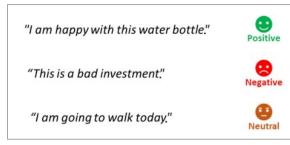
Part III: Weakly-Supervised Natural Language Understanding: Text Classification and Beyond

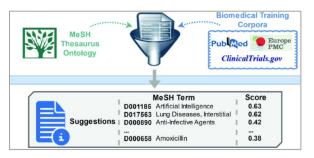
KDD 2023 Tutorial Pretrained Language Representations for Text Understanding: A Weakly-Supervised Perspective Yu Meng, Jiaxin Huang, Yu Zhang, Yunyi Zhang, Jiawei Han Computer Science, University of Illinois Urbana-Champaign Aug 9, 2023

Text Classification

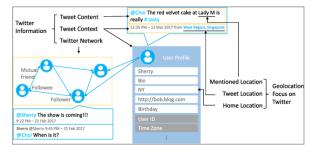
- Given a set of text units (e.g., documents, sentences) and a set of categories, the task is to assign relevant category/categories to each text unit
- Text Classification has a lot of downstream applications



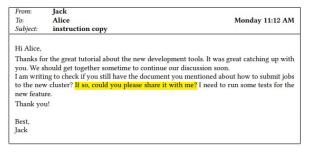
Sentiment Analysis



Paper Topic Classification



Location Prediction



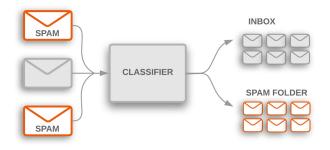
Email Intent Identification

News Topic Classification

Hate Speech Detection

Different Text Classification Settings: Single-Label vs. Multi-Label

- **Single-label**: Each document belongs to one category.
- E.g., Spam Detection



- Multi-label: Each document has multiple relevant labels.
- **E.g.**, Paper Topic Classification

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Related Topics ()

A Question answering	A Natural language understanding	Named-entity recognition	🛛 🖾 SemEval 🖉	Inference	A Winograd Schema Challer	ige 🛛 🖉 Sequence labeling
Artificial intelligence	Transformer (machine learning model	I) View Less ^ h	ttps://acad	lemic.mi	crosoft.com/pape	r/2963341956/

3

Different Text Classification Settings: Flat vs. Hierarchical

- **Flat**: All labels are at the same granularity level
 - □ E.g., Sentiment Analysis of E-Commerce Reviews (1-5 stars)

★★★★★ It works, it's nice, comfortable, and easy to type on. Not loud (unless you're a key pounder)

This keyboard works. It's comfortable, sensitive enough for touch typers, very quiet by comparison to other mechanicals (unless, of course, you're a 'key pounder'), and the lit keys are excellent for people like me who tend to prefer to work in a cave-like environment. https://www.amazon.com/gp/product/B089YFHYYS/

Hierarchical: Labels are organized into a hierarchy representing their parent-child relationship

□ E.g., Paper Topic Classification (the arXiv category taxonomy)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Subjects: Computation and Language (cs.CL) Cite as: arXiv:1810.04805 [cs.CL] (or arXiv:1810.04805v2 [cs.CL] for this version)

4

https://arxiv.org/abs/1810.04805

Natural Language Understanding (NLU)

- The widely used General Language Understanding Evaluation (GLUE) benchmark has 7 tasks.
 - MNLI: Multi-genre Natural Language Inference aims to predict whether a given premise sentence entails, contradicts or neutral with respect to a given hypothesis sentence.
 - QQP: Quora Question Pairs aims to determine whether a pair of questions asked are semantically equivalent.
 - QNLI: Question Natural Language Inference aims to predict whether a given sentence contains the answer to a given question sentence.
 - □ **SST-2**: Stanford Sentiment Treebank aims to determine if a movie review has **positive or negative sentiment**.

Task	Label	Prompt
SST-2	positive negative	Rating: 5.0 x^g Rating: 1.0 x^g
MNLI	entailment neutral contradiction	x^s . In other words, x^g x^s . Furthermore, x^g There is a rumor that x^s . However, the truth is: x^g
QNLI	entailment not entailment	$oldsymbol{x}^s$? $oldsymbol{x}^g$ $oldsymbol{x}^s$? $oldsymbol{x}^g$
RTE	entailment not entailment	$m{x}^s$. In other words, $m{x}^g$ $m{x}^s$. Furthermore, $m{x}^g$
MRPC	equivalent not equivalent	$oldsymbol{x}^s$. In other words, $oldsymbol{x}^g$ $oldsymbol{x}^s$. Furthermore, $oldsymbol{x}^g$
QQP	equivalent not equivalent	$oldsymbol{x}^s$? In other words, $oldsymbol{x}^g$ $oldsymbol{x}^s$? Furthermore, $oldsymbol{x}^g$

Natural Language Understanding (NLU)

- The widely used General Language Understanding Evaluation (GLUE) benchmark has 7 tasks.
 - CoLA: Corpus of Linguistic Acceptability aims to determine whether a given sentence is linguistically acceptable or not.
 - RTE: Recognizing Textual Entailment aims to predict whether a given premise sentence entails a given hypothesis sentence or not.
 - MRPC: Microsoft Research Paraphrase Corpus aims to predict whether two sentences are semantically equivalent or not.
- Many NLU tasks can be cast as a text classification problem. They classify either one text unit or a pair of text units.

Label	Prompt
positive	Rating: 5.0 x^g
negative	Rating: 1.0 x^g
entailment neutral contradiction	x^s . In other words, x^g x^s . Furthermore, x^g There is a rumor that x^s . However, the truth is: x^g
entailment not entailment	$oldsymbol{x}^s ? oldsymbol{x}^g \ oldsymbol{x}^s ? \dots oldsymbol{x}^g$
entailment	$oldsymbol{x}^s$. In other words, $oldsymbol{x}^g$
not entailment	$oldsymbol{x}^s$. Furthermore, $oldsymbol{x}^g$
equivalent	\boldsymbol{x}^{s} . In other words, \boldsymbol{x}^{g}
not equivalent	\boldsymbol{x}^{s} . Furthermore, \boldsymbol{x}^{g}
equivalent	$oldsymbol{x}^s$? In other words, $oldsymbol{x}^g$
not equivalent	$oldsymbol{x}^s$? Furthermore, $oldsymbol{x}^g$
	positive negative entailment neutral contradiction entailment not entailment not entailment equivalent not equivalent equivalent

Outline

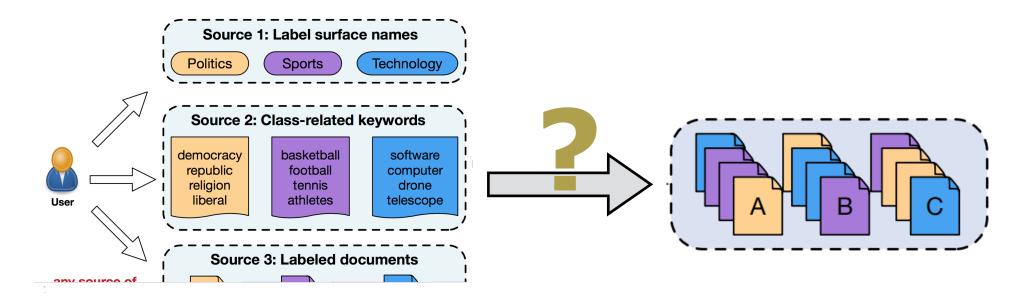
- Why do we care weakly-supervised text classification/NLU?
- Weakly-supervised text classification
 - ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21],
 PromptClass [arXiv'23]
- Weakly-supervised structure-enhanced text classification
 - Taxonomy-enhanced: TaxoClass [NAACL'21]
 - Metadata-enhanced: MICoL [WWW'22], MAPLE [WWW'23]
- Weakly-supervised NLU
 - Zero-shot: ZeroGen [EMNLP'22], SuperGen [NeurIPS'22]
 - □ Few-shot: FewGen [ICML'23]

Weakly-Supervised Text Classification: Motivation

- Supervised text classification models (especially recent deep neural models) rely on a significant number of manually labeled training documents to achieve good performance.
- Collecting such training data is usually expensive and time-consuming. In some domains (e.g., scientific papers), annotations must be acquired from domain experts, which incurs additional cost.
- While users cannot afford to label sufficient documents for training a deep neural classifier, they can provide a small amount of seed information:
 - Category names or category-related keywords
 - □ A small number of labeled documents

Weakly-Supervised Text Classification: Definition

- Text classification without massive human-annotated training data
 - **Keyword-level weak supervision**: category names or a few relevant keywords
 - Document-level weak supervision: a small set of labeled docs



General Ideas to Perform Weakly-Supervised Text Classification

Joint representation learning

Put words, labels, and documents into the same latent space using embedding learning or pre-trained language models

Pseudo training data generation

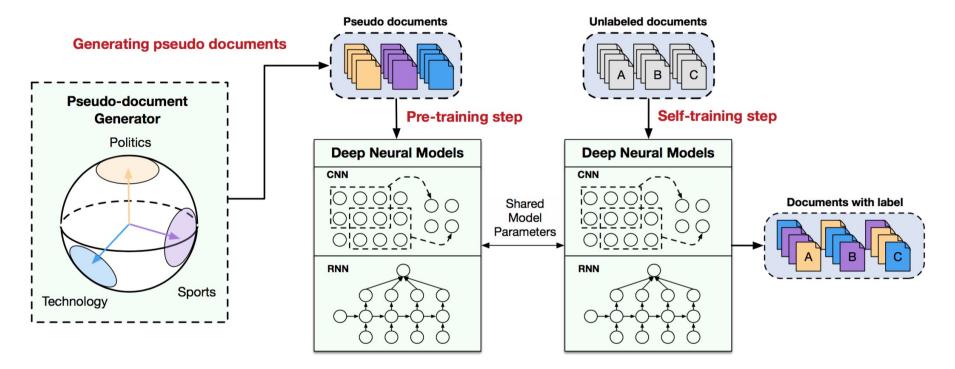
- Retrieve some unlabeled documents or synthesize some artificial documents using text embeddings or contextualized representations
- Give them pseudo labels to train a text classifier

□ Transfer the knowledge of pre-trained language models to classification tasks

An Example – WeSTClass

Embed all words (including label names and keywords) into the same space

- Pseudo document generation: generate pseudo documents from seeds
- □ Self-training: train deep neural nets (CNN, RNN) with bootstrapping



Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18.

