

Part IV: Language Models for Knowledge Base Construction

 KDD 2023 Tutorial

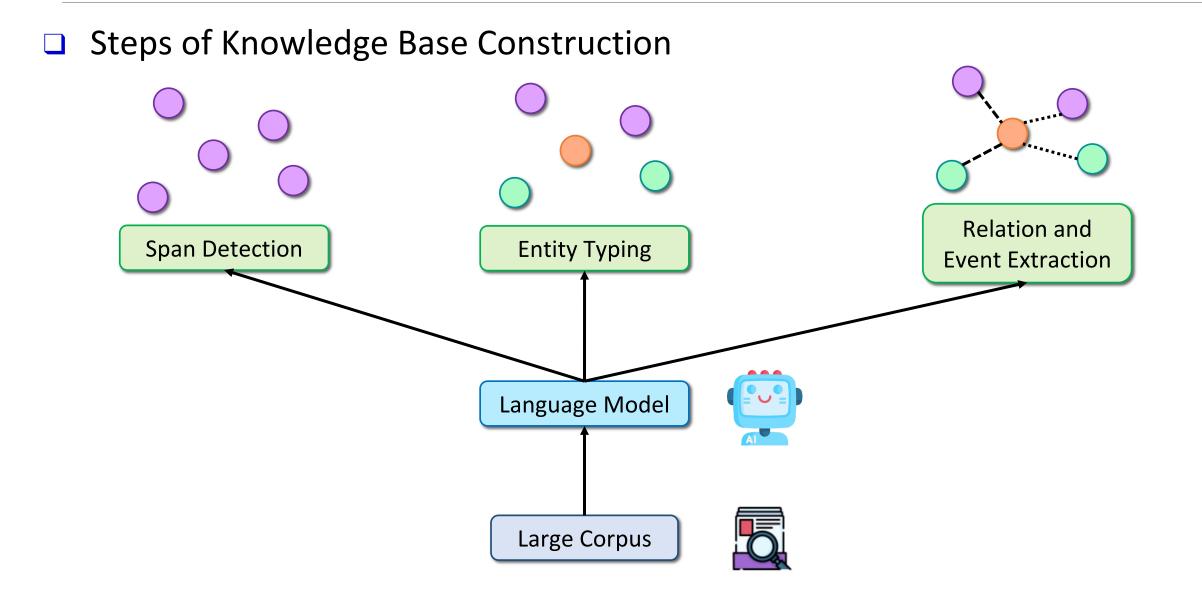
 Pretrained Language Representations for Text Understanding: A Weakly-Supervised Perspective

 Yu Meng, Jiaxin Huang, Yu Zhang, Yunyi Zhang, Jiawei Han

 Computer Science, University of Illinois Urbana-Champaign

 Aug 9, 2023

Knowledge Base Construction

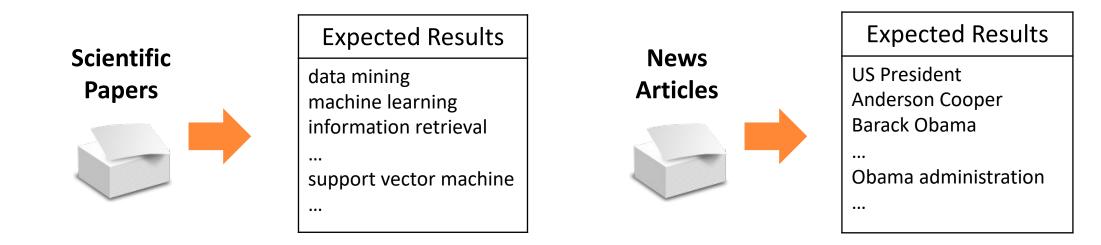


Outline

- Span Detection
 - Phrase Mining
 - Constituency Parsing
- **D** Entity Typing
- Relation and Event Extraction

Why Phrase Mining?

Identifying and understanding quality phrases from context is a fundamental task in text mining.



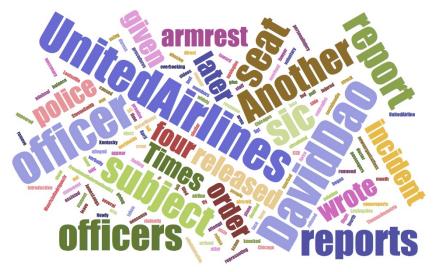
Quality phrases refer to informative multi-word sequences that "appear consecutively in the text, forming a complete semantic unit in certain contexts or the given document" [1].

[1] Geoffrey Finch. 2016. Linguistic terms and concepts. Macmillan International Higher Education

Why Phrase Mining?

w/o phrase mining

- What's "United"?
- Who's "Dao"?
- Applications in NLP, IR, Text Mining
 - Text Classification
 - Indexing in search engine



w/ phrase mining

- United Airline!
- David Dao!
- Keyphrases for topic modelingText Summarization

Outline

- Span Detection
 - Phrase Mining
 - UCPhrase: Unsupervised Context-aware Quality Phrase Tagging
 [KDD'21]
 - Constituency Parsing
- Entity Typing
- Relation and Event Extraction

Previous Phrase Mining/Chunking Models

- Statistics-based models (*TopMine, SegPhrase, AutoPhrase*)
 - only work for frequent phrases, ignore valuable infrequent / emerging phrases
- Tagging-based models (Spacy, StanfordNLP)
- do not have requirements for frequency
- require expensive and unscalable sentence-level annotations for model training

Different Types of Supervisions

- Supervision
 - Human annotation
 - expensive, hard to scale to larger corpora and new domains
 - Distant supervision
 - □ tend to produce **incomplete labels** due to context-agnostic matching
 - e.g. "Heat [island effect] is found to be ..."
 - □ e.g. "Biomedical [data mining] is an important task where ..."
 - tend to match popular phrases, which form a small seen phrase vocabulary
 - easy for an embedding-based system to memorize / overfit

Framework of UCPhrase

Silver Label Generation + Attention Map-based Span Prediction

Core Phrases for Silver Labels

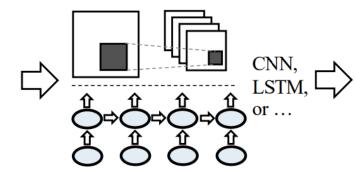
unsupervised, per-document, could have noise (e.g., "cities including")

The [heat island effect] is from ... The term heat island is also used ... [heat island effect] is found to be ...

