

Part IV: Weakly-Supervised Text Classification

KDD 2022 Tutorial Adapting Pretrained Representations for Text Mining Yu Meng, Jiaxin Huang, Yu Zhang, Jiawei Han Computer Science, University of Illinois at Urbana-Champaign Aug 14, 2022

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

Text Classification

- Given a set of text units (e.g., documents, sentences) and a set of categories, the task is to assign relevant category/categories to each text unit
- Text Classification has a lot of downstream applications

Sentiment Analysis

Paper Topic Classification

Location Prediction

Email Intent Identification

News Topic Classification

Hate Speech Detection

Different Text Classification Settings: Single-Label vs. Multi-Label

- **Single-label**: Each document belongs to one category.
- Ex. Spam Detection

- Multi-label: Each document has multiple relevant labels.
 - **Ex.** Paper Topic Classification

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Related Topics ()

	A Question answering	🛓 Language model	A Natural language understanding	A Named-	entity recognition	🛓 SemEval	▲ Inference	🛓 Winograd Schema Challenge	A Sequence labeling
(▲ Artificial intelligence	A Computer science	Transformer (machine learning mo	odel) View L	Less ^ h	ttps://aca	ademic.m	icrosoft.com/paper/2	2963341956/

Different Text Classification Settings: Flat vs. Hierarchical

- **Flat**: All labels are at the same granularity level
- Ex. Sentiment Analysis of E-Commerce Reviews (1-5 stars)

$\star \star \star \star \star$ It works, it's nice, comfortable, and easy to type on. Not loud (unless you're a key pounder)

This keyboard works. It's comfortable, sensitive enough for touch typers, very quiet by comparison to other mechanicals (unless, of course, you're a 'key pounder'), and the lit keys are excellent for people like me who tend to prefer to work in a cave-like environment. https://www.amazon.com/gp/product/B089YFHYYS/

Hierarchical: Labels are organized into a hierarchy representing their parent-child relationship

Ex. Paper Topic Classification (the arXiv category taxonomy)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Subjects: Computation and Language (cs.CL) Cite as: arXiv:1810.04805 [cs.CL] (or arXiv:1810.04805v2 [cs.CL] for this version)

5

https://arxiv.org/abs/1810.04805

Weakly-Supervised Text Classification: Motivation

- Supervised text classification models (especially recent deep neural models) rely on a significant number of manually labeled training documents to achieve good performance.
- Collecting such training data is usually expensive and time-consuming. In some domains (e.g., scientific papers), annotations must be acquired from domain experts, which incurs additional cost.
- While users cannot afford to label sufficient documents for training a deep neural classifier, they can provide a small amount of seed information:
 - Category names or category-related keywords
 - □ A small number of labeled documents

Weakly-Supervised Text Classification: Definition

- Text classification without massive human-annotated training data
 - **Keyword-level weak supervision**: category names or a few relevant keywords
 - Document-level weak supervision: a small set of labeled docs

General Ideas to Perform Weakly-Supervised Text Classification

Joint representation learning

Put words, labels, and/or documents into the same latent space using embedding learning or pre-trained language models

Pseudo training data generation

- Retrieve some unlabeled documents or synthesize some artificial documents using text embeddings or contextualized representations
- Give them pseudo labels to train a text classifier

□ Transfer the knowledge of pre-trained language models to classification tasks

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- **Text Classification with Metadata Information**
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

WeSTClass: Pseudo Training Data + Self-Training

- Embed all words (including label names and keywords) into the same space
- Pseudo document generation: generate pseudo documents from seeds
- Self-training: train deep neural nets (CNN, RNN) with bootstrapping

Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18. Applicable to both keyword-level and document-level supervision.

WeSTClass: Pseudo Document Generation

□ Fit a von-Mishes Fisher distribution for each category according to the keywords

- Category name as supervision? Find nearest words as keywords
- □ A few documents as supervision? Retrieve words with high TF-IDF scores
- Sample bag-of-keywords as pseudo documents for each class