Outline

- Why do we care weakly-supervised text classification/NLU?
- Weakly-supervised text classification
 - ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21],
 PromptClass [arXiv'23]
- Weakly-supervised structure-enhanced text classification
 - Taxonomy-enhanced: TaxoClass [NAACL'21]
 - Metadata-enhanced: MICoL [WWW'22], MAPLE [WWW'23]
- Weakly-supervised NLU
 - Zero-shot: ZeroGen [EMNLP'22], SuperGen [NeurIPS'22]
 - Few-shot: FewGen [ICML'23]

ConWea: Disambiguating User-Provided Keywords

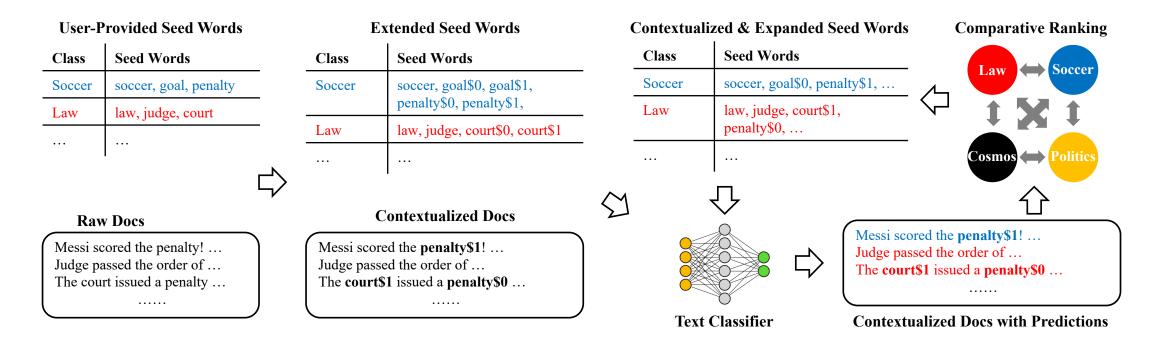
- User-provided seed words may be ambiguous.
- Example:

Class	Seed words
Soccer	soccer, goal, penalty
Law	law, judge, court

- Classify the following sentences:
 - Messi scored the penalty.
 - John was issued a death penalty.
- Disambiguate the "senses" based on contextualized representations

ConWea: Clustering for Disambiguation

- For each word, find all its occurrences in the input corpus
 - Run BERT to get their contextualized representations
 - Run a clustering method (e.g., K-Means) to obtain clusters for different "senses"



ConWea: Experiment Results

□ Ablations:

- □ ConWea-NoCon: Variant of ConWea trained without contextualization.
- ConWea-NoExpan: Variant of ConWea trained without seed expansion.
- ConWea-WSD: Variant of ConWea with contextualization replaced by a word sense disambiguation algorithm.

				N	YT		20 Newsgroup				
			5-Class	(Coarse)	25-Clas	ss (Fine)	6-Class	(Coarse)	20-Cla	ss (Fine)	
		Methods	Micro-F ₁	Macro-F ₁	$Micro-F_1$	Macro-F ₁	Micro-F ₁	Macro-F ₁	Micro-F ₁	Macro-F ₁	
	Γ	IR-TF-IDF	0.65	0.58	0.56	0.54	0.49	0.48	0.53	0.52	
		Dataless	0.71	0.48	0.59	0.37	0.50	0.47	0.61	0.53	
Baselines	4	Word2Vec	0.92	0.83	0.69	0.47	0.51	0.45	0.33	0.33	
		Doc2Cube	0.71	0.38	0.67	0.34	0.40	0.35	0.23	0.23	
	L	WeSTClass	0.91	0.84	0.50	0.36	0.53	0.43	0.49	0.46	
		ConWea	0.95	0.89	0.91	0.79	0.62	0.57	0.65	0.64	
	٢	ConWea-NoCon	0.91	0.83	0.89	0.74	0.53	0.50	0.58	0.57	
Ablations	4	ConWea-NoExpan	0.92	0.85	0.76	0.66	0.58	0.53	0.58	0.57	
	L	ConWea-WSD	0.83	0.78	0.72	0.64	0.52	0.46	0.49	0.47	
Upper bound	{	HAN-Supervised	0.96	0.92	0.94	0.82	0.90	0.88	0.83	0.83	

LOTClass: Find Similar Meaning Words with Label Names

- Find topic words based on label names
 - Overcome the low semantic coverage of label names
- Use language models to predict what words can replace the label names
 - Interchangeable words are likely to have similar meanings

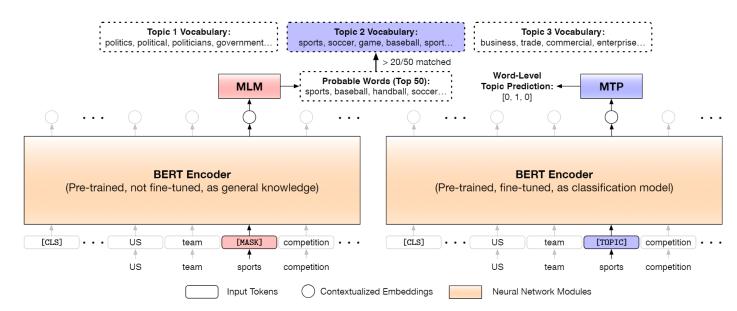
Sentence	Language Model Prediction
The oldest annual US team sports competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.	sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,
Samsung's new SPH-V5400 mobile phone sports a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.	has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers,

Table 1: BERT language model prediction (sorted by probability) for the word to appear at the position of "sports" under different contexts. The two sentences are from *AG News* corpus.

Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20.

LOTClass: Contextualized Word-Level Topic Prediction

- Context-free matching of topic words is inaccurate
- "Sports" does not always imply the topic "sports"
- Contextualized topic prediction:
 - Predict a word's implied topic under specific contexts
 - We regard a word as "topic indicative" only when its top replacing words have enough overlap with the topic vocabulary.



LOTClass: Experiment Results

- Achieve around 90% accuracy on four benchmark datasets by only using at most 3 words (1 in most cases) per class as the label name
 - Outperforming previous weakly-supervised approaches significantly
 - Comparable to state-of-the-art semi-supervised models

Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon
	Dataless (Chang et al., 2008)	0.696	0.634	0.505	0.501
Weakly-Sup.	WeSTClass (Meng et al., 2018)	0.823	0.811	0.774	0.753
	BERT w. simple match	0.752	0.722	0.677	0.654
	Ours w/o. self train	0.822	0.850	0.844	0.781
	Ours	0.864	0.889	0.894	0.906
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.986	0.887	0.960
Supervised	char-CNN (Zhang et al., 2015) BERT (Devlin et al., 2019)	0.872 0.944	0.983 0.993	0.853 0.937	0.945 0.972

How Powerful Are Vanilla BERT Representations in Category Prediction?

An average of BERT representations of all tokens in a sentence/document preserves domain information well [1].

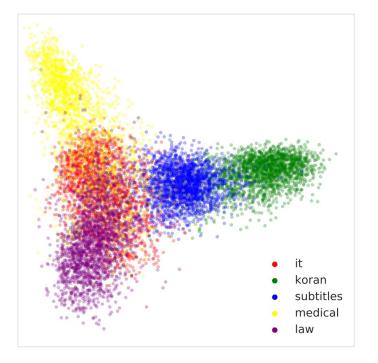
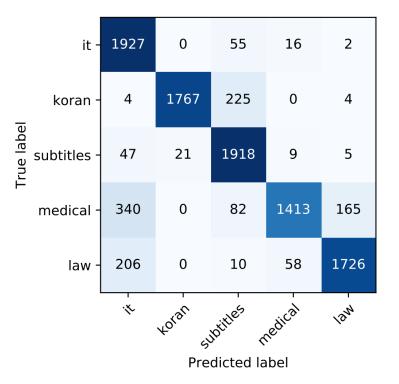
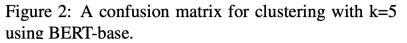


Figure 1: A 2D visualization of average-pooled BERT hidden-state sentence representations using PCA. The colors represent the domain for each sentence.

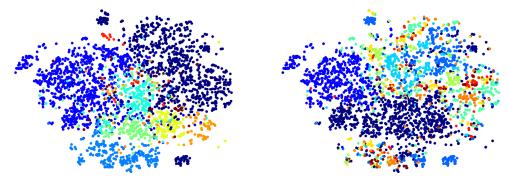




[1] Aharoni, R., & Goldberg, Y. "Unsupervised domain clusters in pretrained language models." ACL'20.