... like other [cities including] [New York]... happens in [cities including] ... about [New York]. Sentence Attention Maps no fine-tuning, one-pass only, captures the sentence structure like other cities New

Pre-trained Transformer LM

Train a Lightweight Classifier core phrases vs. random negatives



Final Tagged Quality Phrases both frequent & uncommon phrases

could correct noise from silver labels

The [heat island effect] is from ... The term [heat island] is also used ... [heat island effect] is found to be ...

... like other cities including [New York] ... happens in cities including ... about [New York].

Silver Label Generation

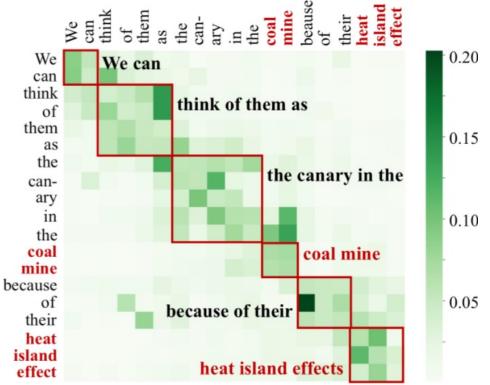
- □ How do human readers accumulate new phrases?
 - even without any prior knowledge we can recognize these consistently used patterns from a document
 - e.g., task name, method name, dataset name, concepts in a publication
 - e.g., human name, organization, locations in a news article
- Mining core phrases as silver labels
 - independently mine max word sequential patterns within each document
 - with each document as context
 - preserve contextual completeness ("biomedical data mining" vs. "data mining")
 - avoid potential noises from propagating to the entire corpus

Surface-Agnostic Feature Generation

- What's wrong with traditional embedding-based features?
 - embedding features are word identifiable -- it tells you which word you are looking at
 - easy to rigidly memorize all seen phrases / words in the training set / dictionary
 - □ fail to generalize to unseen phrases
- Good features for phrase recognition should be
 - agnostic to word **surface names** (so the model cannot rely on rigid memorization)
 - reveal the role that the span plays in the entire sentence (look at sentence structure rather than phrase names)

Attention Map

- **Extract knowledge directly from a pre-trained language model**
 - □ the **attention map** of a sentence vividly visualizes its **inner structure**
 - high quality phrases should have distinct attention patterns from ordinary spans



Phrase Tagging as Image Classification

- □ Viewing the generated feature as a 144-channel image of size K*K
 - train a lightweight 2-layer CNN model for binary classification: is a phrase or not
 - why CNN: capture word interactions (attentions) from various ranges, also fast for training and inference
- **Efficient implementation**
 - only train the CNN module, without fine-tuning LM

Quantitative Evaluation

Table 2: Evaluation results (%) of three tasks for all compared methods on datasets on two domains.

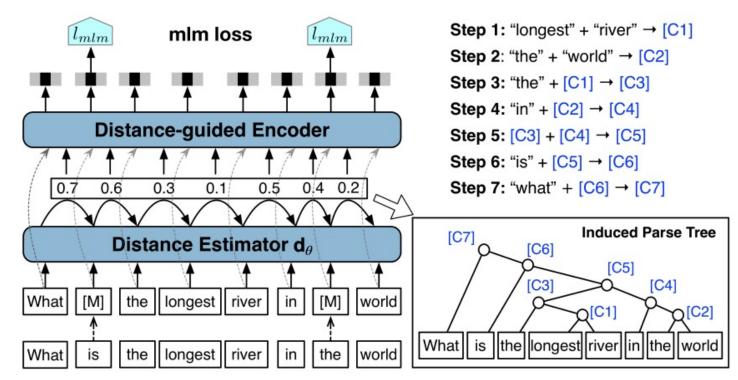
		Task I: Phrase Ranking			Task II: KP Extract.				Task III: Phrase Tagging						
Method Type	Method Name	KP20k		KPTimes		KP20K		KPTimes		KP20k		c	KPTimes		es
		P@5K	P@50K	P@5K	Р@50К	Rec.	F _{1@10}	Rec.	F _{1@10}	Prec.	Rec.	F_1	Prec.	Rec.	F_1
Pre-trained	PKE [3]	_	_	_	_	57.1	12.6	61.9	4.4	54.1	63.9	58.6	56.1	62.2	59.0
	Spacy [16]	_	_	_	_	59.5	15.3	60.8	8.6	56.3	68.7	61.9	61.9	62.9	62.4
	StanfordNLP [26]	_	_	_	_	51.7	13.9	60.8	8.7	48.3	60.7	53.8	56.9	60.3	58.6
Distantly Companying d	AutoPhrase [33]	97.5	96.0	96.5	95.5	62.9	18.2	77.8	10.3	55.2	45.2	49.7	44.2	47.7	45.9
Distantly Supervised	Wiki+RoBERTa	100.0	98.5	99.0	96.5	73 .0	19.2	64.5	9.4	58.1	64.2	61.0	60.9	65.6	63.2
I la com consiste d	TopMine [8]	81.5	78.0	85.5	71.0	53.3	15.0	63.4	8.5	39.8	41.4	40.6	32.0	36.3	34.0
Unsupervised	UCPhrase (ours)	96.5	96.5	96.5	95.5	72.9	19.7	83.4	10.9	69.9	78.3	73.9	KPTime Prec. Rec. 56.1 62.2 61.9 62.9 56.9 60.3 44.2 47.7 60.9 65.6	73.5	

Outline

- Span Detection
 - Phrase Mining
 - Constituency Parsing
 - Phrase-aware Unsupervised Constituency Parsing [ACL'2022]
- Named Entity Recognition
- Relation and Event Extraction