WeSTClass: Experiment Results

Datasets: (1) NYT, (2) AG's News, (3) Yelp

□ Evaluation: use different types of weak supervision and measure accuracies

	Methods	J	The New York T	imes		AG's News			Yelp Review	7
		LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS
	IR with tf-idf	0.319	0.509	-	0.187	0.258	-	0.533	0.638	-
	Topic Model	0.301	0.253	-	0.496	0.723	-	0.333	0.333	-
	Dataless	0.484	-	-	0.688	-	-	0.337	-	-
Macro-F1 scores:	UNEC	0.690	-	-	0.659	-	-	0.602	-	-
	PTE	-	-	0.834 (0.024)	-	-	0.542(0.029)	-	-	0.658(0.042)
	HAN	0.348	0.534	0.740 (0.059)	0.498	0.621	0.731 (0.029)	0.519	0.631	0.686(0.046)
	CNN	0.338	0.632	0.702 (0.059)	0.758	0.770	0.766 (0.035)	0.523	0.633	0.634 (0.096)
	NoST-HAN	0.515	0.213	0.823 (0.035)	0.590	0.727	0.745 (0.038)	0.731	0.338	0.682 (0.090)
	NoST-CNN	0.701	0.702	0.833 (0.013)	0.534	0.759	0.759 (0.032)	0.639	0.740	0.717 (0.058)
	WESTCLASS-HAN	0.754	0.640	0.832 (0.028)	0.816	0.820	0.782 (0.028)	0.769	0.736	0.729 (0.040)
	WESTCLASS-CNN	0.830	0.837	0.835 (0.010)	0.822	0.821	0.839 (0.007)	0.735	0.816	0.775 (0.037)
	IR with tf-idf	0.240	0.346	-	0.292	0.333	-	0.548	0.652	-
	Topic Model	0.666	0.623	-	0.584	0.735	-	0.500	0.500	-
	Dataless	0.710	-	-	0.699	-	-	0.500	-	-
	UNEC	0.810	-	-	0.668	-	-	0.603	-	-
VIICTO-F1 scores:	PTE	-	-	0.906 (0.020)	-	-	0.544(0.031)	-	-	0.674 (0.029)
	HAN	0.251	0.595	0.849(0.038)	0.500	0.619	0.733 (0.029)	0.530	0.643	0.690 (0.042)
	CNN	0.246	0.620	0.798(0.085)	0.759	0.771	0.769 (0.034)	0.534	0.646	0.662(0.062)
	NoST-HAN	0.788	0.676	0.906 (0.021)	0.619	0.736	0.747(0.037)	0.740	0.502	0.698 (0.066)
	NoST-CNN	0.767	0.780	0.908 (0.013)	0.553	0.766	0.765 (0.031)	0.671	0.750	0.725 (0.050)
	WESTCLASS-HAN	0.901	0.859	0.908 (0.019)	0.816	0.822	0.782 (0.028)	0.771	0.737	0.729 (0.040)
	WESTCLASS-CNN	0.916	0.912	0.911 (0.007)	0.823	0.823	0.841 (0.007)	0.741	0.816	0.776 (0.037)

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- **Text Classification with Metadata Information**
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

Language Models for Weakly-Supervised Classification

- □ The previous approaches only use the local corpus
- □ Fail to take advantage of the general knowledge source (e.g., Wikipedia)
- Why general knowledge?
 - Humans can classify texts with general knowledge
 - Common linguistic features to understand texts better
 - Compensate for potential data scarcity of the local corpus
- □ How to use general knowledge?
 - Neural language models (e.g., BERT) are pre-trained on large-scale general knowledge texts
 - Their learned semantic/syntactic features can be transferred to downstream tasks

ConWea: Disambiguating User-Provided Keywords

- User-provided seed words may be ambiguous.
- Example:

Class	Seed words
Soccer	soccer, goal, penalty
Law	law, judge, court

- Classify the following sentences:
 - Messi scored the penalty.
 - John was issued a death penalty.
- Disambiguate the "senses" based on contextualized representations

Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20. Keywords as supervision. ConWea-related slides credit to Jingbo Shang

ConWea: Clustering for Disambiguation

- For each word, find all its occurrences in the input corpus
 - Run BERT to get their contextualized representations
 - Run a clustering method (e.g., K-Means) to obtain clusters for different "senses"

ConWea: Experiment Results

□ Ablations:

- □ ConWea-NoCon: Variant of ConWea trained without contextualization.
- ConWea-NoExpan: Variant of ConWea trained without seed expansion.
- ConWea-WSD: Variant of ConWea with contextualization replaced by a word sense disambiguation algorithm.

				N	YT			20 New	sgroup	
			5-Class	(Coarse)	25-Clas	ss (Fine)	6-Class	(Coarse)	20-Clas	ss (Fine)
		Methods	$Micro-F_1$	Macro- F_1	$Micro-F_1$	Macro- F_1	$Micro-F_1$	Macro- F_1	Micro- F_1	Macro- F_1
	Γ	IR-TF-IDF	0.65	0.58	0.56	0.54	0.49	0.48	0.53	0.52
_		Dataless	0.71	0.48	0.59	0.37	0.50	0.47	0.61	0.53
Baselines	4	Word2Vec	0.92	0.83	0.69	0.47	0.51	0.45	0.33	0.33
Dusennes		Doc2Cube	0.71	0.38	0.67	0.34	0.40	0.35	0.23	0.23
	L	WeSTClass	0.91	0.84	0.50	0.36	0.53	0.43	0.49	0.46
		ConWea	0.95	0.89	0.91	0.79	0.62	0.57	0.65	0.64
	٢	ConWea-NoCon	0.91	0.83	0.89	0.74	0.53	0.50	0.58	0.57
Ahlations	4	ConWea-NoExpan	0.92	0.85	0.76	0.66	0.58	0.53	0.58	0.57
Additions	L	ConWea-WSD	0.83	0.78	0.72	0.64	0.52	0.46	0.49	0.47
Upper bound	-	HAN-Supervised	0.96	0.92	0.94	0.82	0.90	0.88	0.83	0.83

LOTClass: Find Similar Meaning Words with Label Names

- Find topic words based on label names
 - Overcome the low semantic coverage of label names
- Use language models to predict what words can replace the label names
 - Interchangeable words are likely to have similar meanings

Sentence	Language Model Prediction
The oldest annual US team sports competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.	sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,
Samsung's new SPH-V5400 mobile phone sports a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.	has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers,

Table 1: BERT language model prediction (sorted by probability) for the word to appear at the position of "sports" under different contexts. The two sentences are from *AG News* corpus.

Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20. Category names as supervision.

LOTClass: Contextualized Word-Level Topic Prediction

- Context-free matching of topic words is inaccurate
- "Sports" does not always imply the topic "sports"
- Contextualized topic prediction:
 - Predict a word's implied topic under specific contexts
 - We regard a word as "topic indicative" only when its top replacing words have enough overlap with the topic vocabulary.

LOTClass: Experiment Results

- Achieve around 90% accuracy on four benchmark datasets by only using at most 3 words (1 in most cases) per class as the label name
 - Outperforming previous weakly-supervised approaches significantly
 - Comparable to state-of-the-art semi-supervised models

Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon
	Dataless (Chang et al., 2008)	0.696	0.634	0.505	0.501
	WeSTClass (Meng et al., 2018)	0.823	0.811	0.774	0.753
Weakly-Sup.	BERT w. simple match	0.752	0.722	0.677	0.654
	Ours w/o. self train	0.822	0.850	0.844	0.781
	Ours	0.864	0.889	0.894	0.906
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.986	0.887	0.960
Supervised	char-CNN (Zhang et al., 2015) BERT (Devlin et al., 2019)	0.872 0.944	0.983 0.993	0.853 0.937	0.945 0.972

How Powerful Are Vanilla BERT Representations in Category Prediction?

An average of BERT representations of all tokens in a sentence/document preserves domain information well

Figure 1: A 2D visualization of average-pooled BERT hidden-state sentence representations using PCA. The colors represent the domain for each sentence.

Aharoni, R., & Goldberg, Y. "Unsupervised domain clusters in pretrained language models." ACL'20.

X-Class: Class-Oriented BERT Representations

- A simple idea for text classification
 - Learn representations for documents
 - Set the number of clusters as the number of classes
 - □ Hope their clustering results are almost the same as the desired classification
- However, the same corpus could be classified differently

(a) NYT-Topics (b) NYT-Locations

Figure 1: Visualizations of News using Average BERT Representations. Colors denote different classes.

Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21. Category Names as supervision. X-Class-related slides credit to Jingbo Shang

X-Class: Class-Oriented BERT Representations

Clustering for classification based on class-oriented representations

X-Class: Experiment Results

WeSTClass & ConWea consume at least 3 seed words per class

□ LOTClass & X-Class use category names only

	AGNews	20News	NYT-Small	NYT-Topic	NYT-Location	Yelp	DBpedia
Corpus Domain	News	News	News	News	News	Reviews	Wikipedia
Class Criterion	Topics	Topics	Topics	Topics	Locations	Sentiment	Ontology
# of Classes	4	5	5	9	10	2	14
# of Documents	120,000	17,871	13,081	31,997	31,997	38,000	560,000
Imbalance	1.0	2.02	16.65	27.09	15.84	1.0	1.0

Model	AGNews	20News	NYT-Small	NYT-Topic	NYT-Location	Yelp	DBpedia
Supervised	93.99/93.99	96.45/96.42	97.95/95.46	94.29/89.90	95.99/94.99	95.7/95.7	98.96/98.96
WeSTClass	82.3/82.1	71.28/69.90	91.2/83.7	68.26/57.02	63.15/53.22	81.6/81.6	81.1/ N/A
ConWea	74.6/74.2	75.73/73.26	95.23/90.79	81.67/71.54	85.31/83.81	71.4/71.2	N/A
LOTClass	86.89/86.82	73.78/72.53	78.12/56.05	67.11/43.58	58.49/58.96	87.75/87.68	86.66/85.98
X-Class	84.8/84.65	81.36/80.6	96.67/92.98	80.6/69.92	90.5/89.81	88.36/88.32	91.33/91.14
X-Class-Rep	77.92/77.03	75.14/73.24	92.13/83.94	77.85/65.38	86.7/87.36	77.87/77.05	74.06/71.75
X-Class-Align	83.1/83.05	79.28/78.62	96.34/92.08	79.64/67.85	88.58/88.02	87.16/87.1	87.37/87.28

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- **Text Classification with Taxonomy Information**
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- **Text Classification with Metadata Information**
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

WeSHClass: Weakly-Supervised Hierarchical Text Classification

□ The hierarchy has a **tree** structure. Each document is associated with **one path** starting from the root node. (E.g., the main subject of each arXiv paper.)