X-Class: Class-Oriented BERT Representations

- A simple idea for text classification
 - **Learn representations for documents**
 - Set the number of clusters as the number of classes
 - □ Hope their clustering results are almost the same as the desired classification
- However, the same corpus could be classified differently

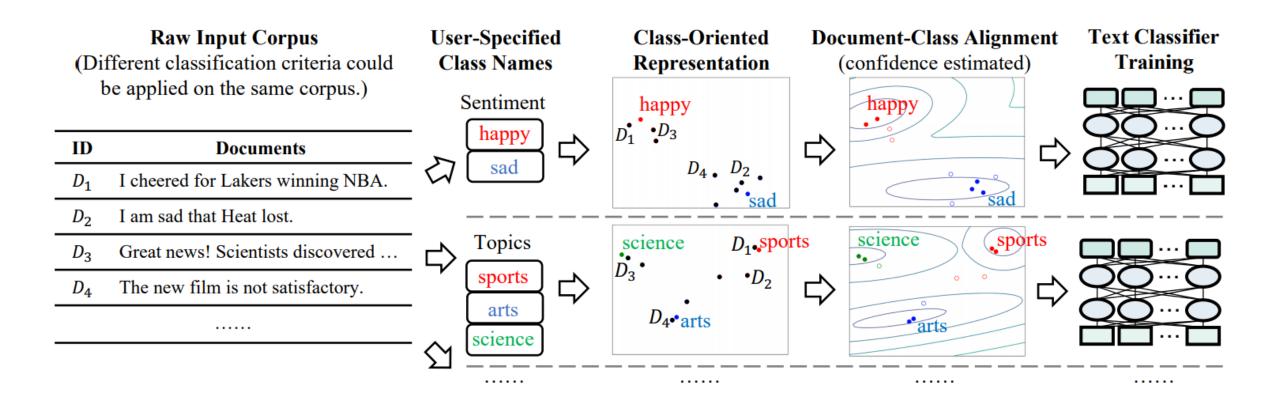


(a) NYT-Topics(b) NYT-LocationsFigure 1: Visualizations of News using Average BERTRepresentations. Colors denote different classes.

Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21.

X-Class: Class-Oriented BERT Representations

Clustering for classification based on class-oriented representations



X-Class: Experiment Results

WeSTClass & ConWea consume at least 3 seed words per class

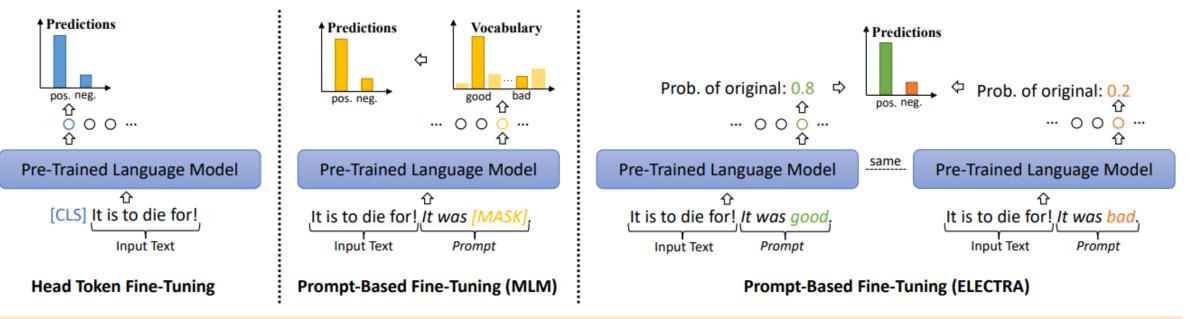
□ LOTClass & X-Class use category names only

	AGNews	20News	NYT-Small	NYT-Topic	NYT-Location	Yelp	DBpedia
Corpus Domain	News	News	News	News	News	Reviews	Wikipedia
Class Criterion	Topics	Topics	Topics	Topics	Locations	Sentiment	Ontology
# of Classes	4	5	5	9	10	2	14
# of Documents	120,000	17,871	13,081	31,997	31,997	38,000	560,000
Imbalance	1.0	2.02	16.65	27.09	15.84	1.0	1.0

Model	AGNews	20News	NYT-Small	NYT-Topic	NYT-Location	Yelp	DBpedia
Supervised	93.99/93.99	96.45/96.42	97.95/95.46	94.29/89.90	95.99/94.99	95.7/95.7	98.96/98.96
WeSTClass	82.3/82.1	71.28/69.90	91.2/83.7	68.26/57.02	63.15/53.22	81.6/81.6	81.1/ N/A
ConWea	74.6/74.2	75.73/73.26	95.23/90.79	81.67/71.54	85.31/83.81	71.4/71.2	N/A
LOTClass	86.89/86.82	73.78/72.53	78.12/56.05	67.11/43.58	58.49/58.96	87.75/87.68	86.66/85.98
X-Class	84.8/84.65	81.36/80.6	96.67/92.98	80.6/69.92	90.5/89.81	88.36/88.32	91.33/91.14
X-Class-Rep	77.92/77.03	75.14/73.24	92.13/83.94	77.85/65.38	86.7/87.36	77.87/77.05	74.06/71.75
X-Class-Align	83.1/83.05	79.28/78.62	96.34/92.08	79.64/67.85	88.58/88.02	87.16/87.1	87.37/87.28

PromptClass: Prompt-based Fine-tuning for Text Classification

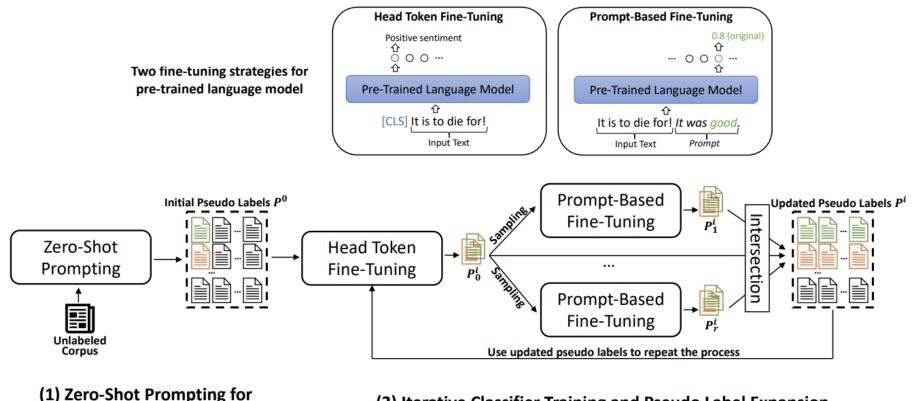
- Head token fine-tuning randomly initializes a linear classification head and directly predicts class distribution using the [CLS] token, which needs a substantial amount of training data.
- Prompt-based fine-tuning for MLM-based PLM converts the document into the masked token prediction problem by reusing the pre-trained MLM head.
- Prompt-based fine-tuning for ELECTRA-style PLM converts documents into the replaced token detection problem by reusing the pre-trained discriminative head.



Zhang, Y., Jiang, M., Meng, Y., Zhang, Y., & Han, J. "PromptClass: Weakly-Supervised Text Classification with Prompting Enhanced Noise-Robust Self-Training", arXiv'23.

PromptClass: Integrating Head Token & Prompt-based Fine-tuning

- Why do we need prompts to get pseudo training data?
 - Simple keyword matching may induce errors.
 - E.g., "*die*" is a negative word, but a food review "It is to *die* for!" implies a strong positive sentiment.



Pseudo Label Acquisition

(2) Iterative Classifier Training and Pseudo Label Expansion

PromptClass: Experiment Results

PromptClass is on par with the fully supervised text classifier on sentiment analysis datasets (i.e., Yelp and IMDB).

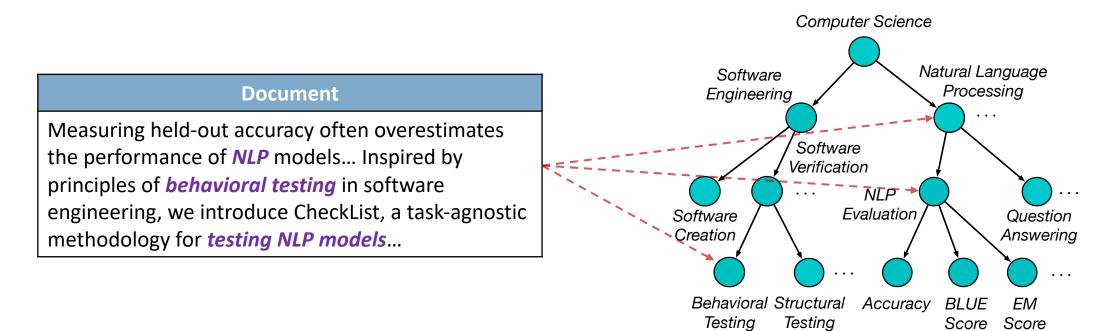
Methods	AGN	News	20N	lews	Yelp		IMDB	
Methods	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
WeSTClass	0.823	0.821	0.713	0.699	0.816	0.816	0.774	-
ConWea	0.746	0.742	0.757	0.733	0.714	0.712	-	-
LOTClass	0.869	0.868	0.738	0.725	0.878	0.877	0.865	-
XClass	0.857	0.857	0.786	0.778	0.900	0.900	-	-
ClassKG [†]	0.881	0.881	0.811	0.820	0.918	0.918	0.888	0.888
RoBERTa (0-shot)	0.581	0.529	0.507^{\ddagger}	0.445^{\ddagger}	0.812	0.808	0.784	0.780
ELECTRA (0-shot)	0.810	0.806	0.558	0.529	0.820	0.820	0.803	0.802
PromptClass								
ELECTRA+BERT	0.884	0.884	0.789	0.791	0.919	0.919	0.905	0.905
RoBERTa+RoBERTa	0.895	0.895	0.755 [‡]	0.760^{\ddagger}	0.920	0.920	<u>0.906</u>	<u>0.906</u>
ELECTRA+ELECTRA	0.884	<u>0.884</u>	0.816	0.817	0.957	0.957	0.931	0.931
Fully Supervised	0.940	0.940	0.965	0.964	0.957	0.957	0.945	-

Outline

- Why do we care weakly-supervised text classification/NLU?
- Weakly-supervised text classification
 - ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21],
 PromptClass [arXiv'23]
- Weakly-supervised structure-enhanced text classification
 - Taxonomy-enhanced: TaxoClass [NAACL'21]
 - Metadata-enhanced: MICoL [WWW'22], MAPLE [WWW'23]
- Weakly-supervised NLU
 - Zero-shot: ZeroGen [EMNLP'22], SuperGen [NeurIPS'22]
 - Few-shot: FewGen [ICML'23]