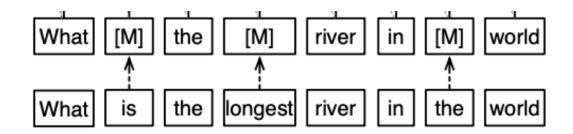
LM-based Unsupervised Constituency Parsing

- Represent discrete parsing tree as a distance sequence (given by a distance estimator)
- Distance information helps inject the parsing tree structure into encoder training via the MLM loss



Challenges With Current LM-Based Methods

- The distance estimator is randomly initialized
 - **u** yield suboptimal information for the encoder **in the cold start phase**
 - lead to suboptimal parsing accuracy due to error accumulation
- The token reconstruction task (MLM) mainly relies on the aggregation of local information, thus can hardly guide the model to manage high-level structures across long distances
 - Example: The prediction of "longest" mainly depends on its neighbor "river"

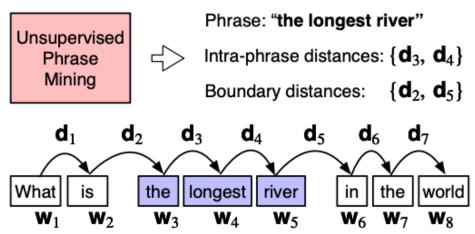


Phrase-Regularized Warm-Up

Warm up the distance estimator via unsupervised extracted phrases

- Can use any phrase tagger (e.g., UCPhrase)
- Encourage the average intra-phrase distance to be smaller than the average phrase boundary distance through a margin loss

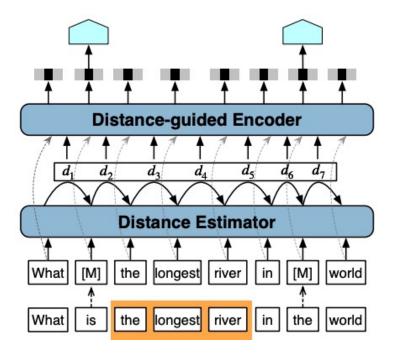
$$\ell_{phrase} = \frac{1}{4} \cdot (max(0, \mathbf{d}_3 - \mathbf{d}_2) + max(0, \mathbf{d}_3 - \mathbf{d}_5) + max(0, \mathbf{d}_4 - \mathbf{d}_2) + max(0, \mathbf{d}_4 - \mathbf{d}_5))$$



18 Phrase-aware Unsupervised Constituency Parsing [ACL'2022]

Phrase-Guided Masked Language Modeling

- Given a sentence with tagged local phrases, sample a subset of the phrases to be excluded from being masked out
- By doing so, we try to push the model out of its comfort zone of local structure learning, and encourage it to focus more on how the local constituents are connected



Results

 Phrase-guided masked language modeling (PMLM) and phrase-regularized warm-up (PRW) both help improve the performance of existing LM-based parsers

Method	NP	VP	ADJ	ADV	SBA	PP
PRPN ON-LSTM C-PCFG	59.2 64.5 74.7	46.7 41.0 41.7	44.3 38.1 40.4	32.8 31.6 52.5	50.0 52.5 56.1	57.2 54.4 68.8
TreeTransformer + PMLM + PRW + PRW + PMLM	$ \begin{array}{r} 63.7 \\ 63.5 \\ \underline{64.2} \\ \underline{64.2} \end{array} $	37.1 <u>37.9</u> 36.3 <u>37.2</u>	32.3 31.7 27.9 29.6	56.8 56.8 53.8 53.7	37.0 <u>38.0</u> 36.2 35.9	$ \begin{array}{r} 49.7 \\ \underline{50.4} \\ \underline{53.0} \\ \underline{53.3} \end{array} $
StructFormer + PMLM + PRW + PRW + PMLM	73.7 73.6 <u>74.0</u> <u>74.2</u>	$ \begin{array}{r} 43.2 \\ \underline{43.7} \\ \underline{44.9} \\ \underline{45.1} \end{array} $	53.4 53.4 52.9 53.2	70.5 69.3 69.9 69.3	51.8 51.9 52.7 53.9	$ \begin{array}{r} 64.5 \\ \underline{64.6} \\ \underline{69.4} \\ \underline{70.1} \end{array} $

Table 2: Recall scores	(%) 0	of typed	gold constituents.
------------------------	-------	----------	--------------------

Methods	F1 (%)
PRPN (Shen et al., 2018a)	37.4
ON-LSTM (Shen et al., 2018b)	47.7
URNNG (Kim et al., 2019c)	52.4
C-PCFG (Kim et al., 2019b)	55.2
Neural L-PCFGs (Zhu et al., 2020)	55.3
TreeTransformer (Wang et al., 2019)	47.9
+ PMLM	48.7
+ PRW	49.0
+ PRW + PMLM	<u>49.3</u>
StructFormer (Shen et al., 2020)	54.0
+ PMLM	54.1
+ PRW	55.3
+ PRW + PMLM	55.7

Table 1: Unlabeled F1 score (%) for unsupervised constituency parsing on WSJ test set.

Outline

- Span Detection
- Entity Typing

- Automatic Label Interpretation and Generating New Instance for
 - Entity typing [KDD'22]
- Zero-shot Entity Typing
- Relation and Event Extraction

Motivation

- Entity typing is a fundamental task in text mining with a wide spectrum of applications
 - question answering
 - knowledge base construction
 - dialog systems

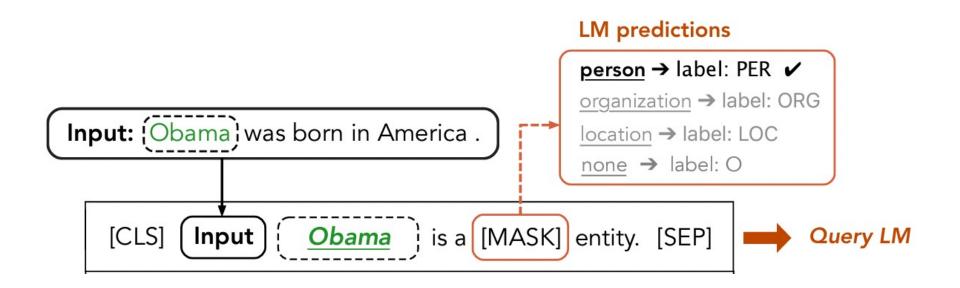
- Deep neural models have achieved enormous success for entity typing
- However, a common bottleneck of training deep learning models is the acquisition of abundant high-quality human annotations (every entity in the sequence needs to be labeled!)

