
Part I: Language Foundation Models for 
Text Analysis

KDD 2023 Tutorial
Pretrained Language Representations for Text Understanding: A Weakly-Supervised Perspective
Yu Meng, Jiaxin Huang, Yu Zhang, Yunyi Zhang, Jiawei Han
Computer Science, University of Illinois Urbana-Champaign
Aug 9, 2023

Tutorial Website:
1



Pretrained Language Models: Overview

❑ The “pretrain-finetune” paradigm has become the prominent practice in a
wide variety of text applications

❑ Pretraining: Train deep language models (usually Transformer models) via 
self-supervised objectives on large-scale general-domain corpora

❑ Fine-tuning: Adapt the pretrained language models (PLMs) to downstream
tasks using task-specific data

❑ The power of PLMs: Encode generic linguistic features and knowledge
learned through large-scale pretraining, which can be effectively 
transferred to the target applications

❑ Large language models (LLMs) are PLMs of billions of parameters with
astonishing generalization ability to various applications!
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Categorization of Pretrained Language Models

❑ There are multiple ways to categorize PLMs
❑ By pretraining objectives: Standard language modeling, masked language modeling, permuted

language modeling…
❑ By pretraining settings: Multilingual, knowledge-enriched, domain-specific…

❑ In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

❑ Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens, usually used for
language generation tasks (e.g., GPT, LLaMA)

❑ Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all other (uncorrupted)
tokens, usually used for language understanding/classification tasks (e.g., BERT, XLNet, ELECTRA)

❑ Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding and generation
tasks (e.g., T5, BART)
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GPT-Style Pretraining: Introduction

❑ Generative Pretraining (GPTs [1-3]): 
❑ Leverage unidirectional context (usually left-to-right) for 

next token prediction (i.e., language modeling)

❑ The Transformer uses unidirectional attention masks (i.e., 
every token can only attend to previous tokens)

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding 
by generative pre-training. OpenAI blog
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are 
unsupervised multitask learners. OpenAI blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). 
Language models are few-shot learners. NeurIPS.

𝑘 previous tokens as context
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GPT-Style Pretraining: Text Generation

❑ Unidirectional LMs are commonly used for autoregressive text 
generation tasks (e.g., summarization, translation, …)

❑ A lot of downstream tasks can be converted into text generation tasks
(e.g., letting the model generate the sequence label)!

❑ They can be very, very large (GPT-3 has 175 billion parameters; GPT-4
may have much more!) and have very strong text generation abilities
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Why Large Language Models (LLMs)?

❑ Scaling up language models induces emergent abilities
❑ “Emergent”: not present in smaller models but in larger models

Wei, J., et al. (2022). Emergent Abilities of Large Language Models. TMLR.8

Emergent ability for few-shot prompting: 
LMs have random performance until a certain 
scale, after which performance significantly 
increases well-above random



ChatGPT: GPT + Instruction Tuning + RLHF

Instruction Tuning: Supervised training on
human annotated prompt-response pairs

Reinforcement Learning from Human Feedback (RLHF):
Train a reward model on human preferences of generation
results; tune the generator to maximize reward
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Reinforcement Learning from Human Feedback

❑ Reinforcement Learning from Human Feedback
(RLHF) is a core technique used in ChatGPT &
InstructGPT

❑ General idea:
❑ Encourage the language model to generate human

preferred texts
❑ Train a reward model on datasets with human

comparison labels (pairwise comparisons of generated
texts)

❑ Reinforce good actions (i.e., generation results) with a
reward function
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InstructGPT: Effectiveness of RLHF

Ouyang, Long et al. (2022). Training language models to follow instructions with human feedback. arXiv

Follows user prompts better
once trained with RLHF
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Other GPT-Style LLMs

❑ Pretrained models
❑ PaLM (Chowdhery et al. 2022): 8B/62B/540B
❑ OPT (Zhang et al. 2022): up to 175B
❑ LLaMA (Touvron et al. 2023a): 7B/13B/33B/65B

❑ Instruction-tuned models
❑ Bard (Google 2023)
❑ LLaMA 2 (Touvron et al. 2023b): 7B/13B/34B/70B
❑ Stanford Alpaca (Taori et al.): tuned based on LLaMA