TaxoClass: Weakly-supervised Hierarchical Multi-Label Text Classification

- The taxonomy is a directed acyclic graph (DAG)
- Each paper can have multiple categories distributed on different paths
- Category names can be phrases and may not appear in the corpus



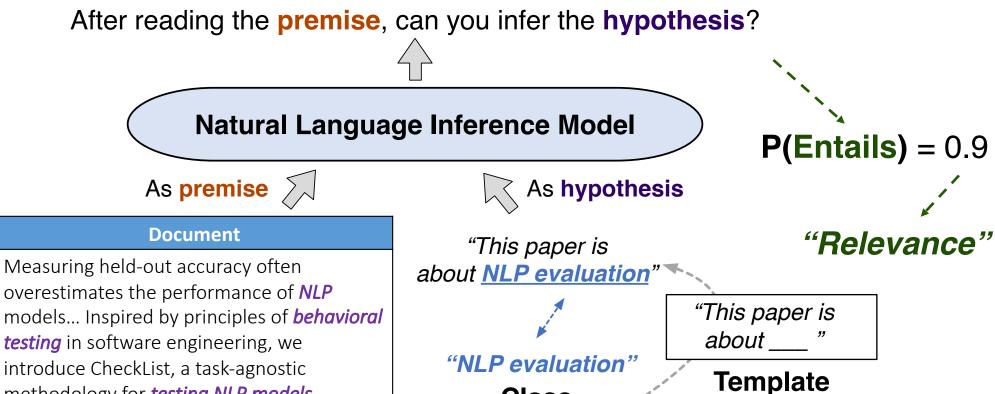
TaxoClass: Why Category Names Only?

- Taxonomies for multi-label text classification are often big.
 - □ Amazon Product Catalog: $\times 10^4$ categories
 - □ MeSH Taxonomy (for medical papers): $\times 10^4$ categories
 - □ Microsoft Academic Taxonomy: $\times 10^5$ labels
- Impossible for users to provide even a small set of (e.g., 3) keywords/labeled documents for each category

Explore	Entity Analytics
	262,960,769 Publications
2	271,407,867 Authors
<u>д</u>	713,789 Topics
•	4,541 Conferences
	49,036 Journals (1)
	27,033 Institutions

TaxoClass: Document-Class Relevance Calculation

- □ How to use the knowledge from pre-trained LMs?
- □ Relevance model: BERT/RoBERTa fine-tuned on the NLI task
 - https://huggingface.co/roberta-large-mnli

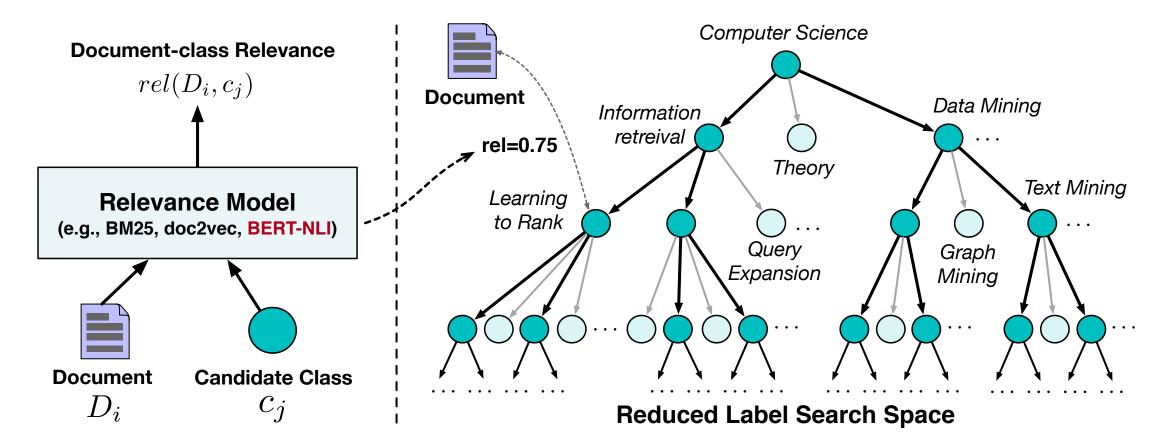


Class

methodology for *testing NLP models*...

TaxoClass: Top-Down Exploration

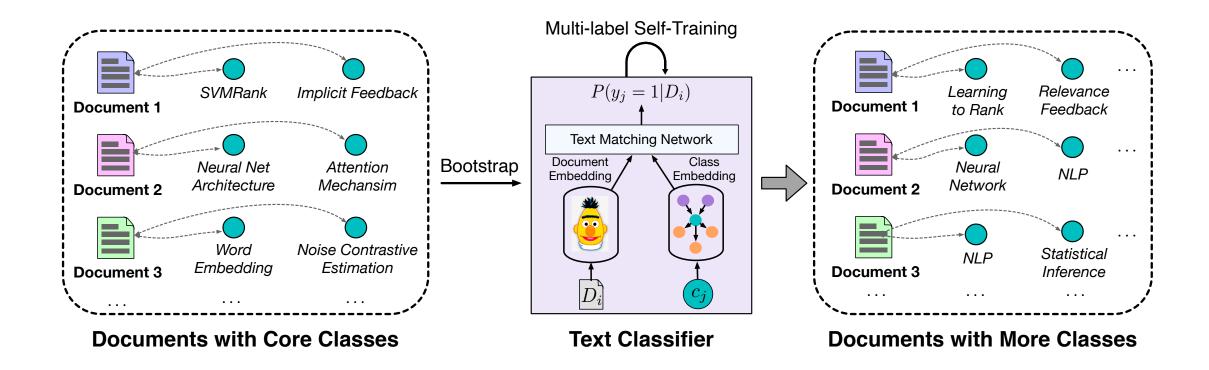
- □ How to use the taxonomy?
- Shrink the label search space with top-down exploration
 - Use a relevance model to filter out completely irrelevant classes



TaxoClass: Identify Core Classes and More Classes

Identify document core classes in reduced label search space

Generalize from core classes with bootstrapping and self-training



TaxoClass: Experiment Results

	Methods	Amazo	n	DBPedia		
Weakly-supervised multi-		Example-F1	P@1	Example-F1	P@1	
class classification method	WeSHClass (Meng et al., AAAI'19)	0.246	0.577	0.305	0.536	
Semi-supervised methods	SS-PCEM (Xiao et al., WebConf'19)	0.292	0.537	0.385	0.742	
using 30% of training set	Semi-BERT (Devlin et al., NAACL'19)	0.339	0.592	0.428	0.761	
Zero-shot method +	Hier-0Shot-TC (Yin et al., EMNLP'19)	0.474	0.714	0.677	0.787	
	TaxoClass (ours)	0.593	0.812	0.816	0.894	

- vs. WeSHClass: better model document-class relevance
- vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy
- vs. Hier-0Shot-TC: better capture domain-specific information from core classes

Example-F1 =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{2|true_i \cap pred_i|}{|true_i| + |pred_i|}$$
, **P@1** = $\frac{\#docs \ with \ top-1 \ pred \ dorrect}{\#total \ docs}$

Outline

- Why do we care weakly-supervised text classification/NLU?
- Weakly-supervised text classification
 - ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21],
 PromptClass [arXiv'23]
- Weakly-supervised structure-enhanced text classification
 - Taxonomy-enhanced: TaxoClass [NAACL'21]
 - Metadata-enhanced: MICoL [WWW'22], MAPLE [WWW'23]
- Weakly-supervised NLU
 - Zero-shot: ZeroGen [EMNLP'22], SuperGen [NeurIPS'22]
 - Few-shot: FewGen [ICML'23]

Metadata

- Metadata is prevalent in many text sources
 - GitHub repositories: User, Tag
 - Tweets: User, Hashtag

- Amazon reviews: User, Product
- Scientific papers: Author, Venue, Reference
- How to leverage these heterogenous signals in the categorization process?

(a) GITHUB REPOSITORY

MICoL: Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification

Input

- A set of labels. Each label has its name and description.
- A large set of unlabeled documents associated with metadata (e.g., authors, venue, references) that can connect the documents together.

Output

A multi-label text classifier. Given some new documents, the classifier can predict relevant labels for each document.

▲ Webgraph Label Name

105 Publications 99 64,901 Citations*

Definition

Label Description

The webgraph describes the directed links between pages of the World Wide Web. A graph, in general, consists of several vertices, some pairs connected by edges. In a directed graph, edges are directed lines or arcs. The webgraph is a directed graph, whose vertices correspond to the pages of the WWW, and a directed edge connects page X to page Y if there exists a hyperlink on page X, referring to page Y.

(a) Label "Webgraph" from Microsoft Academic (https://academic.microsoft.com/topic/2777569578/).