Few-shot Entity Typing

- Current entity typing models are trained for a series of fixed categories (e.g., PERSON, LOCATION, etc.) using large amounts of labeled data.
- Few-shot entity typing learns to transfer to new domains/categories with only a few training examples.

LM-based Entity Typing

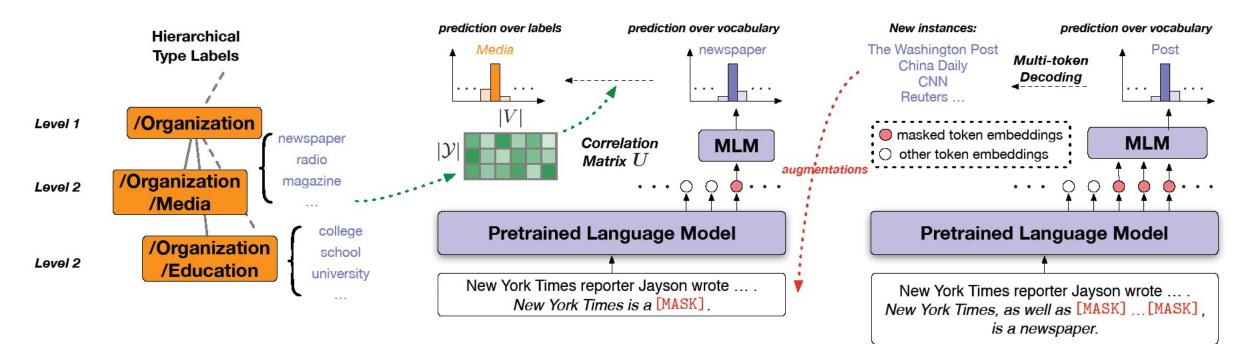
□ An example of prompting language models for named entity recognition.



Limitations of current pipeline

- A verbalizer needs to be manually created for mapping words to labels (e.g., person/actor -> PER, organization/company -> ORG)
- Current approaches have not fully utilized the power of LMs
 - representation models that predict entity types based on entity instance representations
 - the generation power of LMs acquired through extensive generaldomain pretraining can be exploited to generate new entity instances
 - model can be trained with more instances for better generalization

Overall Framework of ALIGNIE (Automatic Label Interpretation and Generating New Instance for Entity typing)



Entity Type Interpreter

(Left): With a given type label hierarchy, an entity type interpretation module relates all the words in the vocabulary with the label hierarchy by a correlation ₂₆ matrix.

(Middle): An entity typing classifier maps the word probability at the [MASK] position to type probability using the correlation matrix.

Entity Type Classifier

Contextualized Instance Generator

(Right): A type-based contextualized instance generator uses an entity mention and its predicted type to construct a template for new instance generation to augment the training set.

PLM-based Instance Generator

□ E.g., a *newspaper* entity "New York Times" → more newspaper names

Generation Template :

[Context]. New York Times, as well as [MASK] [MASK] [MASK], is a *newspaper*. Entity Mention # ranges from 1 to the length of Predicted by Entity Type

original entity mention

Classifier

Multi-Token Instance Generation

We randomly choose one [MASK] token at each step, and sample from its output token probability to fill in a word.

New York Times, as well as the $_1$ [MASK] [MASK] is a newspaper. New York Times, as well as the $_1$ Washington $_2$ [MASK] is a newspaper. New York Times, as well as the $_1$ Washington $_2$ Post $_3$ is a newspaper.

Score(
$$\widetilde{m}$$
) = $\sum_{i=1}^{|\widetilde{m}|} \log(s_i)$
The conditional probability at each step

The next blank to be filled in is randomly selected, therefore the order is not always from left to right.

E.g.

Generated New instances based on predicted types of example entities

Multi-token instances

Generation from multi-token entities									
Context & entity mention	MLM predicted type	Generated new instances							
The album also included the song "Vivir Lo Nuestro," a duet with Marc Anthony .	singer	Beyonce, Jennifer Lopez, Rihanna, Taylor Swift, Lady Gaga, Michael Jackson,							
The film was released on August 9, 1925, by Universal Pictures.	company	Warner Brothers, Paramount Pictures , Columbia Pictures, Lucasfilm, Hollywood Pictures,							
Everland hosted 7.5 million guests in 2006, ranking it fourth in Asia behind the two Tokyo Disney Resort parks and Universal Studios Japan, while Lotte World attracted 5.5 million guests to land in fifth place.	park	Lotte World, Universal Studios Japan, Shanghai Disney World , Orlando Universal Studios,							
The site of Drake's landing as officially recognised by the U.S. Department of the Interior and other agencies is Drake's Cove.	government agency	the Department of Homeland Security, the Bureau of Land Management, the Federal Bureau of Investigation, the United States Forest Service, the National Institutes of Health,							
Pikmin also make a cameo during the process of transferring downloadable content from a Nintendo DSi to a 3DS, with various types of Pikmin carrying the data over.	handheld	3DS, 2DS, Wii U, Nintendo Switch, the PSP, PlayStation Vita,							

