Part I: Language Foundation Models for
Text Analysis




Pretrained Language Models: Overview

The “pretrain-finetune” paradigm has become the prominent practice in a
wide variety of text applications

Pretraining: Train deep language models (usually Transformer models) via
self-supervised objectives on large-scale general-domain corpora

Fine-tuning: Adapt the pretrained language models (PLMs) to downstream
tasks using task-specific data

The power of PLMs: Encode generic linguistic features and knowledge
learned through large-scale pretraining, which can be effectively
transferred to the target applications

Large language models (LLMs) are PLMs of billions of parameters with
astonishing generalization ability to various applications!
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Categorization of Pretrained Language Models

A There are multiple ways to categorize PLMs
- By pretraining objectives: Standard language modeling, masked language modeling, permuted
language modeling...
- By pretraining settings: Multilingual, knowledge-enriched, domain-specific...

Q In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

- Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens, usually used for
language generation tasks (e.g., GPT, LLaMA)

2 Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all other (uncorrupted)
tokens, usually used for language understanding/classification tasks (e.g., BERT, XLNet, ELECTRA)

- Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding and generation
tasks (e.g., T5, BART)
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GPT-Style Pretraining: Introduction

1 Generative Pretraining (GPTs [1-3]):

Output: Probabilities over tokens

1 Leverage unidirectional context (usually left-to-right) for T
next token prediction (i.e., language modeling) [ rarsosss ervang W |

k previous tokens as context

( Pointwise feed forward )

( Add & Layer norm )47
+

E : P ¢
EL:\I — = logp(xl |:$I kye-- 7m'i li) ( Add & Layer norm )4—

i )

C Masked multi-headed self-attention )

a The Transformer uses unidirectional attention masks (i.e E—
every token can only attend to previous tokens) | Emoacdng mar w, |

Input: x

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding

by generative pre-training. OpenAl blog
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAl blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020).
Language models are few-shot learners. NeurlPS.



GPT-Style Pretraining: Text Generation

1 Unidirectional LMs are commonly used for autoregressive text
generation tasks (e.g., summarization, translation, ...)

1 A lot of downstream tasks can be converted into text generation tasks
(e.g., letting the model generate the sequence label)!

2 They can be very, very large (GPT-3 has 175 billion parameters; GPT-4
may have much more!) and have very strong text generation abilities

COMPARISON: NLP PRE-TRAINED MODELS
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Why Large Language Models (LLMs)?

Scaling up language models induces emergent abilities

“Emergent”: not present in smaller models but in larger models
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Emergent ability for few-shot prompting:
LMs have random performance until a certain
scale, after which performance significantly
increases well-above random

Wei, J., et al. (2022). Emergent Abilities of Large Language Models. TMLR.



ChatGPT: GPT + Instruction Tuning +

RLHF

A prompt is ,-s..[ A prompt and 1:; A new prompt is e
sampled from our Exolai '&f several model Explain reinforcement sampled from Write a story
promptdataset, e outputsare oG the dataset
) ' sampled.
e .90
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@ 0 initialized from the N
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demonstrates the
desired output V4
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Instruction Tuning: Supervised training on
human annotated prompt-response pairs

Reinforcement Learning from Human Feedback (RLHF):
Train a reward model on human preferences of generation
results; tune the generator to maximize reward
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Reinforcement Learning from Human Feedback

J

Reinforcement Learning from Human Feedback
(RLHF) is a core technique used in ChatGPT &
InstructGPT

d General idea:

4

4

Encourage the language model to generate human
preferred texts

Train a reward model on datasets with human
comparison labels (pairwise comparisons of generated
texts)

Reinforce good actions (i.e., generation results) with a
reward function

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

I N

x./
Explain reinforcement
learning to a 6 year old.
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InstructGPT: Effectiveness of RLHF

Prompt:

Serendipity means the occurrence and development of events by chance in a happy or beneficial way. Use
the word in a sentence.

Labeler demonstration
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.