Betacoronavirus MeSH Descriptor Data 2021

Label Name MeSH Tree Structures Concepts

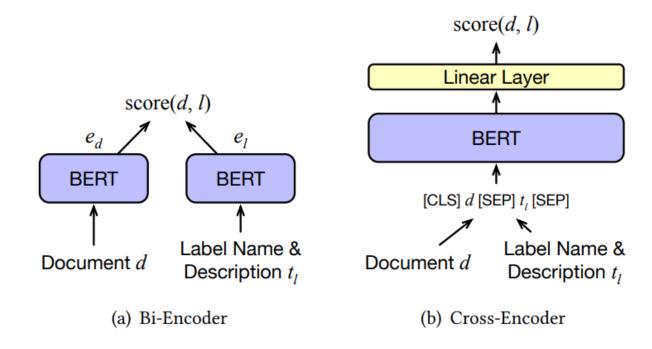
MeSH Heading	Betacoronavirus	
Tree Number(s)	B04.820.578.500.540.150.113	
Unique ID	D000073640	
DF Unique Identifier	http://id.nlm.nih.gov/mesh/D000073	Label Description
Annotation	infection: coordinate with CORONA	VIRUS INFECTIONS
Scope Note	A genus of the family CORONAVIRIDAE which causes respiratory or gastrointestinal disease in a variety of mostly	
	mammals. Human betacoronaviruse	es include HUMAN ENTERIC CORONAVIRUS; HUMAN CORONAVIRUS OC43;
	MERS VIRUS; and SARS VIRUS. Members have either core transcription regulatory sequences of 5'-CUAAAC-3' o CUAAAC-3' and mostly have no ORF downstream to the N protein gene.	
Entry Term(s)	HCoV-HKU1	
	Human coronavirus HKU1	Synonyms (also viewed
	Pipistrellus bat coronavirus HKU5	
	Rousettus bat coronavirus HKU9	as Label Names)
	Tylonycteris bat coronavirus HKU4	
	liften our coronation inter	

(b) Label "Betacoronavirus" from PubMed (https://meshb.nlm.nih.gov/record/ui? ui=D000073640).

Zhang, Y., Shen, Z., Wu, C., Xie, B., Wang, Y., Wang, K., & Han, J. "Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification", WWW'22.

Pretrained Language Models for Multi-Label Text Classification

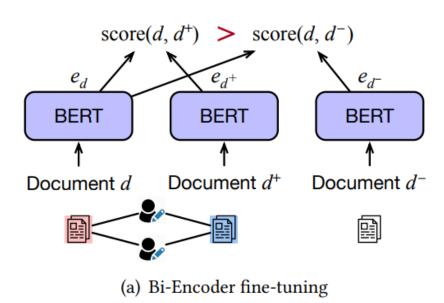
- □ If we could have some labeled documents, ...
 - U We can use relevant (document, label) pairs to fine-tune the pre-trained LM.
 - Both Bi-Encoder and Cross-Encoder are applicable.

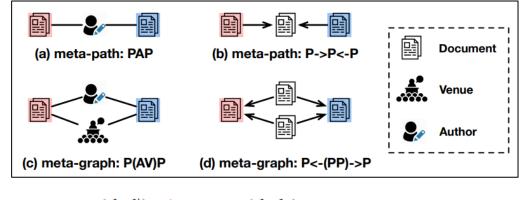


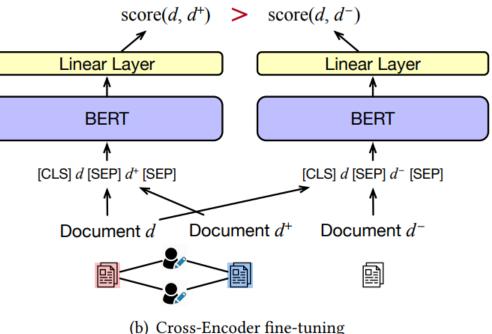
□ However, we do not have any labeled documents!!!

Metadata-Induced Contrastive Learning

- Contrastive learning [1]: Instead of training the model to know "what is what" (e.g., relevant (document, label) pairs), train it to know "what is similar with what" (e.g., similar (document, document) pairs).
- Using metadata to define similar (document, document) pairs.







[1] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. A simple framework for contrastive learning of visual representations. ICML'20.

MICoL: Experiment Results

- MICoL significantly outperforms text-based contrastive learning baselines.
- MICoL is competitive with the supervised SOTA trained on 10K–50K labeled documents.

	Algorithm	MAG-CS [49]						PubMed [24]					
	Algorithmi	P@1	P@3	P@5	NDCG@3	NDCG@5	P@1	P@3	P@5	NDCG@3	NDCG@5		
	Doc2Vec [31]	0.5697**	0.4613**	0.3814**	0.5043**	0.4719**	0.3888**	0.3283**	0.2859**	0.3463**	0.3252**		
	SciBERT [2]	0.6440**	0.5030**	0.4011**	0.5545**	0.5061**	0.4427**	0.3572**	0.3031**	0.3809**	0.3510**		
	ZeroShot-Entail [61]	0.6649**	0.5003**	0.3959**	0.5570**	0.5057**	0.5275**	0.4021	0.3299	0.4352	0.3913		
ot	SPECTER [8]	0.7107**	0.5381**	0.4184**	0.5979**	0.5365**	0.5286**	0.3923**	0.3181**	0.4273**	0.3815**		
Zero-shot	EDA [53]	0.6442**	0.4939**	0.3948**	0.5471**	0.5000**	0.4919	0.3754*	0.3101*	0.4058*	0.3667*		
	UDA [57]	0.6291**	0.4848^{**}	0.3897**	0.5362**	0.4918**	0.4795**	0.3696**	0.3067**	0.3986**	0.3614**		
Ž	MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$)	0.7062*	0.5369*	0.4184*	0.5960*	0.5355*	0.5124**	0.3869*	0.3172*	0.4196*	0.3774*		
	MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7050*	0.5344*	0.4161*	0.5937*	0.5331*	0.5198**	0.3876*	0.3172*	0.4215*	0.3786*		
	MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$)	0.7177	0.5444	0.4219	0.6048	0.5415	0.5412	0.4036	0.3257	0.4391	0.3906		
	MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7061	0.5376	0.4187	0.5964	0.5357	0.5218	0.3911	0.3172*	0.4249	0.3794		
ed	MATCH [68] (10K Training)	0.4423**	0.2851**	0.2152**	0.3375**	0.3003**	0.6915	0.3869*	0.2785**	0.4649	0.3896		
vis	MATCH [68] (50K Training)	0.6215**	0.4280**	0.3269**	0.4987**	0.4489**	0.7701	0.4716	0.3585	0.5497	0.4750		
Supervised	MATCH [68] (100K Training)	0.8321	0.6520	0.5142	0.7342	0.6761	0.8286	0.5680	0.4410	0.6405	0.5626		
Su	MATCH [68] (Full, 560K+ Training)	0.9114	0.7634	0.6312	0.8486	0.8076	0.9151	0.7425	0.6104	0.8001	0.7310		

MICoL: Effect of Different Types of Metadata

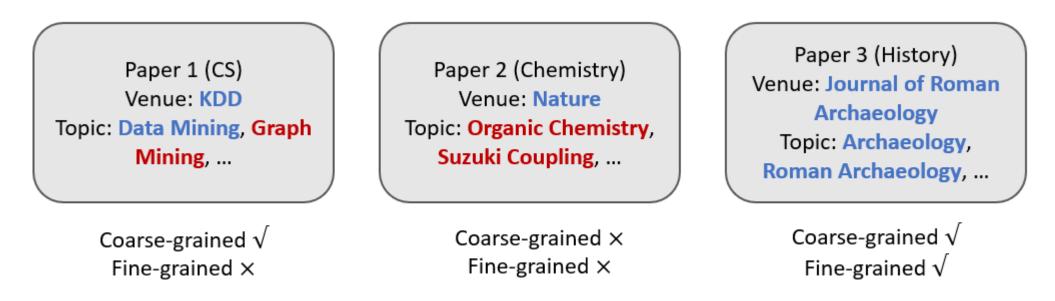
All meta-paths and meta-graphs used in MICoL, except Paper-Venue-Paper, can improve the classification performance upon unfine-tuned SciBERT.

Algorithm	MAG-CS [49]						PubMed [24]					
Algorithm	P@1	P@3	P@5	NDCG@3	NDCG@5	P@1	P@3	P@5	NDCG@3	NDCG@5		
Unfine-tuned SciBERT	0.6599**	0.5117**	0.4056**	0.5651**	0.5136**	0.4371**	0.3544**	0.3014**	0.3775**	0.3485**		
MICoL (Bi-Encoder, PAP)	0.6877**	0.5285**	0.4143**	0.5852**	0.5280**	0.4974**	0.3818**	0.3154*	0.4122**	0.3727**		
MICoL (Bi-Encoder, PVP)	0.6589**	0.5123**	0.4063**	0.5656**	0.5145**	0.4440**	0.3507**	0.2966**	0.3761**	0.3458**		
MICoL (Bi-Encoder, $P \rightarrow P$)	0.7094	0.5391	0.4190	0.5982	0.5367	0.5200*	0.3903*	0.3195	0.4240^{*}	0.3808*		
MICoL (Bi-Encoder, $P \leftarrow P$)	0.7095*	0.5374*	0.4178^{*}	0.5970*	0.5356*	0.5195**	0.3905*	0.3192	0.4240^{*}	0.3806*		
MICoL (Bi-Encoder, $P \rightarrow P \leftarrow P$)	0.7062*	0.5369*	0.4184^{*}	0.5960*	0.5355*	0.5124**	0.3869*	0.3172*	0.4196*	0.3774*		
MICoL (Bi-Encoder, $P \leftarrow P \rightarrow P$)	0.7039*	0.5379*	0.4187*	0.5963*	0.5356*	0.5174**	0.3886*	0.3187*	0.4220^{*}	0.3795*		
MICoL (Bi-Encoder, $P(AA)P$)	0.6873**	0.5272**	0.4130**	0.5840**	0.5269**	0.4963**	0.3794**	0.3139**	0.4101**	0.3711**		
MICoL (Bi-Encoder, $P(AV)P$)	0.6832**	0.5263**	0.4135**	0.5823**	0.5263**	0.4894**	0.3743**	0.3099**	0.4045**	0.3664**		
MICoL (Bi-Encoder, $P \rightarrow (PP) \leftarrow P$)	0.7015**	0.5334**	0.4160**	0.5920**	0.5322**	0.5163**	0.3879*	0.3172*	0.4211*	0.3781*		
MICoL (Bi-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7050*	0.5344*	0.4161*	0.5937*	0.5331*	0.5198**	0.3876*	0.3172*	0.4215*	0.3786*		
MICoL (Cross-Encoder, PAP)	0.7034*	0.5355	0.4168	0.5943	0.5337	0.5212**	0.3921*	0.3207	0.4255*	0.3818*		
MICoL (Cross-Encoder, PVP)	0.6720*	0.5203*	0.4103*	0.5750*	0.5210*	0.4668**	0.3633**	0.3051**	0.3908**	0.3574**		
MICoL (Cross-Encoder, $P \rightarrow P$)	0.7033*	0.5391	0.4201	0.5971*	0.5365*	0.5266	0.3946	0.3207	0.4286	0.3830		
MICoL (Cross-Encoder, $P \leftarrow P$)	0.7169	0.5430	0.4214	0.6033	0.5406	0.5265	0.3924	0.3186	0.4268	0.3811		
MICoL (Cross-Encoder, $P \rightarrow P \leftarrow P$)	0.7177	0.5444	0.4219	0.6048	0.5415	0.5412	0.4036	0.3257	0.4391	0.3906		
MICoL (Cross-Encoder, $P \leftarrow P \rightarrow P$)	0.7045	0.5356*	0.4168*	0.5944*	0.5336*	0.5243*	0.3932*	0.3190*	0.4271*	0.3814*		
MICoL (Cross-Encoder, $P(AA)P$)	0.7028	0.5351	0.4171	0.5939	0.5338	0.5290*	0.3937	0.3201	0.4285*	0.3830		
MICoL (Cross-Encoder, $P(AV)P$)	0.7024*	0.5354*	0.4177	0.5940*	0.5343*	0.5164**	0.3897*	0.3195*	0.4225*	0.3797*		
MICoL (Cross-Encoder, $P \rightarrow (PP) \leftarrow P$)	0.7076*	0.5379*	0.4188	0.5971*	0.5363*	0.5186	0.3924*	0.3184*	0.4254^{*}	0.3800*		
MICoL (Cross-Encoder, $P \leftarrow (PP) \rightarrow P$)	0.7061	0.5376	0.4187	0.5964	0.5357	0.5218	0.3911	0.3172*	0.4249	0.3794		