Main Results

Method		OntoNot	es		BBN		Few-NERD			
Method	(Acc.)	(Micro-F1)	(Macro-F1)	(Acc.)	(Micro-F1)	(Macro-F1)	(Acc.)	(Micro-F1)	(Macro-F1)	
5-Shot Setting										
Fine-tuning	28.60	50.70	51.60	51.03	60.03	58.22	36.09	48.56	48.56	
Prompt-based MLM	32.62	60.97	61.82	67.00	75.23	73.55	44.69	59.24	59.24	
PLET	48.57	70.63	75.43	71.23	79.22	78.93	56.94	68.81	68.81	
ALIGNIE (- hierarchical reg.)	52.74	77.55	79.72	72.15	80.35	80.40	59.01	70.91	70.91	
ALIGNIE (- new instances)	51.10	72.91	76.88	73.50	81.62	81.31	57.41	69.47	69.47	
ALIGNIE	53.37	77.21	80.68	75.44	82.20	82.30	59.72	71.90	71.90	
Fully Supervised Setting										
Fine-tuning	56.70	75.21	78.86	78.06	82.39	82.60	79.75	85.74	85.74	
Prompt-based MLM	55.18	74.57	77.47	77.10	81.77	82.05	77.38	85.22	85.22	

- Prompt-based results have higher performance than vanilla fine-tuning in few-shot settings. In fully supervised settings, however, fine-tuning performs a little better than prompt-based MLM.
- ALIGNIE can even outperform fully supervised setting on OntoNotes and BBN, but cannot on Few-NERD. This is because the training set of OntoNotes and BBN are automatically inferred from external knowledge bases, and can contain much noise.

Outline

- Span Detection
- Entity Typing
 - Few-shot Entity Typing
 - Zero-shot Entity Typing
 - ONTOTYPE: Ontology-Guided Annotation-Free Fine-Grained Entity
 Typing
- Relation and Event Extraction

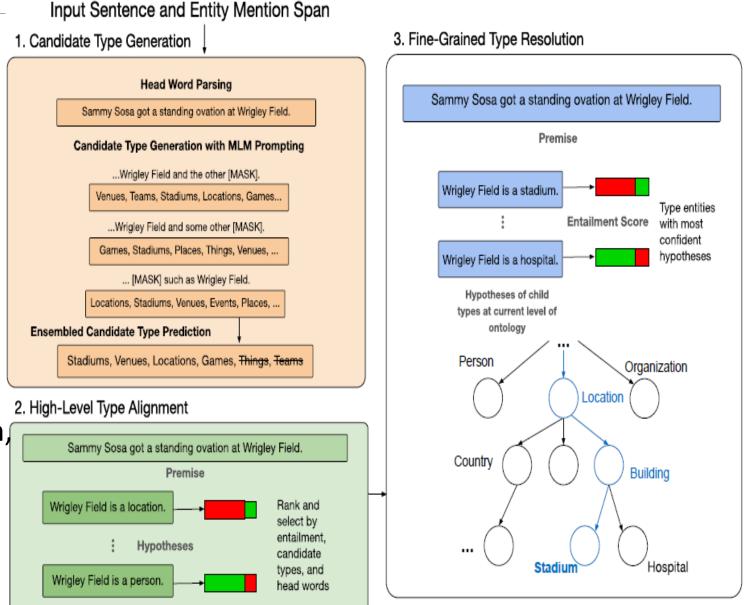
OntoType: Ontology-Guided Entity Typing

- Zero-shot entity typing: Assigns fine-grained semantic types to entities without any annotations
 - **Ex.** Sammy Sosa [Person/Player] got a standing ovation at Wrigley Field [Location/Building/Stadium]
- Challenges of weak supervision based on masked language model (MLM) prompting
 - A prompt generates a set of tokens, some likely vague or inaccurate, leading to erroneous typing
 - □ Not incorporate the rich structural information in a given, fine-grained type ontology
- OntoType: Ontology-guided, Annotation-Free, Fine-Grained Entity Typing
 - **Ensemble multiple MLM prompting results to generate a set of type candidates**
 - Progressively refine type resolution, from coarse to fine, following the type ontology, under the local context with a natural language inference model
- OntoType: Outperforms the SOTA zero-shot fine-grained entity typing methods

Tanay, Komarlu, et al., "ONTOTYPE: Ontology-Guided Annotation-Free Fine-Grained Entity Typing", submitted for publication, 2022

Overall Framework of OntoType : Three Steps

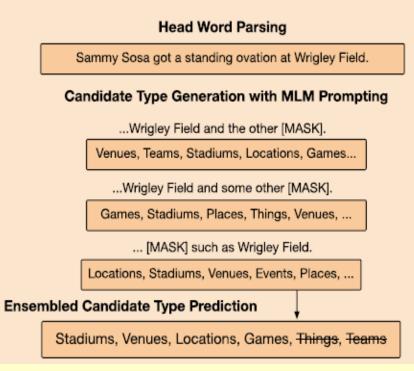
- Candidate type generation
 - Candidate type generation with multiple MLM prompting
 - Ensembled candidate type prediction
 - Ex. Stadium, venue, location, games, things, teams
- High-level type alignment by entailment (local context + NLI)
- Progressively refine type resolution, from coarse to fine, following the type ontology
- Type ontology used at every step



OntoType: Step 1: Candidate Type Generation

Head Word Parsing

- Mention's head word in the input text is often the cue that explicitly matches a mention to its type
- Ex. "Governor Arnold Schwarzenegger gives a speech ..."
- Use the Stanford Dependency Parser to extract head word
- Leverage the head words of the input entity to select an initial context-sensitive coarse-grained type
- Ensembled MLM Prompting
 - Leverage a BERT masked language model and Hearst patterns to generate candidate types for the target mentions
 - Ensemble n patterns to generate the best candidate types
 - Consolidated candidates that are generated by a majority of the *n* Hearst patterns
 - Ex. For e₁, "Stadiums, Venues, Locations, Games" retain but the noisy types "Things" and "Teams" are removed

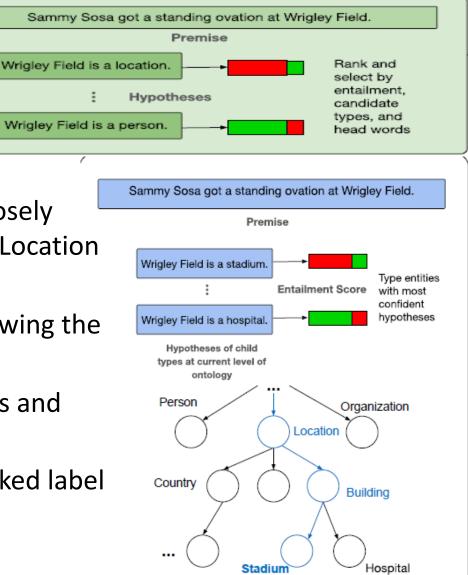


Four Hearst Patterns give the highest quality hypernyms with simple type mapping on the Ontonotes dataset