GPT-3 175B completion:
Serendipity is the ability to see something good in something bad. Use the word in a sentence.

Serendipity means to be happy with what you have. Use the word in a sentence.

Serendipity means finding something good in something that is bad. Use the word in a sentence.

{ TnstructGPT 175B completion:

I Serendipity can be defined as the happy chance occurrence of events leading to a beneficial outcome. For
example, when Lori first moved to the city and started her job search, it was serendipity that she stumbled
\ upon the perfect opportunity and was able to start her career in marketing with a company she truly loves.

Follows user prompts better
once trained with RLHF

\--I

Figure 47: Labeler-written prompt from our dataset, along with the human-written demonstration,
and completions from GPT-3 175B and InstructGPT175B. Prompt is lightly cherry-picked (5 selected
from 15 to show a diverse range of tasks), and the completions are not cherry-picked.

Ouyang, Long et al. (2022). Training language models to follow instructions with human feedback. arXiv
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Other GPT-Style LLMs

1 Pretrained models
2 PaLM (Chowdhery et al. 2022): 8B/62B/540B
- OPT (Zhang et al. 2022): up to 175B
21 LLaMA (Touvron et al. 2023a): 7B/13B/33B/65B
a Instruction-tuned models
- Bard (Google 2023)
2 LLaMA 2 (Touvron et al. 2023b): 7B/13B/34B/708B
- Stanford Alpaca (Taori et al.): tuned based on LLaMA

d More LLMs can be found on the Chatbot Arena leaderboard



https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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BERT: Masked Language Modeling

0 Bidirectional: BERT leverages a Masked LM learning to introduce real
bidirectionality training
d Masked LM: With 15% words randomly masked, the model learns bidirectional

I 1
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d V4 \|/ \l/ N / A 4 N V. /7 N
Input [CLS]] my [j| dog |[l| is (cute] [SEP] he [ likes \l( play 1 ##ing \] [SEP]
I I | | | |
Token : : : :
Embeddings E[CLS] Emy : s : Eis Eoe E[sep] Ee : Epuse : Eplay E, ing E[sep]
| S —— J e — J
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Positional
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Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).
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BERT: Next Sentence Prediction

d Next Sentence Prediction: learn to predict if the second sentence in the pair is the
subsequent sentence in the original document

Class
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Variants of BERT

RoBERTa (Liu et al. 2019): Pretrain BERT on more data for longer, without next
sentence prediction

XLNet (Yang et al. 2019): Permutation language modeling with two-stream self-
attention

ALBERT (Lan et al. 2020): Shared Transformer parameters across layers for
parameter efficiency

ELECTRA (Clark et al. 2020): Replaced token detection by corrupting text sequences
with an auxiliary MLM

DeBERTa (He et al. 2021): Disentangled attention for contents and positions;
absolute position incorporated before decoding

COCO-LM (Meng et al. 2021): Token replacement correction and sequence
contrastive learning
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T5

3 T5: Text-to-Text Transfer Transformer

 Pretraining: Mask out spans of texts; generate the original spans

1 Fine-Tuning: Convert every task into a sequence-to-sequence generation
problem

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in

[Lily couldn't <M>. The waitress

had brought the largest <M> of believe her eyes <M=
chocolate cake <M> seen. piece <M> she had ever

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

peaches are <M> at our]

President Franklin D.
Roosevelt was born
in January 1882. A= = = = = = = = = = -

D

When was Franklin D.
[ Roosevelt born? . |5 i

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer. JMLR.