❑ More LLMs can be found on the Chatbot Arena leaderboard
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BERT: Masked Language Modeling
❑ Bidirectional: BERT leverages a Masked LM learning to introduce real 

bidirectionality training
❑ Masked LM: With 15% words randomly masked, the model learns bidirectional

contextual information to predict the masked words

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).
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BERT: Next Sentence Prediction
❑ Next Sentence Prediction: learn to predict if the second sentence in the pair is the 

subsequent sentence in the original document
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Variants of BERT
❑ RoBERTa (Liu et al. 2019): Pretrain BERT on more data for longer, without next

sentence prediction
❑ XLNet (Yang et al. 2019): Permutation language modeling with two-stream self-

attention
❑ ALBERT (Lan et al. 2020): Shared Transformer parameters across layers for

parameter efficiency
❑ ELECTRA (Clark et al. 2020): Replaced token detection by corrupting text sequences

with an auxiliary MLM
❑ DeBERTa (He et al. 2021): Disentangled attention for contents and positions;

absolute position incorporated before decoding
❑ COCO-LM (Meng et al. 2021): Token replacement correction and sequence

contrastive learning
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T5

❑ T5: Text-to-Text Transfer Transformer
❑ Pretraining: Mask out spans of texts; generate the original spans
❑ Fine-Tuning: Convert every task into a sequence-to-sequence generation

problem

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of 
transfer learning with a unified text-to-text transformer. JMLR.
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BART
❑ BART: Denoising autoencoder for pretraining sequence-to-sequence models
❑ Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations…)

to input sequences and train the model to recover the original sequences
❑ Fine-Tuning:
❑ For classification tasks: Feed the same input into the encoder and decoder, and use the final decoder 

token for classification
❑ For generation tasks: The encoder takes the input sequence, and the decoder generates outputs 

autoregressively

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising 
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.

BART architecture BART pretraining objectives
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Deployment of Pretrained Language Models

❑ Pretrained language models (PLMs) are usually trained on large-scale 
general domain corpora to learn generic linguistic features that can be 
transferred to downstream tasks

❑ Common usages of PLMs in downstream tasks
❑ Fine-tuning: Update all parameters in the PLM encoder and task-specific layers

(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

❑ Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

❑ Parameter-efficient tuning: Only update a small portion of PLM parameters and keep
other (majority) parameters unchanged
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Standard Fine-Tuning of PLMs

❑ Add task-specific layers (usually one or two linear layers) on top of the 
embeddings produced by the PLMs (sequence-level tasks use [CLS] token 
embeddings; token-level tasks use real token embeddings)

❑ Task-specific layers and the PLMs are jointly fine-tuned with task-specific 
training data

23



Outline

❑ Pretrained Language Models: Categorization by Architecture

❑ Training and Deployment of Language Models

❑ Standard fine-tuning

❑ Prompt-based methods

❑ Parameter-efficient tuning

❑ Extending Language Models for Text-Rich Networks

24



Prompt-Based Fine-Tuning of PLMs
❑ Task descriptions are created to convert 

training examples to cloze questions
❑ Highly resemble the pretraining tasks (MLM) 

so that pretraining knowledge could be 
better leveraged

❑ Better than standard fine-tuning especially 
for few-shot settings

Schick, T., & Schütze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.
Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.
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Prompt-Based Fine-Tuning of PLMs

❑ Further improve prompt-based few-shot fine-tuning:
❑ Prompt templates and label words can be automatically generated
❑ Demonstrations can be concatenated with target sequences to provide hints

Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL
26



Prompt-Based Zero-Shot Inference

❑ Even without any training, knowledge can be 
extracted from PLMs through cloze patterns

❑ PLMs can serve as knowledge bases
❑ Pros: require no schema engineering, and support an 

open set of queries
❑ Cons: retrieved answers are not guaranteed to be 

accurate

❑ Could be used for unsupervised open-domain QA 
systems

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models 
as knowledge bases? EMNLP.
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In-Context Learning: Few-Shot Inference

❑ Large PLMs (e.g., GPT-3) 
have strong few-shot 
learning ability without any
tuning on large task-specific 
training sets

❑ Generate answers based on 
natural language 
descriptions and prompts
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Instruction Tuning