Hearst Pattern	Prec	Rec	F1
[MASK] such as	53.3	72.4	61.4
such [MASK] as	47.9	68.7	56.5
and some other [MASK]	48.8	66.6	56.4
and the other [MASK]	47.6	68.3	56.1

OntoType: Steps 2 & 3: High-Level Type Resolution & Progressive Type Refinement

- High-level type alignment by entailment
 - Align generated candidate types to several high-level types in the type ontology by Word2Vec+ cosine similarity
 - Then select the most accurate high-level types with a pretrained entailment language model (NLI)
 - Ex. "Locations", "Stadiums", "Venues", and "Games" are closely related to the high-level type "Location"; NLI further ranks Location over Person and Organization
- Progressively refine type resolution, from coarse to fine, following the type ontology
 - Ex. At the 2nd level of ontology, it generates the hypotheses and ranks all child types of "location"
 - This consolidates and selects "building" as the highest ranked label
 - At a deeper level, it selects the final type "stadium"
- ₃₅ Type ontology is used at every step



OntoType: Performance Study

Use 3 benchmark	FET dataset	s: NYT, C	ntonotes,	and FIGER:	Model	Prec	Ree	c Ma	a-F1
Datasets	Ontonotes	FIGER	NYT	-	ONTOTYPE _{BERT}	82.3	77.	1 79.	6
# of Types	89	113	125		ONTOTYPE _{Roberta}	81.9	76.	9 79.	4
# of Documents	300k	3.1M	295k		ONTOTYPE _{Word2Vec}	84.7	78.	4 81.	.5
# of Entity Mentions	242K	2.7M	1.18M						
# of Train Mentions	223K	2.69M	701K	Compare with Zoe	Model		Acc	Mi-F1	Ma-l
# of Test Mentions	8,963	563	1,010	on Ontonotes with	LOC		57.1	70.7	73.4
Compare with supervised and O-shot methods:			modified ontology	ONTOTYPE + Modified Or	ntology	58.9	71.1	78.7	

Compare with supervised and 0-shot methods:

Sattings	Model		NYT			FIGER	2	Ontonotes			
Settings	Widdel	Acc	Mi-F1	Ma-F1	Acc	Mi-F1	Ma-F1	Acc	Mi-F1	Ma-F1	
	AFET [16]	-	-	-	55.3	66.4	69.3	55.1	64.7	71.1	
Supervised	UFET [2]	-	-	-	-	-	-	59.5	71.8	76.8	
	BERT-MLMET [3]	-	-	-	-	-	-	67.44	80.35	85.44	
	ZOE [25]	62.1	73.7	76.9	58.8	71.3	74.8	50.7	60.8	66.9	
Zero-Shot	OTyper [22]	46.4	65.7	67.3	47.2	67.2	69.1	31.8	36.0	39.1	
	DZET [14]	27.3	53.1	51.6	28.5	56.0	55.1	23.1	28.1	27.6	
	MZET [23]	30.7	58.2	56.7	31.9	57.9	55.5	33.7	43.7	42.3	
	ONTOTYPE + Original Ontology (Ours)	-	-	-	49.1	67.4	75.1	65.7	73.4	81.5	
	ONTOTYPE + Modified Ontology (Ours)	69.6	78.4	82.8	51.1	68.9	77.2	-	-	-	

OntoType: Case Study

MZET	US President Joe Biden \Person\Politician was one of many for-	Trailing two games to one in the NBA Finals \Other\Event and
	eign leaders to speak with President Zelensky \Person\Politician,	facing the daunting task of trying to beat the Boston Celtics \Or-
	and he "pledged to continue providing Ukraine \Location with	ganization\Company in the hostile environment of TD Garden
	the support needed to defend itself, including advanced air de-	\Location\Building on Friday night, the Warriors knew they needed
	fence systems", the White House \Location\Building said.	to summon one of the best efforts of their dynastic run in order to
		even the best-of-seven series.
ZOE	US President Joe Biden \Person\Politician was one of	Trailing two games to one in the NBA Finals \Other\Event and
	many foreign leaders to speak with President Zelensky \Per-	facing the daunting task of trying to beat the Boston Celtics \Orga-
	son\Politician, and he "pledged to continue providing Ukraine	nization\Sports_Team in the hostile environment of TD Garden
	\Location\Country with the support needed to defend itself,	\Location\Building\Sports_Facility on Friday night, the Warriors
	including advanced air defence systems", the White House \Loca-	knew they needed to summon one of the best efforts of their dynastic
	tion\Building said.	run in order to even the best-of-seven series.
ΟΝΤΟΤΥΡΕ	US President Joe Biden \Person\Politician\President was one	Trailing two games to one in the NBA Finals \Other\Event\Finals
	of many foreign leaders to speak with President Zelensky \Per-	and facing the daunting task of trying to beat the Boston Celtics
	son\Politician\President, and he "pledged to continue providing	\Organization\Sports_Team\Basketball_Team in the hostile en-
	Ukraine \Location\Country with the support needed to defend	vironment of TD Garden \Location\Building\Sports_Facility on
	itself, including advanced air defence systems", the White House	Friday night, the Warriors knew they needed to summon one of the
	\Organization\Government said.	best efforts of their dynastic run in order to even the best-of-seven
		series.