Pre-training

Fine-tuning




BART

O BART: Denoising autoencoder for pretraining sequence-to-sequence models

4 Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
to input sequences and train the model to recover the original sequences

Q Fine-Tuning:
- For classification tasks: Feed the same input into the encoder and decoder, and use the final decoder
token for classification

- For generation tasks: The encoder takes the input sequence, and the decoder generates outputs
autoregressively

????E CAicElED) (DE.ABC.) (c.DE.AB)
. _ Token Masking  Sentence Permutation Document Rotation
C Bidirectional Autoregressive
Encoder Decoder
 EEETE ERERS (a.c.e. ) ) (aBC.DE.) <3 (A_.D_E.)
A_B_E <s>A B C D Token Deletion Text Infilling
BART architecture BART pretraining objectives

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.
19
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Deployment of Pretrained Language Models

J

4
u

Pretrained language models (PLMs) are usually trained on large-scale
general domain corpora to learn generic linguistic features that can be
transferred to downstream tasks

Common usages of PLMs in downstream tasks

Fine-tuning: Update all parameters in the PLM encoder and task-specific layers
(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

Parameter-efficient tuning: Only update a small portion of PLM parameters and keep
other (majority) parameters unchanged
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Standard Fine-Tuning of PLMs

1 Add task-specific layers (usually one or two linear layers) on top of the
embeddings produced by the PLMs (sequence-level tasks use [CLS] token
embeddings; token-level tasks use real token embeddings)

1 Task-specific layers and the PLMs are jointly fine-tuned with task-specific

training data
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BERT
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T —

Tk L. b [SEP] Tk L. L

Sentence 1

Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

E;s:, Start/End Span 0  B-PER : 0
— 20— < F R ﬁ
Ce 1 =) [~ ] OEE
BERT BERT BERT
=] - [=] o]~ Lol - [&] e =] =]
?ﬁ: 1T ir - {1 —
[CLS] Tok 1 2 m Tok 1 2

Tok Tol [SEP] T“"‘ 7&“ CLS] Tok

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, CoLA

(c) Question Answering Tasks:
SQUAD v1.1

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Prompt-Based Fine-Tuning of PLMs

0 Task descriptions are created to convert

( Best pizzaever! +1 )

training examples to cloze questions l
...................... RTE
Q Highly resemble the pretraining tasks (MLM) : ge pizzaevert 085
.. : Itwas ____. : :
so that pretraining knowledge could be ' ‘“l ; -
better leveraged . . o
H H H . e « classifier run
Q Better than standard fine-tuning especially | 5 oo wwa il
. . = rompting run
for few-shot settings . N : 055 5 o o
I 0 500 1000 1500 2000
S e i .......... .- training points
+1: 0.8
MLM .| great (label:positive) -1:0.2
g (label:negative) V}
Label mapping M (Y
[ [CLS] No reason to watch . It was MASK [SEP] A funride . It was great . [SEP] The drama discloses nothing . It was . [SEP] J
F———— Input — —— Template —1 F— Demonstration for label:positive — F———————— Demonstration for label:negative ——

Schick, T., & Schiitze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.

. Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.

End of dataset
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Prompt-Based Fine-Tuning of PLMs