MAPLE: A Cross-Field Cross-Model Study

Q1: Are metadata always helpful across all <u>scientific fields</u>?

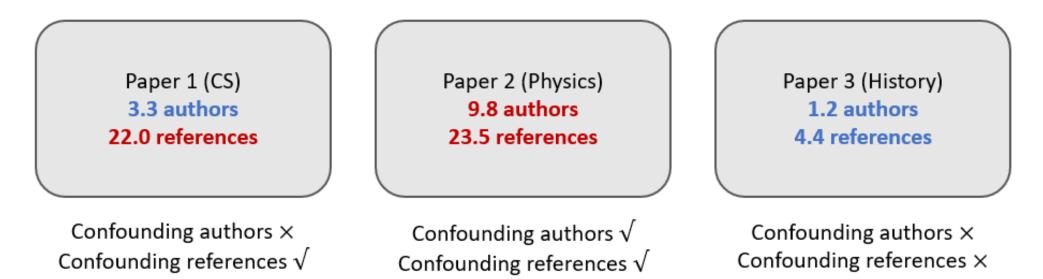
- The focus of previous studies is restricted to one or two scientific fields only (e.g., computer science and biomedicine).
- The effect of metadata in other fields (e.g., art, economics, mathematics, physics) has not been systematically examined.



MAPLE: A Cross-Field Cross-Model Study

Q1: Are metadata always helpful across all <u>scientific fields</u>?

- The focus of previous studies is restricted to one or two scientific fields only (e.g., computer science and biomedicine).
- The effect of metadata in other fields (e.g., art, economics, mathematics, physics) has not been systematically examined.



MAPLE: Constructing a Cross-Field Benchmark

- We construct a large-scale scientific literature tagging benchmark, MAPLE, from the Microsoft Academic Graph.
- MAPLE covers 19 scientific fields and consists of more than 11.9 million papers.
- □ The number of candidate tags in each field ranges between ~700 and ~64,000.

https://doi.org/10.5281/zenodo.7611544

223	226
👁 views	📥 downloads
See mor	re details

Table 1: Statistics of the 20 datasets in MAPLE across 19 fields. There are 2 datasets in the Computer Science field, one of which is collected from top conferences and the other from top journals.

Field	Paper Source	#Papers	#Labels	#Venues	#Authors	#References
Art	Journal	58,373	1,990	98	54,802	115,343
Philosophy	Journal	59,296	3,758	98	36,619	198,010
Geography	Journal	73,883	3,285	98	157,423	884,632
Business	Journal	84,858	2,392	97	100,525	685,034
Sociology	Journal	90,208	1,935	98	85,793	842,561
History	Journal	113,147	2,689	99	84,529	284,739
Political Science	Journal	115,291	4,990	98	93,393	480,136
Environmental Science	Journal	123,945	694	100	265,728	1,217,268
Economics	Journal	178,670	5,205	97	135,247	1,042,253
Engineering	Journal	270,006	10,683	100	430,046	1,867,276
Psychology	Journal	372,954	7,641	100	460,123	2,313,701
Computer	Conference	263,393	13,613	75	331,582	1,084,440
Science	Journal	410,603	15,540	96	634,506	2,751,996
Geology	Journal	431,834	7,883	100	471,216	1,753,762
Mathematics	Journal	490,551	14,271	98	404,066	2,150,584
Materials Science	Journal	1,337,731	6,802	99	1,904,549	5,457,773
Physics	Journal	1,369,983	16,664	91	1,392,070	3,641,761
Biology	Journal	1,588,778	64,267	100	2,730,547	7,086,131
Chemistry	Journal	1,849,956	35,538	100	2,721,253	8,637,438
Medicine	Journal	2,646,105	36,619	100	4,345,385	7,405,779

MAPLE: A Cross-Field Cross-Model Study

Q2: Are metadata always helpful across all <u>classifiers</u>?

- **Bag-of-words**: Parabel [1]
- **Sequenced-based**: Transformer [2]
- Pretrained language model: OAG-BERT [3]
- In the 19 fields, using the 3 classifiers, we empirically study if adding metadata (i.e., venues, authors, and references) can be helpful.
- □ Key observations:
 - Venues are consistently beneficial in almost all 19×3 cases; authors in fewer cases; references in even fewer.
 - □ In some fields (not CS), venues can even benefit the prediction of fine-grained labels.
 - The effect of metadata varies remarkably across different fields and models.

[1] Prabhu et al. "Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising", WWW'18.
 [2] Xun et al. "Correlation networks for extreme multi-label text classification", KDD'20.
 [3] Liu et al. "OAG-BERT: Towards a Unified Backbone Language Model for Academic Knowledge Services", KDD'22.

MAPLE: A Cross-Field Cross-Model Study

- Q3: Shall I use a certain type of metadata in a field for a classifier?
- The effect of metadata tends to be similar in two fields that belong to the same high-level scientific area [1]. For example, Biology and Medicine are both life sciences, and the effects of venues, authors, and references are largely aligned in the two fields.
- The experience of using metadata in one field can be extrapolated to a similar field!

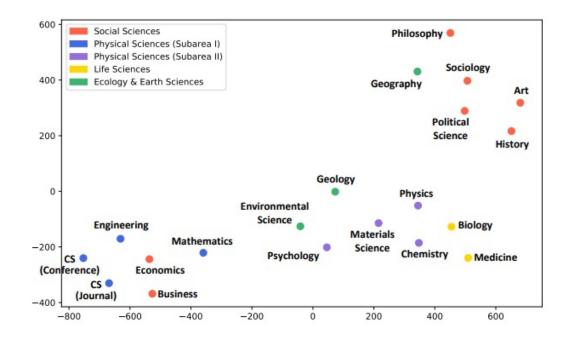


Figure 3: We represent each field with a 24-dimensional vector based on the effect of venue, author, and reference information on the three classifiers. Then, we apply t-SNE [27] to visualize these fields in a 2-dimensional space. The color scheme highlights several high-level scientific areas, following the major clusters of science detected by [35, 51] and suggesting similar effects of metadata within each area.

Outline

- Why do we care weakly-supervised text classification/NLU?
- Weakly-supervised text classification
 - ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21],
 PromptClass [arXiv'23]
- Weakly-supervised structure-enhanced text classification
 - Taxonomy-enhanced: TaxoClass [NAACL'21]
 - Metadata-enhanced: MICoL [WWW'22], MAPLE [WWW'23]
- Weakly-supervised NLU
 - Zero-shot: SuperGen [NeurIPS'22], ZeroGen [EMNLP'22]
 - Few-shot: FewGen [ICML'23]

Zero-Shot Fine-Tuning of PLMs for NLU

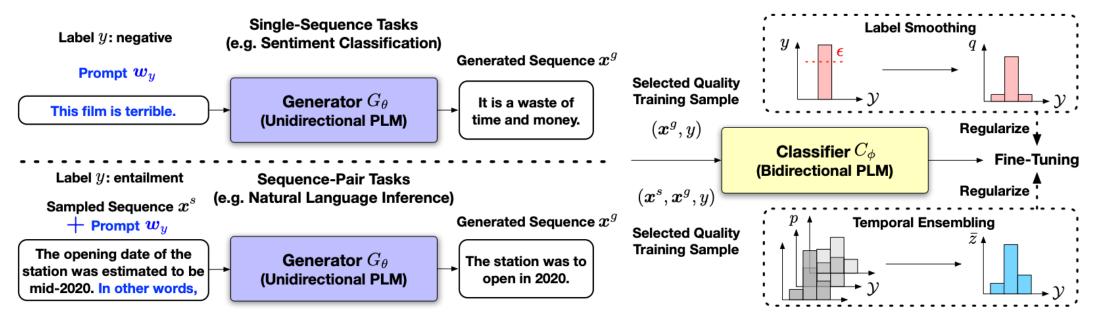
□ How can PLMs perform zero-shot NLU?