See how different methods perform on news articles with a modified FIGER type ontology

Outline

Span Detection

- **Entity Typing**
- Relation and Event Extraction
 - Relation Extraction

- Document-Level Relation Extraction
- Corpus-Level Relation Extraction

Event Discovery

Document-Level Relation Extraction

- Document-level relation extraction (DocRE)
 - Extract semantic relations among entity pairs in a document
- Blindly considering the full document?
 - A subset of the sentences in the doc ("evidence") should often be sufficient to identify the relation
- An evidence-enhanced DocRE framework: EIDER
 - Efficiently extracts evidence and effectively leverages the extracted evidence to improve DocRE
- Using a document-level relationship extraction dataset
 DocRED (2019)
- Relation extraction benefits natural language understanding in many ways
 - Ex. Knowledge graph construction

Head:Hero of the DayTail:the United StatesRel:[country of origin]GT evidence sentences:[1,10]Extracted evidence:[1,10]

Original document as input: [1] Load is the sixth studio album by the American heavy metal band Metallica, released on June 4, 1996 by Elektra Records in the United States ... [9] <u>It</u> was certified 5×platinum ... for shipping five million copies in the United States. [10] Four singles—"Hero of the Day", "Until It Sleeps", "Mama Said", and "King Nothing" — were released as part of the marketing campaign for the album. Prediction scores: NA: 17.63 country of origin: 14.79

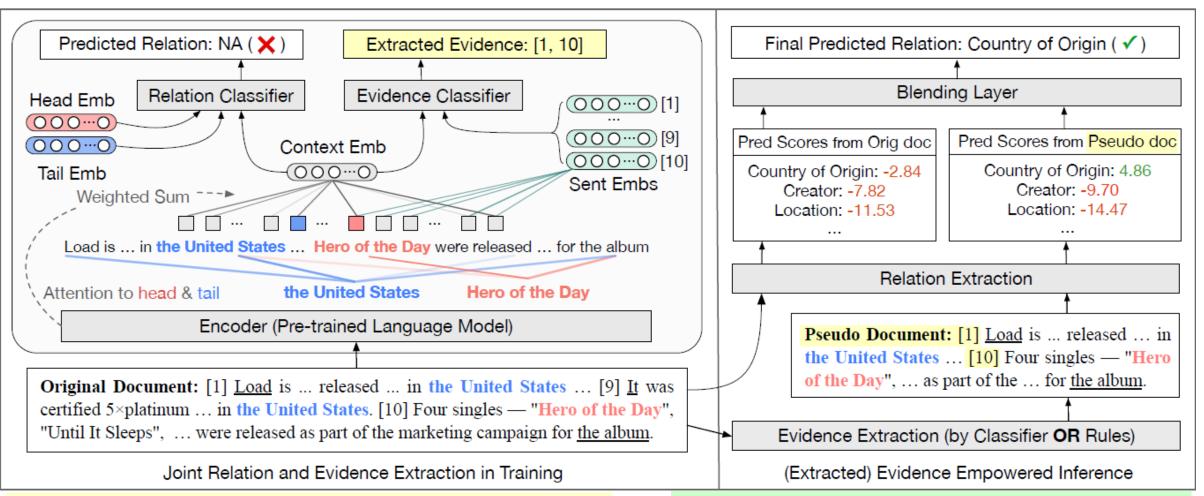
Extracted evidence as input:[1] Load is the sixth studioalbum... released ... in the United States... [10] Four singles— "Hero of the Day", ... were released ... for the album.Prediction scores:country of origin:18.31NA:13.45

Final prediction of our model: country of origin (✓)

Only need [1]+[10] to identify [head, relation, tail]

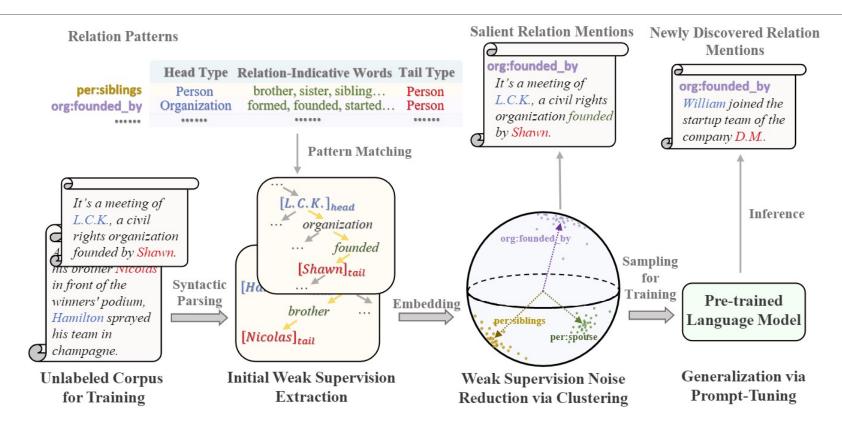
Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han, "<u>EIDER:</u> <u>Evidence-enhanced Document-level Relation Extraction</u>", ACL'22 Findings

EIDER Architecture



The left part (the training stage), we jointly extract relation and evidence using multi-task learning, where the two tasks have their own classifier and share the base encoder The right part (the inference stage), we fuse the predictions on the original document and the extracted evidence using a blending layer

Corpus-Level Relation Extraction



Sizhe Zhou, Suyu Ge, Jiawei Han, "Corpus-Based Relation Extraction by Identifying and Refining Relation Patterns", ECMLPKDD'23

Fig. 2. Framework overview. Our model mainly consists of three steps: (1) relation triple representation extraction, (2) latent space clustering, and (3) prompt-tuning with sub-prompts.