1 Further improve prompt-based few-shot fine-tuning:

- Prompt templates and label words can be automatically generated
- Demonstrations can be concatenated with target sequences to provide hints
SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
MajorityJr 50.9 23.1 50.0 50.0 50.0 50.0 18.8 0.0
Prompt-based zero-shot! 83.6 35.0 80.8 79.5 67.6 514 32.0 2.0
“GPT-3” in-context learning 84.8 (1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 262(24) -1524
Fine-tuning 81.4(3.8) 439200 769(59) 758(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1) 33.9(14.3)
Prompt-based FT (man) 92.7(09) 47425) 87.0(1.2) 903(1.0) 84.7(222) 91.2(1.1) 84.8(5.1) 93(73)
+ demonstrations 92.6 (0.5) 50.6(1.4) 86.6(22) 90.2(1.2) 87.0(l.1) 92.3(0.8) 87.5(32) 18.7(8.8)
Prompt-based FT (auto) 923(1.0) 492(1.6) 85.5(2.8) 89.0(1.4) 858(1.9) 91.2(l.1) 88.2(20) 14.0(14.1)
+ demonstrations 93.0 (0.6) 49.5(1.7) 87.7(1.4) 91.0(0.9) 86.5(2.6) 91.4(1.8) 89.4(1.7) 21.8(15.9)
Fine-tuning (full)f 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6
MNLI MNLI-mm SNLI QNLI RTE MRPC QQpP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)
Majority! 32.7 33.0 33.8 49.5 52.7 87:2 0.0 .
Prompt-based zero-shot* 50.8 51.7 49.5 50.8 513 61.9 49.7 -3.2
“GPT-3” in-context learning  52.0 (0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 604 (1.4) 457(6.0) 36.1(52) 143 (2.8)
Fine-tuning 458 (6.4) 47.8(6.8) 484 (4.8) 60.2(6.5) 54.4(39) 76.6(2.5) 60.7(43) 53.5(8.5)
Prompt-based FT (man) 68.3(2.3) 70.5(1.9) 7727 645(42) 69.1(3.6) 745(53) 655(53) 71.0(7.0)
+ demonstrations 70.7 (1.3) 72.0(1.2) 79.7(1.5) 69.2(19) 68.72.3) 77.8(2.0) 69.8(1.8) 73.5(5.1)
Prompt-based FT (auto) 68.3(2.5) 70.1(26) 77.1(2.1) 683(74) 73922) 762(123) 67.03.00 750(3.3)
+ demonstrations 700 (3.6) 720(3.1) 775(35) 68.5(54) 71.1(53) 781(34) 67.7(58) 764 (6.2)
Fine-tuning (full)t 89.8 89.5 92.6 93.3 80.9 91.4 81.7 91.9

Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL



Prompt-Based Zero-$hot Inference

4

d
4

d

Even without any training, knowledge can be
extracted from PLMs through cloze patterns

PLMs can serve as knowledge bases

Pros: require no schema engineering, and support an
open set of queries

Cons: retrieved answers are not guaranteed to be
accurate

Memory Query Answer

(DANTE, born-in, X)
Y
Symbolic

KG DANTE et . ~___—» FLORENCE
Memory Access

Neural LM

> Florence
Memory Access

e.g. ELMo/BERT

Figure 1: Querying knowledge bases (KB) and lan-
guage models (LM) for factual knowledge.

1 Could be used for unsupervised open-domain QA

systems

as knowledge bases? EMNLP.

Petroni, F., Rocktaschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models
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In-Context Learning: Few-Shot Inference

2 Large PLMs (e.g., GPT-3)
have strong few-shot
learning ability without any
tuning on large task-specific
training sets

1 Generate answers based on

natural language
descriptions and prompts

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task descriptio
sea otter > loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese > prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1

peppermint => menthe poivrée

plush giraffe =>

cheese => prompt

girafe peluche example #N



Instruction Tuning

10 Prompt-based fine-tuning on various tasks/formats => generalization to
unseen tasks/formats

1 Applicable to build chatbots (e.g., ChatGPT) by tuning language models on

dialogue input-response pairs i
prompt dataset. learni gt a6 yearold.
Instruction-t h
Pretramed e tacka: " __, Inference Alabel
[ ]_’ mang taSks on task A de?nfnz;ratesthe @
desired output " tZtS y
Model learns to perform  Inference on pehavior punshments ot
many tasks via natural unseen task
L language instructions p o
This data s used to .@.
Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A.W., Lester, B., withsupenvsed p
Du, N., Dai, A.M., & Le, Q.V. (2022). Finetuned Language fearning. EEE
Models Are Zero-Shot Learners. ICLR Zhou, C,, Liu, P., Xu, P., lyer, S., Sun, J., Mao, Y., Ma, X., Efrat,

A., Yu, P, Yu, L., Zhang, S., Ghosh, G., Lewis, M., Zettlemoyer,
L., & Levy, O. (2023). LIMA: Less Is More for Alignment.
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Parameter-Efficient Tuning of PLMs

Fine-tuning updates all PLM parameters at the same time

Large PLMs can have an enormous amount of parameters that are
costly to optimize

Can we optimize only a small set of parameters in PLMs while still
achieving comparable performance to fine-tuning?