- Keyword-level weak supervision: The name of each node in the taxonomy, or a few keywords for each leaf category
- Document-level weak supervision: A few labeled documents for each leaf category

WeSHClass: Hierarchical Classification Model

- Local Classifier Per Node
 - Essentially a flat classification task
 - Follow WeSTClass
- Global Classifier Per Level
 - At each level k in the class taxonomy, construct a global classifier by ensembling all local classifiers from root to level k
 - Use unlabeled documents to bootstrap the global classifier

WeSHClass: Experiment Results

Datasets

- □ New York Times; arXiv; Yelp Review
- □ Evaluation: Micro-F1 and Macro-F1 among all classes

Methods			NYT				arXiv				Yelp Review	
	KEYW	ORDS	DO	OCS	KEYW	ORDS	DO	OCS	KEYW	ORDS	DO	OCS
	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)	Macro	Micro	Macro Avg. (Std.)	Micro Avg. (Std.)
Hier-Dataless	0.593	0.811	-	-	0.374	0.594	-	-	0.284	0.312	-	-
Hier-SVM	-	-	0.142(0.016)	0.469(0.012)	-	-	0.049(0.001)	0.443(0.006)	-	-	0.220(0.082)	0.310(0.113)
CNN	-	-	0.165(0.027)	0.329(0.097)	-	-	0.124(0.014)	0.456(0.023)	-	-	0.306(0.028)	0.372(0.028)
WeSTClass	0.386	0.772	0.479(0.027)	0.728(0.036)	0.412	0.642	0.264(0.016)	0.547(0.009)	0.348	0.389	0.345(0.027)	0.388(0.033)
No-global	0.618	0.843	0.520(0.065)	0.768(0.100)	0.442	0.673	0.264(0.020)	0.581(0.017)	0.391	0.424	0.369(0.022)	0.403(0.016)
No-vMF	0.628	0.862	0.527(0.031)	0.825(0.032)	0.406	0.665	0.255(0.015)	0.564(0.012)	0.410	0.457	0.372(0.029)	0.407(0.015)
No-self-train	0.550	0.787	0.491(0.036)	0.769(0.039)	0.395	0.635	0.234~(0.013)	0.535~(0.010)	0.362	0.408	0.348(0.030)	0.382(0.022)
Our method	0.632	0.874	0.532(0.015)	0.827(0.012)	0.452	0.692	0.279 (0.010)	0.585 (0.009)	0.423	0.461	0.375(0.021)	$0.410\ (0.014)$

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- **Text Classification with Taxonomy Information**
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- **Text Classification with Metadata Information**
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

TaxoClass: Weakly-supervised Hierarchical Multi-Label Text Classification

- The taxonomy is a directed acyclic graph (DAG)
- Each paper can have multiple categories distributed on different paths
- Category names can be phrases and may not appear in the corpus

TaxoClass: Why Category Names Only?

- Taxonomies for multi-label text classification are often big.
 - □ Amazon Product Catalog: $\times 10^4$ categories
 - □ MeSH Taxonomy (for medical papers): $\times 10^4$ categories
 - □ Microsoft Academic Taxonomy: $\times 10^5$ labels
- Impossible for users to provide even a small set of (e.g., 3) keywords/labeled documents for each category

Explore	Entity Analytics
	262,960,769 Publications
2	271,407,867 Authors
Z	713,789 Topics
•	4,541 Conferences
	49,036 Journals (1)
	27,033 Institutions

TaxoClass: Document-Class Relevance Calculation

- □ How to use the knowledge from pre-trained LMs?
- □ Relevance model: BERT/RoBERTa fine-tuned on the NLI task
 - https://huggingface.co/roberta-large-mnli

TaxoClass: Top-Down Exploration

- □ How to use the taxonomy?
- Shrink the label search space with top-down exploration
 - Use a relevance model to filter out completely irrelevant classes

TaxoClass: Identify Core Classes and More Classes

Identify document core classes in reduced label search space

Generalize from core classes with bootstrapping and self-training

TaxoClass: Experiment Results

		Mathada	Amazo	n	DBPed	ia
Weakly-supervised multi-			Example-F1	P@1	Example-F1	P@1
class classification method		WeSHClass (Meng et al., AAAI'19)	0.246	0.577	0.305	0.536
Semi-supervised methods	Γ	SS-PCEM (Xiao et al., WebConf'19)	0.292	0.537	0.385	0.742
using 30% of training set	٦	Semi-BERT (Devlin et al., NAACL'19)	0.339	0.592	0.428	0.761
Zero-shot method		Hier-0Shot-TC (Yin et al., EMNLP'19)	0.474	0.714	0.677	0.787
		TaxoClass (ours)	0.593	0.812	0.816	0.894

- vs. WeSHClass: better model document-class relevance
- vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy
- vs. Hier-OShot-TC: better capture domain-specific information from core classes

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes **DBPedia**: 245K Wiki articles (196K training + 49K testing), 298 classes

Example-F1 =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{2|true_i \cap pred_i|}{|true_i| + |pred_i|}$$
, **P@1** = $\frac{\#docs \ with \ top-1 \ pred \ dorrect}{\#total \ docs}$

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- **Text Classification with Taxonomy Information**
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- Text Classification with Metadata Information
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

MetaCat: Leveraging Metadata for Categorization

- Metadata is prevalent in many text sources
 - GitHub repositories: User, Tag
 - **Tweets**: User, Hashtag
 - Amazon reviews: User, Product
 - **Scientific papers**: Author, Venue
- How to leverage these heterogenous signals in the categorization process?