❑ Prompt-based fine-tuning on various tasks/formats => generalization to
unseen tasks/formats

❑ Applicable to build chatbots (e.g., ChatGPT) by tuning language models on
dialogue input-response pairs

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A.W., Lester, B., 
Du, N., Dai, A.M., & Le, Q.V. (2022). Finetuned Language 
Models Are Zero-Shot Learners. ICLR Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X., Efrat, 

A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis, M., Zettlemoyer, 
L., & Levy, O. (2023). LIMA: Less Is More for Alignment.29
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Parameter-Efficient Tuning of PLMs

❑ Fine-tuning updates all PLM parameters at the same time
❑ Large PLMs can have an enormous amount of parameters that are

costly to optimize
❑ Can we optimize only a small set of parameters in PLMs while still

achieving comparable performance to fine-tuning?
❑ A few strategies:
❑ Adapter: Insert small bottleneck modules and only update adapter + layer norm

parameters
❑ Prefix Tuning: Prepend tunable prefix vectors to every Transformer layer and keep

other parameters unchanged
❑ Low-Rank Adaptation: Use trainable low-rank matrices to approximate weight 

updates
31



Adapter for Parameter-Efficient Tuning

❑ Adapters are added twice to each 
Transformer layer

❑ Consist of a bottleneck structure
(down-project + up-project)

❑ Only adapter parameters + layer
norm parameters are updated
during tuning

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019). 
Parameter-efficient transfer learning for NLP. ICML
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Prefix Tuning

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.

❑ Prefix tuning prepends trainable vectors to each Transformer layer
❑ Only update prefix vectors and keep other pretrained parameters

unchanged
❑ Similar to prompt-based fine-tuning except that the prefix vectors are

continuous parameters instead of natural language words
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Low-Rank Adaptation

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. 
(2022). LoRA: Low-rank adaptation of large language models. ICLR.

❑ Inject trainable low-rank matrices into transformer layers to approximate 
the weight updates

❑ Since low-rank matrices have far less parameters than full-rank ones,
training them is much more efficient than standard fine-tuning

❑ Can be used together with quantization techniques (e.g., QLoRA)

A and B are low-rank matrices

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). 
QLoRA: Efficient Finetuning of Quantized LLMs.
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Homogeneous & Heterogeneous Text-Rich Network

❑ Why text-rich networks?
❑ Texts may be connected via links & relations
❑ Text-rich networks: Nodes/edges associated with textual 

information (e.g., review networks have users and items 
connected by review documents)

❑ Homogeneous vs. heterogeneous text-rich network: 
❑ Homogeneous: Nodes/edges in the network are single-typed
❑ Heterogeneous: Nodes/edges in the network are multi-typed

❑ How to extend language models to consider both text 
semantics and structure information?



Edgeformers: Learning on Homogeneous Networks

❑ Learning node and edge representations with virtual node tokens
❑ Node representations are based on aggregation of edge representations

Jin, B., Zhang, Y., Meng, Y., & Han, J. (2023). Edgeformers: Graph-Empowered 
Transformers for Representation Learning on Textual-Edge Networks. ICLR



Heterformer: Learning on Heterogeneous Networks

❑ Use virtual neighbor tokens inside each Transformer layer for text encoding
❑ Fuse representations of each node’s text-rich neighbors, textless neighbors, 

and its own content via attention

Jin, B., Zhang, Y., Zhu, Q., & Han, J. (2023). Heterformer: A Transformer Architecture for 
Node Representation Learning on Heterogeneous Text-Rich Networks. KDD
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Heterformer: Performance Study

Link prediction

Node Classification
Left: transductive
Right: inductive
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Pretraining on Text-Rich Networks

❑ Text understanding could depend on network structures!
❑ “Hershey’s” should have some similarity with the chocolate from “Ferrero” based on

the network structures
❑ How to pretrain representation models that effectively generalize to

various tasks (e.g., link prediction, classification, retrieval) ?



Patton

❑ Two pretraining objectives
❑ Network-contextualized masked language modeling (NMLM)
❑ Masked node prediction (MNP)

Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023). 
Patton: Language Model Pretraining on Text-Rich Networks. ACL
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Patton: Performance Study

Node classification
(coarse-grained)

Node classification via retrieval
(fine-grained)
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