A few strategies:

Adapter: Insert small bottleneck modules and only update adapter + layer norm
parameters

Prefix Tuning: Prepend tunable prefix vectors to every Transformer layer and keep
other parameters unchanged

Low-Rank Adaptation: Use trainable low-rank matrices to approximate weight
updates



Adapter for Parameter-Efficient Tuning

1 Adapters are added twice to each

pemmmoooe- b P N .
Transformer layer A R
: Transformer : i :

2 Consist of a bottleneck structure | Laver - [2808R00
(down-project + up-project) § = o opome |
X ayer | : T .
2 Only adapter parameters + layer ; [ ] L Nonineary
: Layer Norm ! ! \ /
norm parameters are updated ; S 5 5 O:O
during tuning E E i [ Feedforward ]
i [ Feed-forward Iayer] E : down-rrolect
| {Wmmd] | . [0O00000
\ attention h k. )

___________________

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A,, ... & Gelly, S. (2019).
Parameter-efficient transfer learning for NLP. ICML



Prefix Tuning

1 Prefix tuning prepends trainable vectors to each Transformer layer
2 Only update prefix vectors and keep other pretrained parameters
unchanged

4 Similar to prompt-based fine-tuning except that the prefix vectors are
continuous parameters instead of natural language words

Prefix-tuning

Prefix
(Summarization)

Prefix
(Table-to-text)

!

Transformer (Pretrained)
name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.
33
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Low-Rank Adaptation

Inject trainable low-rank matrices into transformer layers to approximate

the weight updates
Since low-rank matrices have far less parameters than full-rank ones,
training them is much more efficient than standard fine-tuning

Can be used together with quantization techniques (e.g., QLoRA)

h | l

2 PR %

) Wo+ AW =W, +BA

/—\ Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W.

N 4 A (2022). LoRA: Low-rank adaptation of large language models. ICLR.
1

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023).
QLoRA: Efficient Finetuning of Quantized LLMs.
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Homogeneous & Heterogeneous Text-Rich Network

d Why text-rich networks?

01 Texts may be connected via links & relations f orpus }
1 Text-rich networks: Nodes/edges associated with textual ’ ﬂ. 3 e
information (e.g., review networks have users and items U Nef . author |

: textless)

connected by review documents) & é/ ZMS2 . venue |

1 Homogeneous vs. heterogeneous text-rich network:

2  Homogeneous: Nodes/edges in the network are single-typed

RGP blog
(:> PV I corpus
7 // /’

J Heterogeneous: Nodes/edges in the network are multi-typed Q o1 }

. corpus

1 How to extend language models to consider both text ¢ P
H M : / : : texteﬁ ‘
semantics and structure information? ®&§- | Pt |

24 (tontiess) ?

6 tag |

(textless) ,.i



Edgeformers: Learning on Homogeneous Networks

1 Learning node and edge representations with virtual node tokens
1 Node representations are based on aggregation of edge representations

Node Representation . .
P B O O O Virtual Node Token Hidden States

Edge Representation AGG( ) B Virtual Local Network Hidden State
' ._Local Network Aggregation
T | %i \I e
et [ S
I =1 1 | I
. : N AL LN !
T g Q. ¥ F 3
I A v " r
) _|_+ Ll N e m e — e 4
\. O
B B
Ego-Graph

(a) Edgeformer-E (b) Edgeformer-N

Jin, B, Zhang, Y., Meng, Y., & Han, J. (2023). Edgeformers: Graph-Empowered
Transformers for Representation Learning on Textual-Edge Networks. ICLR



Heterformer: Learning on Heterogeneous Networks

1 Use virtual neighbor tokens inside each Transformer layer for text encoding

1 Fuse representations of each node’s text-rich neighbors, textless neighbors,

and its own content via attention
[l Token/Node Hidden State EE]:' f/ {A}”

Center Node Embedding I

__________

[l Text-rich Neighbor Aggregation Embedding

1
. . . > - Latent Space I
[l Textless Neighbor Aggregation Embedding ~ : Transformation :

