different formats and are unseen in the

pretraining data
1 The current mainstream of zero-shot learning is based on transfer

learning
- Train PLMs on a large variety of different tasks with abundant annotations, and
transfer to unseen tasks
- Require many cross-task annotations and gigantic model sizes which are not
practical for common application scenarios
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Zero-$hot Fine~-Tuning of PLMs

Can we do fully zero-shot learning, without any task-related or cross-
task annotations?

When there are no training data, we can create them from scratch using
PLMs!

Humans can generate training data pertaining to a specific label upon
given a label-descriptive prompt (e.g., “write a negative review:”)

We can leverage the strong text generation power of PLMs to do the
same job



Prompt-Based Zero-Shot Training Data Generation

O SuperGen: A Supervision Generation approach
O Use a unidirectional PLM to generate class-conditioned texts guided by prompts
3 Fine-tune a bidirectional PLM on the generated data for the corresponding task

------------------------------

Single-Sequence Tasks ; Label Smoothing

Label Y: negative (e.g. Sentiment Classification) 'y . q X
p t w Generated Sequence 7 : o X
rompt Ty Selected Quality ! X
o . Generator Gy It is a waste of Training Sample . Yy V!
This film is terrible.

(Unidirectional PLM) | | tmeandmoney. |  , , , T TTTTooTTmToemsmoctettotTC

time and money.

(x9,y) Regularize ;
___________________________________________ > C'aSSifier Cd’ Fine-Tuning
Label ¥: entailment Sequence-Pair Tasks ‘ (Bidirectional PLM) . A
Sampled Sequence z° (€:9- Natural Language Inference) (*,@f,y) — | Regularize ,
g ; .
-+ Prompt wy Generated Sequence T Selected Quality - p l Temporal Ensembling

mid-2020. In other words, (Unidirectional PLM) open in 2020.

o Training Sample
The opening fiate of the Generator Gy The station was to 9 P
station was estimated to be

..............................

Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models:

Towards Zero-Shot Language Understanding. arXiv preprint arXiv:2202.04538.
57



Zero-Shot Learning Results

d  Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned
on generated training data) is comparable or even better than strong few-shot
methods (fine-tuned on 32 manually annotated training samples per class)

MNLI-(m/mm) QQP QNLI  SST-2 CoLA RTE MRPC AVG

Method (Acc.) (F1)  (Acc) (Acc) (Matt) (Acc)  (F1)

Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).

PromptingT 50.80_0/51.70_0 49.70_0 50.80,0 83.60_0 2.00-0 51.30,0 61.90_0 50.1

SuperGen 72.30_5/73.80,5 66.11_1 73.31_9 92.80_6 32.75_5 65.31_2 82.2()_5 69.4
- data selection 63.71.5/64.21 6 62.32.9 63.93 9 91.32.0 30.58 8 62.41 5 81.60.2 65.1
- label smooth 70.70.8/72.10.7 65.10.9 71.45 5 91.00.0 9.51.0 64.81 .1 83.0, .7 65.2

- temporal ensemble  62.04.6/63.64.8 63.90.3 72.420 92.509 23.570 63.510 78822 65.3
Few-Shot Setting: Use 32 labeled samples/class (half for training and half for development).

Fine-tuningT 45.86,4/47.86_8 60.74,3 60.26,5 81.43,8 33.914_3 54.43,9 76.62,5 59.1
Manual promptlr 68.32.3/70.51.9 65.553 64.542 92.70.9 9.37.3 69.136 74.553 63.6

+ demonstrationT 70.71 3/72.01 2 69.8: 5 69.2, 9 92.60.5 18.78.8 68.72.3 77.82.0 66.9
Auto promptT 68.32.5/70.12 ¢ 67.03.0 68.37.4 92.31.0 14.014 1 73.9; 5 76.25 3 65.8

+ demonstrationT 70-03.6/72-03.1 67.75,8 68.55,4 93-00.6 21.815,9 71.15,3 78.13,4 67.3
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Parameter-Efficient Tuning of PLMs

Fine-tuning updates all PLM parameters at the same time

Large PLMs can have an enormous amount of parameters that are
costly to optimize

Can we optimize only a small set of parameters in PLMs while still
achieving comparable performance to fine-tuning?

A few strategies:

Adapter: Insert small bottleneck modules and only update adapter + layer norm
parameters

Prefix Tuning: Prepend tunable prefix vectors to every Transformer layer and keep
other parameters unchanged

Low-Rank Adaptation: Use trainable low-rank matrices to approximate weight
updates



Adapter for Parameter-Efficient Tuning

1 Adapters are added twice to each

pemmmoooe- b P N .
Transformer layer A R
: Transformer : i :

2 Consist of a bottleneck structure | Laver - [2808R00
(down-project + up-project) § = o opome |
X ayer | : T .
2 Only adapter parameters + layer ; [ ] L Nonineary
: Layer Norm ! ! \ /
norm parameters are updated ; S 5 5 O:O
during tuning E E i [ Feedforward ]
i [ Feed-forward Iayer] E : down-rrolect
| {Wmmd] | . [0O00000
\ attention h k. )

___________________

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A,, ... & Gelly, S. (2019).
Parameter-efficient transfer learning for NLP. ICML



Prefix Tuning

1 Prefix tuning prepends trainable vectors to each Transformer layer
2 Only update prefix vectors and keep other pretrained parameters
unchanged

4 Similar to prompt-based fine-tuning except that the prefix vectors are
continuous parameters instead of natural language words

Prefix-tuning

Prefix
(Summarization)

Prefix
(Table-to-text)

!

Transformer (Pretrained)
name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.
62
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Low-Rank Adaptation

d Inject trainable low-rank matrices into transformer layers to approximate

the weight updates
a Since low-rank matrices have far less parameters than full-rank ones,
training them is much more efficient than standard fine-tuning

h | |
RN
Pretrained
Weights

Wo + AW = W, +BA!

A and B are low-rank matrices

%

X |

Hu, E. J,, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank
adaptation of large language models. ICLR.
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