Anna Mandelbaum

@ 51	commits	¥1branch	© 5 releases ▲	4 contributors
ranch: master +	New pull request		Create new file Upload files Find F	le Core or download -
🙀 zadonghao Up	data train.py		Latert	commit filcebild on Aug 27
ing ing		add image to readme		3 years ago
gitignare		TL compatibility and code readabality (#1	4)	last year
README.md		Update README.md		3 months ago
data.py		Update data.py		3 months ago
model.py		Update model.py		last month
train.py		Update train.py	README (Text)	last month
README.md		opane carsy		

(a) GITHUB REPOSITORY

8:22 PM · Aug 1, 2014 from New York, NY · Instagram

TWEET

Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally

Supervised Categorization of Text with Metadata", SIGIR'20.

A few labeled documents as supervision.

(b)

MetaCat: The Underlying Generative Process

- Two categories of metadata:
 - **Global metadata**: user/author, product
 - □ "Causes" the generation of documents. (E.g., User/Author -> Document)
 - Local metadata: tag/hashtag
 - "Describes" the documents. (E.g., Document -> Tag)
 - We can also say "labels" are global, and "words" are local

A network view of corpus with metadata

A generative-process view of corpus with metadata

MetaCat: How to use this underlying model?

- **Embedding** Learning Module
 - All embedding vectors e_u, e_l, e_d, e_t, e_w are parameters of the generative process
 - Learn the embedding vectors through maximizing the likelihood of observing all text and metadata
- Training Data Generation Module
 - \Box e_u, e_l, e_d, e_t, e_w have been learned
 - Given a label *l*, generate *d*, *w* and *t* according to the generative process

MetaCat: Experiment Results

Metadata is more helpful on smaller corpora.

Datasets

- GitHub-Bio: 10 categories;876 docs
- GitHub-AI: 14 categories;
 1,596 docs
- GitHub-Sec: 3 categories;
 84,950 docs
- Amazon: 10 categories; 100,000 docs
- Twitter: 9 categories;135,619 docs

	MetaCat	0.5258 ± 0.0090	$\textbf{0.6889} \pm \textbf{0.0128}$	0.7243 ± 0.0336	0.6422 ± 0.0058	0.3971 ± 0.0169
	TextGCN [39]	0.4759 ± 0.0126	0.6353 ± 0.0059	_	_	0.3361 ± 0.0032
Graph-based	HIN2vec [6]	0.2564 ± 0.0131	0.3614 ± 0.0234	0.5218 ± 0.0466	0.4987 ± 0.0252	0.2944 ± 0.0614
	Metapath2vec [5]	0.3956 ± 0.0141	0.4444 ± 0.0231	0.5772 ± 0.0594	0.5256 ± 0.0335	0.3516 ± 0.0407
	ESim [27]	0.2925 ± 0.0223	0.4376 ± 0.0323	0.5480 ± 0.0109	0.5320 ± 0.0246	0.3512 ± 0.0226
	BERT [4]	0.2680 ± 0.0303	0.2451 ± 0.0273	0.5538 ± 0.0368	0.5240 ± 0.0261	0.3312 ± 0.0860
Text-based	PCEM [36]	0.3426 ± 0.0160	0.4820 ± 0.0292	0.5912 ± 0.0341	0.4645 ± 0.0163	0.2387 ± 0.0344
	WeSTClass [23]	0.3680 ± 0.0138	0.5036 ± 0.0287	0.6146 ± 0.0084	0.5312 ± 0.0161	0.3568 ± 0.0178
Text-based	PTE [32]	0.3170 ± 0.0516	0.3511 ± 0.0403	0.4551 ± 0.0249	0.2997 ± 0.0786	0.1945 ± 0.0250
	HAN [38]	0.1409 ± 0.0145	0.1900 ± 0.0299	0.4677 ± 0.0334	0.4809 ± 0.0372	0.3163 ± 0.0878
	CNN [12]	0.2227 ± 0.0195	0.2404 ± 0.0404	0.4909 ± 0.0489	0.4915 ± 0.0374	0.3106 ± 0.0613
Туре	Method	GitHub-Bio	GitHub-AI	GitHub-Sec	Amazon	Twitter

Table 2: Micro F1 scores of compared algorithms on the five datasets. "-": excessive memory requirements.

Table 3: Macro F1 scores of compared algorithms on the five datasets. "-": excessive memory requirements.