’ , "R = R B 1

Neighbor Aggregation Embedding = — 1

, [ Neighbor Aggregation ] [ Neighbor Aggregation ] ! <A

e Y 4 ... ceeem Y Pl Heterformer " N

/i g e SN o P S i e SRS B e s e e e e T 4 : [CLS]
//] S " ‘Layer
/ e '. : . ) I - - » - - - . . . 1 ' Transformer Layer ,'
f4F——— V| > 4 2 T b s o )
L B ‘S N q)’ & & L \
y yy : 4 P o~ N ! @
un!u,‘iz,uZ,, ’ Q 9 QdOt product = _{ Neighbor Aggregation ] [ Neighbor Aggregation ] ! \
7 L W I = e T — T B W — [ B
\ ,‘/' uﬂ.1 \‘\uny /u'n:, ‘ uc £
~ S U RSN 0
N NN o I N o
A Un, Up, Up, Uc A
G' A A A A T
Neighbors Center Node @ @

Neighbor Aggregation Module
Text-rich Neighbors Center Node (text-rich) Textless Neighbors

Jin, B, Zhang, Y., Zhu, Q., & Han, J. (2023). Heterformer: A Transformer Architecture for
Node Representation Learning on Heterogeneous Text-Rich Networks. KDD



Heterformer: Performance Study

Method DBLP Twitter Goodreads

PREC | MRR | NDCG | PREC | MRR | NDCG | PREC | MRR | NDCG

MeanSAGE 0.7019 0.7964 0.8437 0.6489 0.7450 0.7991 0.6302 0.7409 0.8001

BERT 0.7569 0.8340 0.8726 0.7179 0.7833 0.8265 0.5571 0.6668 0.7395

% BERT+MeanSAGE | 0.8131 0.8779 0.9070 0.7201 0.7845 0.8275 0.7301 0.8167 0.8594

G  BERT+MAXSAGE | 0.8193 0.8825 0.9105 0.7198 0.7845 0.8276 0.7280 0.8164 0.8593

&  BERT+GAT 0.8119 0.8771 0.9063 0.7231 0.7873 0.8300 0.7333 0.8170 0.8593 Link prediction

& GraphFormers 0.8324 0.8916 0.9175 0.7258 0.7891 0.8312 0.7444 0.8260 0.8665

% BERT+RGCN 0.7979 0.8633 0.8945 0.7111 0.7764 0.8209 0.7488 0.8303 0.8699

&  BERT+HAN 0.8136 0.8782 0.9072 0.7237 0.7880 0.8306 0.7329 0.8174 0.8597

o  BERT+HGT 0.8170 0.8814 0.9098 0.7153 0.7800 0.8237 0.7224 0.8112 0.8552

£  BERT+SHGN 0.8149 0.8785 0.9074 0.7218 0.7866 0.8295 0.7362 0.8195 0.8613

‘% GraphFormers++ 0.8233 0.8856 0.9130 0.7159 0.7799 0.8236 0.7536 0.8328 0.8717

Heterformer 0.8474* | 0.9019* | 0.9255* | 0.7272* | 0.7908" | 0.8328" | 0.7633* | 0.8400* | 0.8773"

DBLP Goodreads DBLP Goodreads
Method Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 Method Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1