- □ (Text Input, Prompt) -> Label
- Without any task-specific samples, it is challenging for PLMs to interpret the prompts that come in different formats and are unseen in the pretraining data.
- When there are no training data, we can create them from scratch using PLMs!
 - □ (Prompt, Label) -> Text Input
 - Generate pseudo training data pertaining to a specific label upon given a label-descriptive prompt (e.g., "write a negative review:")

Task	Label	Prompt
SST-2	positive negative	Rating: 5.0 \boldsymbol{x}^{g} Rating: 1.0 \boldsymbol{x}^{g}
MNLI	entailment neutral contradiction	x^s . In other words, x^g x^s . Furthermore, x^g There is a rumor that x^s . However, the truth is: x^g
QNLI	entailment not entailment	$oldsymbol{x}^s? oldsymbol{x}^g \ oldsymbol{x}^s? \ldots oldsymbol{x}^g$
RTE	entailment not entailment	$oldsymbol{x}^s$. In other words, $oldsymbol{x}^g$ $oldsymbol{x}^s$. Furthermore, $oldsymbol{x}^g$
MRPC	equivalent not equivalent	$oldsymbol{x}^s$. In other words, $oldsymbol{x}^g$ $oldsymbol{x}^s$. Furthermore, $oldsymbol{x}^g$
QQP	equivalent not equivalent	$oldsymbol{x}^s$? In other words, $oldsymbol{x}^g$ $oldsymbol{x}^s$? Furthermore, $oldsymbol{x}^g$

SuperGen: Prompt-Based Zero-Shot Training Data Generation

- SuperGen: A **Super**vision **Gen**eration approach
- Use a unidirectional PLM (e.g., CTRL) to generate class-conditioned texts guided by prompts
- Fine-tune a bidirectional PLM (e.g., COCO-LM) on the generated data for the corresponding task



Meng, Y., Huang, J., Zhang, Y., & Han, J. "Generating Training Data with Language Models: Towards Zero-Shot Language Understanding", NeurIPS'22.

SuperGen: Experiment Results

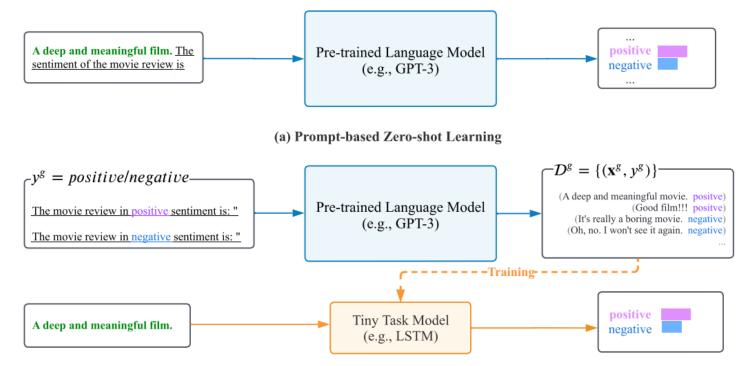
Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned on generated training data) is comparable or even better than strong few-shot methods (fine-tuned on 32 manually annotated training samples per class)

Method	MNLI-(m/mm) (Acc.)	QQP (F1)	QNLI SST-2 (Acc.) (Acc.)		CoLA (Matt.)	RTE (Acc.)	MRPC (F1)	AVG			
Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).											
Prompting [†]	$50.8_{0.0}/51.7_{0.0}$	$49.7_{0.0}$	$50.8_{0.0}$	$83.6_{0.0}$	$2.0_{0.0}$	$51.3_{0.0}$	$61.9_{0.0}$	50.1			
SuperGen	72.3 _{0.5} /73.8 _{0.5}	66.1 _{1.1}	73.3 _{1.9}	92.8 _{0.6}	32.7 5.5	65.3 _{1.2}	$82.2_{0.5}$	69.4			
- data selection	$63.7_{1.5}/64.2_{1.6}$	$62.3_{2.2}$	$63.9_{3.2}$	$91.3_{2.0}$	$30.5_{8.8}$	$62.4_{1.5}$	$81.6_{0.2}$	65.1			
- label smooth	$70.7_{0.8}/72.1_{0.7}$	$65.1_{0.9}$	$71.4_{2.5}$	$91.0_{0.9}$	$9.5_{1.0}$	$64.8_{1.1}$	83.0 _{0.7}	65.2			
- temporal ensemble	$62.0_{4.6}/63.6_{4.8}$	$63.9_{0.3}$	$72.4_{2.0}$	$92.5_{0.9}$	$23.5_{7.0}$	$63.5_{1.0}$	$78.8_{2.2}$	65.3			
Few-Shot Setting: Use	32 labeled samples	s/class (hal	f for trainin	ng and half	for develop	oment).					
Fine-tuning [†]	$45.8_{6.4}/47.8_{6.8}$	$60.7_{4.3}$	$60.2_{6.5}$	$81.4_{3.8}$	33.9 _{14.3}	$54.4_{3.9}$	$76.6_{2.5}$	59.1			
Manual prompt [†]	$68.3_{2.3}/70.5_{1.9}$	$65.5_{5.3}$	$64.5_{4.2}$	$92.7_{0.9}$	$9.3_{7.3}$	$69.1_{3.6}$	$74.5_{5.3}$	63.6			
+ demonstration ^{\dagger}	70.7 _{1.3} / 72.0 _{1.2}	69.8 _{1.8}	69.2 _{1.9}	$92.6_{0.5}$	$18.7_{8.8}$	$68.7_{2.3}$	$77.8_{2.0}$	66.9			
Auto prompt [†]	$68.3_{2.5}/70.1_{2.6}$	$67.0_{3.0}$	$68.3_{7.4}$	$92.3_{1.0}$	$14.0_{14.1}$	73.9 _{2.2}	$76.2_{2.3}$	65.8			
+ demonstration ^{\dagger}	$70.0_{3.6}/72.0_{3.1}$	$67.7_{5.8}$	$68.5_{5.4}$	93.0 _{0.6}	$21.8_{15.9}$	$71.1_{5.3}$	78.1 _{3.4}	67.3			

ZeroGen: Efficient Zero-shot Learning via Dataset Generation

In comparison with SuperGen:

- □ A similar-size generator (e.g., GPT-2 XL) and a smaller classifier (e.g., LSTM)
- More tasks (e.g., Question Answering)



(b) Efficient Zero-shot Learning via Dataset Generation

Ye, J., Gao, J., Li, Q., Xu, H., Feng, J., Wu, Z., Yu, T., & Kong, L. "ZeroGen: Efficient Zero-shot Learning via Dataset Generation", EMNLP'22.

ZeroGen: Experiment Results

• On RTE, ZeroGen already outperforms the supervised model.

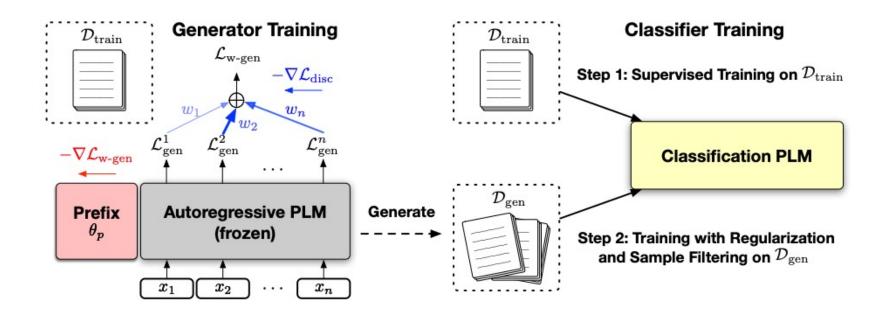
PLM	TAM	#Param	Setting	IMDb	SST-2	SQuAD	AdversarialQA	QNLI	RTE
#Gold Data				25k	6.7k	87k	30k	105k	2.5k
_	DistilBERT	66M	SUPERVISED	87.24	89.68	76.28/84.67	18.6/29.85	88.05	58.12
-	LSTM	\sim 7M		84.60	76.30	41.86/57.22	5.37/11.86	105k 2.5k 5 88.05 58.12 6 69.00 54.87 8 50.60 52.70 5 55.32 50.54 6 55.10 54.51 6 69.32 58.48* 4 51.27 56.68* 0 60.60 57.04 5 71.19 59.93*	54.87
	-	117M	PROMPTING	51.52	52.52	0.80/4.93	0.37/2.58	50.60	52.70
GPT2	DistilBERT	IBERT 66M	ZEROGEN	73.24	80.39	16.44/21.83	5.20/8.26	55.32	50.54
	LSTM	\sim 7M	ZEROGEN	69.60	70.40	4.94/8.53	1.00/3.83	51.03	49.10
	-	762M	PROMPTING	80.20	87.84	3.53/10.78	1.47/5.16	55.10	54.51
GPT2-Large	DistilBERT	66M	ZEROGEN	83.56	85.44	23.87/29.82	5.93/9.63	69.32	58.48 *
	LSTM	\sim 7M	ZEROGEN	78.20	75.10	8.01/12.77	2.33/5.24	51.27	56.68*
	-	1.5B	PROMPTING	80.64	89.22	4.61/13.32	2.13/6.30	60.60	57.04
GPT2-XL	DistilBERT	66M	ZEROGEN	84.28	87.27	25.50/31.53	6.33/9.96	71.19	59.93 *
	LSTM	~7M	ZERUGEN	79.80	78.40*	12.35/18.66	3.23/6.34	52.26	58.85*

Outline

- Why do we care weakly-supervised text classification/NLU?
- Weakly-supervised text classification
 - ConWea [ACL'20], LOTClass [EMNLP'20], X-Class [NAACL'21],
 PromptClass [arXiv'23]
- Weakly-supervised structure-enhanced text classification
 - Taxonomy-enhanced: TaxoClass [NAACL'21]
 - Metadata-enhanced: MICoL [WWW'22], MAPLE [WWW'23]
- Weakly-supervised NLU
 - Zero-shot: SuperGen [NeurIPS'22], ZeroGen [EMNLP'22]
 - Few-shot: FewGen [ICML'23]

FewGen: Augmentation-Enhanced Few-Shot Learning

- Tune a generative PLM (GPT-like) on the small few-shot training set using prefix-tuning
- Use the tuned PLM to create novel training data
- □ Fine-tune a classification PLM on both the few-shot and synthetic training sets



Meng, Y., Michalski, M., Huang, J., Zhang, Y., Abdelzaher, T., & Han, J. "Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning", ICML'23.