Туре	Method	GitHub-Bio	GitHub-AI	GitHub-Sec	Amazon	Twitter
	CNN [12]	0.1896 ± 0.0133	0.1796 ± 0.0216	0.4268 ± 0.0584	0.5056 ± 0.0376	0.2858 ± 0.0559
	HAN [38]	0.0677 ± 0.0208	0.0961 ± 0.0254	0.4095 ± 0.0590	0.4644 ± 0.0597	0.2592 ± 0.0826
Torrt based	PTE [32]	0.2630 ± 0.0371	0.3363 ± 0.0250	0.3803 ± 0.0218	0.2563 ± 0.0810	0.1739 ± 0.0190
Text-based	WeSTClass [23]	0.3414 ± 0.0129	0.4056 ± 0.0248	0.5497 ± 0.0054	0.5234 ± 0.0147	0.3085 ± 0.0398
	PCEM [36]	0.2977 ± 0.0281	0.3751 ± 0.0350	0.4033 ± 0.0336	0.4239 ± 0.0237	0.2039 ± 0.0472
	BERT [4]	0.1740 ± 0.0164	0.2083 ± 0.0415	0.4956 ± 0.0164	0.4911 ± 0.0544	0.2834 ± 0.0550
	ESim [27]	0.2598 ± 0.0182	0.3209 ± 0.0202	0.4672 ± 0.0171	0.5336 ± 0.0220	0.3399 ± 0.0113
Craph based	Metapath2vec [5]	0.3214 ± 0.0128	0.3220 ± 0.0290	0.5140 ± 0.0637	0.5239 ± 0.0437	0.3443 ± 0.0208
Graph-based	HIN2vec [6]	0.2742 ± 0.0136	0.2513 ± 0.0211	0.4000 ± 0.0115	0.4261 ± 0.0284	0.2411 ± 0.0142
	TextGCN [39]	0.4817 ± 0.0078	0.5997 ± 0.0013	-	-	0.3191 ± 0.0029
	MetaCat	0.5230 ± 0.0080	0.6154 ± 0.0079	0.6323 ± 0.0235	0.6496 ± 0.0091	0.3612 ± 0.0067

HIMECat: Jointly Modeling Metadata and Hierarchy

How to jointly leverage the label hierarchy, metadata, and text information?

Zhang, Y., Chen, X., Meng, Y., & Han, J. "Hierarchical Metadata-Aware Document Categorization under Weak Supervision", WSDM'21. A few labeled documents as supervision.

Computer Science	Computer Science > Computation and Language	
CS.AI (Artificial Intelligence)	Language Models are Few-Shot Learners, Title (Text)	Authors (Metadata)
CS.AR (Hardware Architecture)	Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariw: Sastry Amanda Askell, Sandhini Anarwal, Ariel Herbert-Viss, Gretchen Krueger, Tom Heninh	al, Arvind Neelakantan, Pranav Shyam, Girish an Rewon Child, Aditya Ramesh, Daniel M
cs.CC (Computational Complexity)	Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mareusz Litt Christopher Berner, Sam McCandlish, Alec Partford, Ilus Subseaver, Dario America	win, Scott Gray, Benjamin Chess, Jack Clark
Mathematics A	Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a	a large corpus of text followed by fine-tuning on a
math.AC (Commutative Algebra)	specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning examples. By contrast, humans can generally perform a new language task from only a few examples or fi	g datasets of thousands or tens of thousands of rom simple instructions - something which current
math.AG (Algebraic Geometry)	NLP systems still angely struggie to do. Here we show that scaling up language models greatly improve to even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT billion parameters if we may have ready any new your parameters and that its performance in the	ask-agnostic, few-shot performance, sometimes I-3, an autoregressive language model with 175 e few-shot setting. For all tasks, GPT-3 is applied
Quantitative Biology	without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via te performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as	xt interaction with the model. GPT-3 achieves strong several tasks that require on-the-fty reasoning or
q-bio.BM (Siomolecules)	domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit a datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces me	rithmetic. At the same time, we also identify some thodological issues related to training on large web
q-bio.CB (Cell Schavior)	corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have humans. We discuss broader societal impacts of this finding and of GPT-3 in general.	difficulty distinguishing from articles written by
abel Hierarchy	Abstract (Text)	

(b) **arXiv Paper.** Label Hierarchy: arXiv Category Taxonomy (https://arxiv.org/ category_taxonomy); Text: Title and Abstract; Metadata: Author.

(a) **GitHub Repository.** Label Hierarchy: PaperWithCode Task Taxonomy (https: //paperswithcode.com/sota); Text: Description and README; Metadata: User and Tag.