BERT 0.6119 | 05476 0.8364 | 0.7713 BERT 05996 | 05318 08122 | 07371
BERT+MaxSAGE | 0.6179 0.5511 0.8447 0.7866 BERT+MaxSAGE | 0.6117 0.5435 0.8368 0.7749
BERT+MeanSAGE | 0.6198 0.5522 0.8420 0.7826 Node Classification BERT+MeanSAGE | 0.6129 0.5431 0.8350 0.7721
BERT+GAT 0.5943 0.5175 0.8328 0.7713 ) BERT+GAT 0.5879 0.5150 0.8249 0.7590
GraphFormers 0.6256 0.5616 0.8388 0.7786 Left: transductive GraphFormers 0.6197 0.5548 0.8330 0.7683
BERT+HAN 0.5965 0.5211 0.8351 0.7747 Right: inductive BERT+HAN 0.5948 0.5165 0.8279 0.7626
BERT+HGT 0.6575 0.5951 0.8474 0.7928 BERT+HGT 0.6467 0.5835 0.8390 0.7798
BERT+SHGN 0.5982 0.5214 0.8345 0.7737 BERT+SHGN 0.5955 0.5202 0.8280 0.7626
GraphFormers++ 0.6474 0.5790 0.8516 0.7993 GraphFormers++ 0.6386 0.5696 0.8427 0.7848

Heterformer 0.6695" 0.6062" 0.8578" 0.8076" Heterformer 0.6600* 0.5976" 0.8507* 0.7977*
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1 Pretrained Language Models: Categorization by Architecture
1 Training and Deployment of Language Models

1 Extending Language Models for Text-Rich Networks
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Pretraining on Text-Rich Networks

1 Text understanding could depend on network structures!
- “Hershey’s” should have some similarity with the chocolate from “Ferrero” based on
the network structures
1 How to pretrain representation models that effectively generalize to
various tasks (e.g., link prediction, classification, retrieval) ?

o —— ——

: Q ‘
I
______________ ! Dove’s Smooth formula will .
( © ¥ ' leave you feeling refreshed )
I e e Ry J .
'Olay Moisture Coconut! / ( © A
§ v l : :
' Oasis Body Wash @/D L'Oreal Paris Elvive |
\E] & 8 /Repairing Shampoo!
II _______ B _______ 1 25 9-------:--4_0___\
! HERSHEY'S Assorted /7> ©) )
' Chocolate Candy Mix | i Ferrero Rocher Collection, :
"""""" \Fine Hazelnut Milk Chocolates
ETE
Chocolate? ! Experience the ultimatein !
I
I

20 5l smoothness and creaminess
1 with Dove

_____________________




Patton

d Two pretraining objectives

- Network-contextualized masked language modeling (NMLM)
2 Masked node prediction (MNP)

o - ..[Link Prediction |
P NMLM i
a 2 - MNP MNP MNP qR;r:tr::g\r/‘agl I |
On the [maskju: ! g
| land risks of ... i: ‘ ' Classification
5@ ei %%%I
a. NMLM  «- Graph-based Aggregation
I \/ I
B WA
[ : 1
2 ! L1 |4
@ \\a I Graph-based Aggregatlon ja
b. MNP «--
H neighbor aggregation
hidden state
[(CLS] token hidden state [CLS] T [CLS] T [CLS] T Input
M word token hidden state  Doc 1 a .. Doc2 @ Doc 3 a -

® Pretraining @ A Text-rich Network

Jin, B., Zhang, W., Zhang, Y., Meng, Y., Zhang, X., Zhu, Q., & Han, J. (2023).
Patton: Language Model Pretraining on Text-Rich Networks. ACL