FewGen: Emphasizing Label Distinction in Generator Tuning

- How to emphasize label discriminativeness for generator tuning?
- Weighted generator tuning objective:

$$\min_{\boldsymbol{\theta}_{p_l}} \mathcal{L}_{w-gen}, \quad \mathcal{L}_{w-gen}(\boldsymbol{\theta}_{p_l}; \boldsymbol{w}) = -\sum_{j=1}^n w_j \mathcal{L}_{gen}^j(\boldsymbol{\theta}_{p_l}), \quad \frac{\mathcal{L}_{gen}^j(\boldsymbol{\theta}_{p_l}) = \log p_{\boldsymbol{\theta}_{p_l}}(x_j | \boldsymbol{x}_{< j})}{\mathsf{Generator loss on each token}}$$

$$\mathsf{Token weights}$$

- Intuitively, important and label-distinctive tokens should be assigned higher weights (e.g., in sentiment classification, one would expect "good/bad" to be more label-discriminative than "the movie").
- □ How to set token weights?
 - Manually designing weighting rules likely requires task-specific knowledge and nontrivial tuning

FewGen: Automatically Learning Token Weights via Meta-Learning

□ How to automatically learn token weights?

$$\min_{\boldsymbol{\theta}_{p_l}} \mathcal{L}_{w-gen}, \quad \mathcal{L}_{w-gen}(\boldsymbol{\theta}_{p_l}; \boldsymbol{w}) = -\sum_{j=1}^n w_j \mathcal{L}_{gen}^j(\boldsymbol{\theta}_{p_l}), \qquad \frac{\mathcal{L}_{gen}^j(\boldsymbol{\theta}_{p_l}) = \log p_{\boldsymbol{\theta}_{p_l}}(x_j | \boldsymbol{x}_{< j})}{\text{Generator loss on each token}}$$

$$\text{Parameterize as learnable}$$

$$\text{hyperparameters}$$

□ Formulate a bi-level optimization problem using the idea of meta-learning

$$\begin{split} \boldsymbol{\theta}_{p}^{*}(\boldsymbol{\omega}) &= \operatorname*{argmin}_{\boldsymbol{\theta}_{p}} \mathcal{L}_{\text{w-gen}}, \quad \mathcal{L}_{\text{w-gen}}(\boldsymbol{\theta}_{p};\boldsymbol{\omega}) = -\sum_{j=1}^{n} w_{j}(\boldsymbol{\omega}) \mathcal{L}_{\text{gen}}^{j}(\boldsymbol{\theta}_{p}) \longrightarrow \begin{array}{c} \text{Generator tuned under} \\ \text{token weights} \\ \text{token weights automatically} \\ \boldsymbol{\omega}^{*} &= \operatorname*{argmin}_{\boldsymbol{\omega}} \mathcal{L}_{\text{disc}}, \quad \mathcal{L}_{\text{disc}}(\boldsymbol{\theta}_{p}^{*}(\boldsymbol{\omega})) = -\frac{1}{n} \sum_{j=1}^{n} \mathcal{L}_{\text{disc}}^{j}(\boldsymbol{\theta}_{p}^{*}(\boldsymbol{\omega})) \longrightarrow \begin{array}{c} \text{Generator tuned under} \\ \text{token weights} \\ \text{learned to emphasize label} \\ \text{discriminativeness} \\ \end{split}$$

FewGen: Experiment Results

□ 5+ average points higher than the best few-shot baseline without augmentation

□ 3+ average points higher than the best augmentation baseline (GPT3Mix)

Method	MNLI-(m/mm) (Acc.)	QQP (F1)	QNLI (Acc.)	SST-2 (Acc.)	CoLA (Matt.)	RTE (Acc.)	MRPC (F1)	AVG				
Methods without Augmentation: Few-shot	Methods without Augmentation: Few-shot samples are directly used for classifier tuning or as demonstrations for inference											
Prompting [†]	50.8/51.7	49.7	50.8	83.6	2.0	51.3	61.9	50.1				
Fine-Tuning [†]	$45.8_{6.4}/47.8_{6.8}$	$60.7_{4.3}$	$60.2_{6.5}$	$81.4_{3.8}$	$33.9_{14.3}$	$54.4_{3.9}$	$76.6_{2.5}$	59.1				
In-Context [†]	$52.0_{0.7}/53.4_{0.6}$	$36.1_{5.2}$	$53.8_{0.4}$	$84.8_{1.3}$	$-1.5_{2.4}$	$60.4_{1.4}$	$45.7_{6.0}$	47.4				
LM-BFF (Man.) [†]	$68.3_{2.3}/70.5_{1.9}$	$65.5_{5.3}$	$64.5_{4.2}$	$92.7_{0.9}$	$9.3_{7.3}$	$69.1_{3.6}$	$74.5_{5.3}$	63.6				
+ demonstration ^{\dagger}	$70.7_{1.3}/72.0_{1.2}$	$69.8_{1.8}$	$69.2_{1.9}$	$92.6_{0.5}$	$18.7_{8.8}$	$68.7_{2.3}$	$77.8_{2.0}$	66.9				
LM-BFF (Auto) [†] (w. 2.9B T5)	$68.3_{2.5}/70.1_{2.6}$	$67.0_{3.0}$	$68.3_{7.4}$	$92.3_{1.0}$	$14.0_{14.1}$	73.9 _{2.2}	$76.2_{2.3}$	65.8				
+ demonstration [†] (w. 2.9B T5)	$70.0_{3.6}/72.0_{3.1}$	$67.7_{5.8}$	$68.5_{5.4}$	$93.0_{0.6}$	$21.8_{15.9}$	$71.1_{5.3}$	$78.1_{3.4}$	67.3				
P-Tuning [‡]	$61.5_{2.1}/-$	$65.6_{3.0}$	$64.3_{2.8}$	$92.2_{0.4}$	_	_	$74.5_{7.6}$	_				
DART [‡]	$67.5_{2.6}/-$	$67.8_{3.2}$	$66.7_{3.7}$	$93.5_{\scriptstyle 0.5}$	_	_	$78.3_{4.5}$	_				
Methods with Augmentation: Few-shot sat	mples are used for c	reating syn	nthesized sa	amples and	for classifie	er tuning						
MixText	$65.1_{2.6}/66.2_{2.8}$	$60.6_{3.9}$	$68.4_{5.1}$	$89.1_{2.3}$	$12.8_{9.2}$	$66.5_{4.1}$	$64.6_{7.6}$	61.1				
Back Translation (w. trained Marian)	$66.9_{4.6}/68.3_{3.8}$	$59.8_{4.6}$	$67.8_{4.9}$	$91.1_{1.9}$	$7.5_{3.7}$	$62.4_{5.3}$	$68.0_{11.2}$	60.6				
GPT3Mix (w. 175B GPT3)	$61.5_{3.2}/62.6_{2.2}$	$70.4_{1.9}$	$69.2_{0.3}$	93.6 0.6	48.9 1.9	$70.4_{10.0}$	$69.9_{12.4}$	69.2				
Generator Fine-Tuning (w. 1.6B CTRL)	$68.9_{5.1}/70.8_{5.3}$	$60.4_{8.7}$	$70.9_{4.1}$	$91.2_{1.2}$	$18.8_{10.0}$	$66.1_{4.4}$	$60.8_{15.4}$	62.6				
FewGen (w. 1.6B CTRL)	75.7 _{1.6} / 77.1 _{1.0}	$71.5_{1.7}$	76.3 4.4	$93.1_{0.8}$	$40.0_{7.5}$	$71.2_{2.4}$	$81.1_{2.5}$	72.8				
Fully Supervised Fine-Tuning [†]	89.8/89.5	81.7	93.3	95.0	62.6	80.9	91.4	84.9				

References

- Meng, Y., Shen, J., Zhang, C., & Han, J. "Weakly-supervised neural text classification", CIKM'18
- □ Mekala, D. & Shang, J. "Contextualized Weak Supervision for Text Classification", ACL'20
- Meng, Y., Zhang, Y., Huang, J., Xiong, C., Ji, H., Zhang, C., & Han, J. "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20
- □ Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21
- Zhang, Y., Jiang, M., Meng, Y., Zhang, Y., & Han, J. "PromptClass: Weakly-Supervised Text Classification with Prompting Enhanced Noise-Robust Self-Training", arXiv'23
- Shen, J., Qiu, W., Meng, Y., Shang, J., Ren, X., & Han, J., "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21
- Zhang, Y., Shen, Z., Wu, C., Xie, B., Wang, Y., Wang, K., & Han, J. "Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification", WWW'22
- Zhang, Y., Jin, B., Zhu, Q., Meng, Y., & Han, J. "The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study", WWW'23
- Meng, Y., Huang, J., Zhang, Y., & Han, J. "Generating Training Data with Language Models: Towards Zero-Shot Language Understanding", NeurIPS'22.

References

- Ye, J., Gao, J., Li, Q., Xu, H., Feng, J., Wu, Z., Yu, T., & Kong, L. "ZeroGen: Efficient Zero-shot Learning via Dataset Generation", EMNLP'22
- Meng, Y., Michalski, M., Huang, J., Zhang, Y., Abdelzaher, T., & Han, J. "Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning", ICML'23

Q&A