Label Hierarchy		Product (Metadata)
Department		Crave Coffee Flavored Coffee Variety Pack,
Grocery & Gourmet Food	(a) (a) (a) (a) (a) (a) (a) (a) (a)	Count
Coffee Beverages	AAAAAAAAAAA	by Crave Coffee
Single-Serve Coffee Capsules & Pods	ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼	★★★★☆☆ = 7,570 ratings 215 answered quantitiess Amazon's Choice Tor 'k caps'
Tea Beverages		Price: \$33.00 (50.55 / Count) & FREE Shipping, Details
Hot Cocoa		
✓ See more		Get \$20 off instantly: Pay \$13.00 upon approval for the Amazon.com Store Card.
Kitchen & Dining		The second second second
Reusable Coffee Filters		FUNDE: Aborted variety Pack
Single-Serve Brewers	LIsquared 😋 User (Metadata)	
 See All 22 Departments 		
	★★★★★ Great flavor, strong coffee! Title (Text)	
Avg. Customer Review	Reviewed in the United States on July 26, 2018	100 Table 1
★★★★☆ & Up	Flavor: Southern Pecan Size: 40 Count Verified Purchase	Review (Text)
★★★☆☆ & Up	Deeeeelicious! I was skeptical because I'm a diehard Starbucks fan and	d prefer my medium roast to be strong. I love
++++++++++++++++++++++++++++++++++++++	all things butter pecan so I just had to try this Southern Pecan version	. It smells amazing and is strong enough for
★☆☆☆☆ & Up	me so that's saying A LOT! I'll definitely be purchasing this again!	

(c) **Amazon Review.** Label Hierarchy: Amazon Product Catalog [24]; Text: Title and Review; Metadata: User and Product.

HIMECat: A Hierarchical Generative Process

- □ Step 1: Parent Label -> Child Label
- □ Step 2: Leaf label & Metadata -> Document
- Step 3: Document -> Word

Joint Representation Learning

- Embeddings are the parameters of the generative process.
- Maximum likelihood estimation of the parameters when observing the hierarchy, metadata and text
- Hierarchical Data Augmentation
 - After representation learning, how to synthesize training data for each class?
 - Follow the generative process

HIMECat: Experimental Results

Datasets

- GitHub: 3+14 categories; 1,596 docs
- ArXiv: 5+88 categories; 25,960 docs
- Amazon: 18+147 categories; 147,000 docs
- Metrics
 - □ F1 scores on leaf categories
 - □ F1 scores on all non-root categories

 Table 2: {Leaf, Overall}×{Micro, Macro} F1 scores of compared algorithms on the three datasets. *: significantly worse than HIMECAT (p-value < 0.01).</td>

 HIMECAT (p-value < 0.05). **: significantly worse than HIMECAT (p-value < 0.01).</td>

	GitHub				ArXiv				Amazon			
	Leaf Overall		Leaf Overall		Leaf		Overall					
	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro
HierSVM [7]	0.1861**	0.1388**	0.4862**	0.2457**	0.0538**	0.0460**	0.4066**	0.0750**	0.0248**	0.0217**	0.2218**	0.0494**
WeSHClass [29]	0.1727**	0.1559**	0.3332**	0.1924**	0.0604**	0.0602**	0.3077**	0.0797**	0.0483**	0.0500**	0.1234**	0.0640**
PCEM [48]	0.2519**	0.1234**	0.5299*	0.1786**	0.1090**	0.0717**	0.4440	0.0963**	0.0675**	0.0439**	0.2189**	0.0659**
HiGitClass [53]	0.3984	0.3902*	0.5073**	0.4084^{**}	0.1738**	0.1656**	0.3928**	0.1880**	0.0903**	0.0876**	0.1677**	0.1040**
MetaCat [51]	0.3762**	0.3403**	0.5411*	0.3863**	0.0790**	0.0768**	0.3071**	0.0935**	0.1008**	0.0994**	0.1703**	0.1083**
Metapath2vec [6]	0.2814**	0.2805**	0.4592**	0.3212**	0.1360**	0.1344**	0.3419**	0.1534**	0.0669**	0.0666**	0.1334**	0.0800**
Poincaré [32]	0.2750**	0.1980**	0.4302**	0.2218**	0.1336**	0.1296**	0.2995**	0.1454**	0.0645**	0.0607**	0.1202**	0.0739**
BERT [5]	0.2889**	0.2561**	0.4675**	0.3007**	0.1316**	0.0812**	0.4203**	0.1100**	0.0891**	0.0520**	0.2361**	0.0771**
HIMECAT	0.4254	0.4209	0.5820	0.4535	0.2038	0.1938	0.4509	0.2191	0.1552	0.1553	0.2748	0.1770

43

Outline

- What Weakly-Supervised Text Classification Is, and Why It Matters
- □ Flat Text Classification
 - Embedding: WeSTClass [CIKM'18]
 - Pre-trained LM: ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21]
- Text Classification with Taxonomy Information
 - Embedding: WeSHClass [AAAI'19]
 - Pre-trained LM: TaxoClass [NAACL'21]
- **Text Classification with Metadata Information**
 - Embedding: MetaCat [SIGIR'20], HIMECat [WSDM'21]
 - Pre-trained LM: MICoL [WWW'22]

MICoL: Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification

Input

- A set of labels. Each label has its name and description.
- A large set of unlabeled documents associated with metadata (e.g., authors, venue, references) that can connect the documents together.

Output

A multi-label text classifier. Given some new documents, the classifier can predict relevant labels for each document.

(b) Label "Betacoronavirus" from PubMed (https://meshb.nlm.nih.gov/record/ui? ui=D000073640).