Patton: Performance Study

Method Mathematics Geology Economics Clothes Sports
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
BERT 18.14¢.07 22.04¢9.32 21.970.87 29.630.36 14.179.08 19.770.12 45.101 47 68.549 95 31.88p.23 34.580 56
GraphFormers 18.69¢ 52 23.240.46 22.640.92 31.021.16 13.681.03 19.001 44 46.271 92 68.972 46 43.770.63 50.470.78
SciBERT 23.500.64 23.109.93 29.491 o5 37.821 89 15.91 48 21.32 66 - - - -
SPECTER 23.370.07 29.830.96 30.400.48 38.54¢.77 16.160.17 19.84¢ 47 - - - -
SimCSE (unsup) 20.120.08 26.11p.39 38.780.19 38.55¢0.17 14.54¢.2¢ 19.070.43 42.709 32 58.720.34 41.91¢.85 59.199 55
SimCSE (sup) 20.390.07 25.56¢.00 25.66¢.28 33.890.40 15.030.53 18.641 32 52.82¢.87 75.54¢.98 46.690.10 59.19¢ 55
LinkBERT 15.78001  19.75119  24.08p58 31.32004 12.71p12  16.39920  44.94950  65.33534  35.60p33  38.300.09 Node classification
BERT.MLM 23.44 39 31.75¢.58 36.31¢.36 48.04¢ 69 16.60¢.21 22.711 16 46.98 84 68.000.84 62.2113 75.430.74 .
SciBERT.MLM 2334042  30.1l097  36.94028 46.54040  16.2803s  21.410s1 . - - - (coa rse-grain ed )
SimCSE.in-domain 25.15¢.09 29.85¢0.20 38.91¢.08 48.930.14 18.080.22 23.790.44 57.030.20 80.16¢.31 65.570.35 75.220.18
PATTON 27.580.03 32.82p.01 39.350.06 48.19¢.15 19.32¢.05 25.120.05 60.14¢ o5 84.880.09 67.570.08 78.60¢. 15
_SciPATTON _ 27.35004 _ 31.700.01 __39.65010_ _ 4893006 1991903 2568052 - L L L
w/o NMLM 25.91¢.45 27.792 07 38.780.19 48.480 17 18.86¢.23 24.25¢ 26 56.680.24 80.270.17 65.830.28 76.24¢ 54
w/o MNP 24.790.65 29.444 50 38.000.73 47.821 06 18.69¢.59 25.631.44 47.351 20 68.502.60 64.231 53 76.031.67
Nichiod Mathematics Geology Economics Clothes Sports
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

BM25 20.76 24.55 19.02 20.92 19.14 22.49 15.76 15.88 22.00 23.96

BERT 16.730.17 22.660.18 18.82p939 25.94039 23.950.25 31.54p01 40.77168 50.401.41 32.37109 43.320.96

GraphFormers 16.650.12 22.410'10 18, 920.60 25.940.39 24.480.36 32.160.40 41.772.05 51.262.27 32~390.89 43.291,12

SciBERT 24.70017 33.55031 23.71p89 30.94p95 29.80065 38.660.52 - - - - . . . .

SPECTER 23.86025 31.11g931 26.56105 34.04132 31.26015 40.79 .11 - - - - N Od e cIa SS ifi cation via retrieva |

SimCSE (unsup) 1791926 23.19929 20.450920 26.8209¢ 25.830p.23 33.42p08 44.90035 54.76038 38.81p.35 49.300.44

SimCSE (Sup) 20.290.41 26.230'51 22.340.49 29.630.55 28.070.38 36.510,37 44.690.59 54.700.77 40.310,43 50.550,41 (fi n e_g ra i n ed )

LinkBERT 17.25030 23.21p047 17.14975 23.05074 22.69930 30.77036 28.66297 37.79382 31.97p054 41.77067

BERT.MLM 20.690,21 27.170_25 32~130.36 41.740_42 27.130_04 36'000,14 52.411_71 63.721,79 54.100.81 63.140_83

SciBERT.MLM 20.65p21 27.67p32 31.65971 40.52076 29.23p.67 39.18¢.73 - - - -

SimCSE.in-domain 24.540,05 31.660_()9 33.970,07 44.090_19 28.440_31 37.810,27 61.420_84 72.250_86 53.770_22 63.730_30

PATTON 2744015 34.97p.21 34.94¢.23 45.01p28 32.10¢.51 42.19062 68.62035 77.54¢.19 58.63(.31 68.53 55

_SciPATTON 314005  40.38065  40.69052 S1.31g4s 3582069 46.05060 = - S e ] 2
w/o NMLM 30.850.14 39.89023 39.290.07 49.599.11 35.17031 46.0795 65.60026 75.19032 57.050.14 67.220.12

w/o MNP 2247007 30.200.15 31.280p89 40.54p997 29.54p36 39.57957 60.20073 69.85052 51.73p041 60.350.78
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