Zhang, Y., Shen, Z., Wu, C., Xie, B., Wang, Y., Wang, K. & Han, J. "Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification", WWW'22. Category names and descriptions as supervision.

Pre-trained Language Models for Multi-Label Text Classification

- □ If we could have some labeled documents, ...
 - U We can use relevant (document, label) pairs to fine-tune the pre-trained LM.
 - Both Bi-Encoder and Cross-Encoder are applicable.

However, we do not have any labeled documents!!!

Metadata-Induced Contrastive Learning

- Contrastive learning: Instead of training the model to know "what is what" (e.g., relevant (document, label) pairs), train it to know "what is similar with what" (e.g., similar (document, document) pairs).
- Using metadata to define similar (document, document) pairs.

(b) Cross-Encoder fine-tuning

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. A simple framework for contrastive learning of visual representations. ICML'20.

MICoL: Experimental Results

- MICoL significantly outperforms text-based contrastive learning baselines.
- MICoL is competitive with the supervised SOTA trained on 10K–50K labeled documents.

	Algorithm	MAG-CS [49]				PubMed [24]					
	Algorithm	P@1	P@3	P@5	NDCG@3	NDCG@5	P@1	P@3	P@5	NDCG@3	NDCG@5
	Doc2Vec [31]	0.5697**	0.4613**	0.3814**	0.5043**	0.4719**	0.3888**	0.3283**	0.2859**	0.3463**	0.3252**
	SciBERT [2]	0.6440**	0.5030**	0.4011**	0.5545**	0.5061**	0.4427**	0.3572**	0.3031**	0.3809**	0.3510**
	ZeroShot-Entail [61]	0.6649**	0.5003**	0.3959**	0.5570**	0.5057**	0.5275**	0.4021	0.3299	0.4352	0.3913
ot	SPECTER [8]	0.7107**	0.5381**	0.4184**	0.5979**	0.5365**	0.5286**	0.3923**	0.3181**	0.4273**	0.3815**
cro-sh	EDA [53]	0.6442**	0.4939**	0.3948**	0.5471**	0.5000**	0.4919	0.3754*	0.3101*	0.4058*	0.3667*
	UDA [57]	0.6291**	0.4848**	0.3897**	0.5362**	0.4918**	0.4795**	0.3696**	0.3067**	0.3986**	0.3614**
Ň	MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$)	0.7062*	0.5369*	0.4184^{*}	0.5960*	0.5355*	0.5124**	0.3869*	0.3172*	0.4196*	0.3774*
	MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7050*	0.5344*	0.4161*	0.5937*	0.5331*	0.5198**	0.3876*	0.3172*	0.4215*	0.3786*
	MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$)	0.7177	0.5444	0.4219	0.6048	0.5415	0.5412	0.4036	0.3257	0.4391	0.3906
	MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7061	0.5376	0.4187	0.5964	0.5357	0.5218	0.3911	0.3172*	0.4249	0.3794
ed	MATCH [68] (10K Training)	0.4423**	0.2851**	0.2152**	0.3375**	0.3003**	0.6915	0.3869*	0.2785**	0.4649	0.3896
vis	MATCH [68] (50K Training)	0.6215**	0.4280**	0.3269**	0.4987**	0.4489**	0.7701	0.4716	0.3585	0.5497	0.4750
per	MATCH [68] (100K Training)	0.8321	0.6520	0.5142	0.7342	0.6761	0.8286	0.5680	0.4410	0.6405	0.5626
Su	MATCH [68] (Full, 560K+ Training)	0.9114	0.7634	0.6312	0.8486	0.8076	0.9151	0.7425	0.6104	0.8001	0.7310

Summary

Method	Flat vs. Hierarchical	Single-label vs. Multi-label	Supervision Format	Embedding vs. Pretrained LM
WeSTClass	Flat	Single-label	Both types	Embedding
ConWea	Flat	Single-label Category Names		Pretrained LM
LOTClass	Flat	Flat Single-label Category Name		Pretrained LM
X-Class	Flat & Hierarchical	Single-label & Path	Category Names	Pretrained LM
WeSHClass	Hierarchical	Path	Both types	Embedding
TaxoClass	Hierarchical	Multi-label	Category Names	Pretrained LM
MetaCat	Flat	Single-label	A Few Labeled Docs	Embedding
HIMECat	Hierarchical	Path	A Few Labeled Docs	Embedding
MICoL	Flat	Multi-label	Category Names	Pretrained LM

References

- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18
- □ Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20
- Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20
- □ Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21
- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-Supervised Hierarchical Text Classification", AAAI'19
- Shen, J., Qiu, W., Meng, Y., Shang, J., Ren, X., & Han, J., "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21
- Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., & Han, J. "Minimally Supervised Categorization of Text with Metadata", SIGIR'20
- Zhang, Y., Chen, X., Meng, Y., & Han, J. "Hierarchical Metadata-Aware Document Categorization under Weak Supervision", WSDM'21
- Zhang, Y., Shen, Z., Wu, C., Xie, B., Wang, Y., Wang, K. & Han, J. "Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification", To appear in WWW'22

Q&A