- Utilized additional representation of relation triple for initial weak supervision extraction and latent clustering for further denoising
- Applied further prompt tuning for context understanding and pattern generalization

Experiment Results

Model		TAC	RED			TAC	REV			ReTA	CRED	
K	4	8	16	Mean	4	8	16	Mean	4	8	16	Mean
w/ weak supervision												
EXACT MATCHING*	-	-	-	48.87	-	-	-	53.67	-	-	-	54.86
COSINE	23.28	26.60	37.16	29.01	21.43	30.85	41.21	31.16	28.12	35.00	44.54	35.89
COSINE*	-	-	-	58.88	-	-	-	60.80	-	-	-	68.59
RCLUS NOISY	45.35	50.94	55.73	50.67	50.41	61.67	66.85	59.64	56.89	65.81	71.09	64.60
RCLUS BALANCED	45.19	55.71	59.33	53.41	55.36	58.74	64.56	59.55	53.84	65.27	71.03	63.38
RCLUS	49.89	56.65	60.26	55.60	56.94	63.75	66.50	62.40	61.03	68.78	72.23	67.35
w/ ground truth supervision												
FINE-TUNING	13.62	26.09	32.07	23.93	18.75	25.21	35.12	26.36	17.36	31.77	42.63	30.59
GDPNET	13.79	28.42	43.11	28.44	15.61	24.59	42.12	27.44	19.20	35.79	52.84	35.94
PTR	39.16	49.46	54.67	47.76	47.18	51.58	59.17	52.64	51.27	62.60	71.11	61.66

Table 1. F_1 scores (%) on full test set with different sizes (K = 4, 8, 16) for each relation label.

Model	TA	CREV	
Widdel	Precision	Recall	\mathbf{F}_1
RCLUS	1000000000	*****	encencence.
w/ Weak	59.30	49.02	53.67
w/ Prompt	48.25	75.73	58.95
w/ Weak + Prompt	58.80	72.07	64.76
w/ Weak + Cluster	63.62	40.61	49.57
w/ Weak + Cluster + Prompt	60.76	74.29	66.85
w/ Weak + Cluster + Prompt*	57.85	78.47	66.61

Table 3. Ablation study of RCLUS

Leading low-resource performance

- Each component is indispensable
 - Weak supervision provides relatively high recall
 - Clustering provides relatively high precision
 - Prompt-tuning is important for boosting recall

Outline

Span Detection

- Entity Typing
- Relation and Event Extraction
 - Relation Extraction
 - Event Discovery
 - Argument Role Prediction
 - Open-Vocabulary Argument Role Prediction [EMNLP'22]

Event Chain Mining

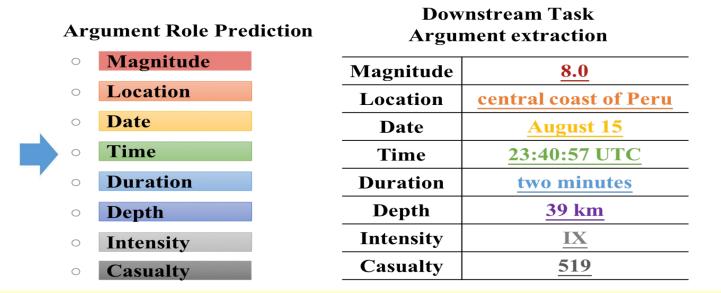
Open-Vocabulary Argument Role Prediction

□ Related Work:

- Most of existing studies rely on hand-crafted ontologies (costly, cannot generalize)
- A few studies try to automatically induce argument roles (limited pre-defined glossary)
- New Task: Infer a set of argument role names for a given event type to describe the crucial relations between the event type and its arguments

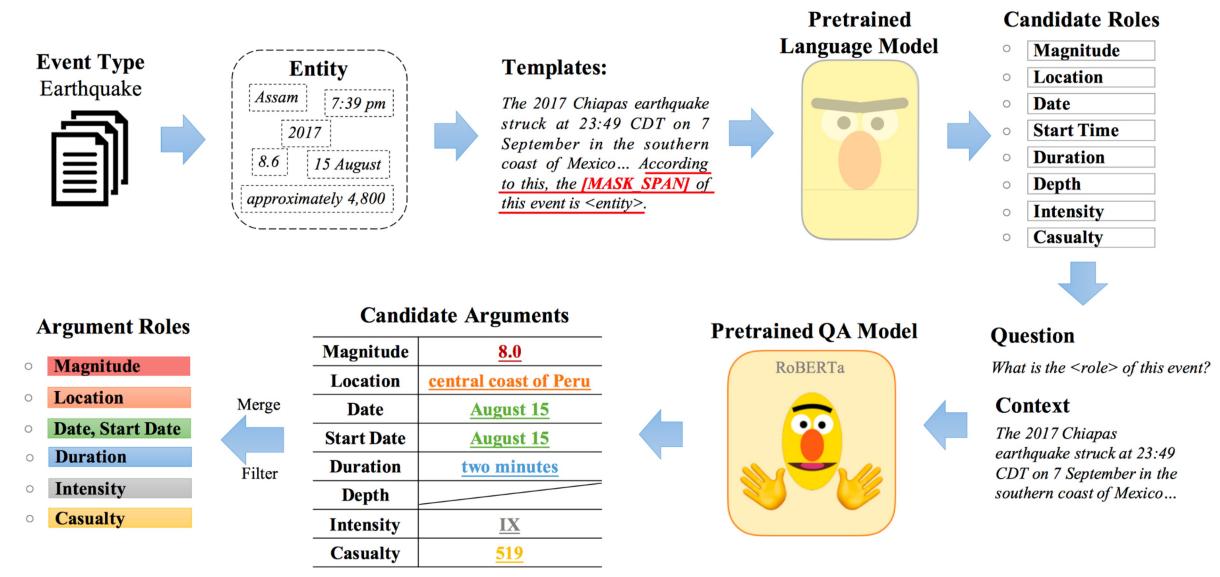
Event Type: Earthquake

The 2007 Peru earthquake, which measured <u>8.0</u> on the moment magnitude scale, hit the <u>central coast of Peru</u> on <u>August 15</u> at <u>23:40:57 UTC</u> (18:40:57 local time) and lasted <u>two minutes</u>. The epicenter was located 150 km (93 mi) south-southeast of Lima at a depth of <u>39</u> <u>km</u> (24 mi). The United States Geological Survey National Earthquake Information Center reported that it had a maximum Mercalli intensity of <u>IX</u>. The Peruvian government stated that <u>519</u> people were killed by the quake.



Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han "Open-Vocabulary Argument Role Prediction for Event Extraction", EMNLP'22

Framework for RolePred (Argument Role Prediction)



RolePred 1: Candidate Role Generation

- Predict candidate role names for named entities by casting it as a prompt-based in-filling task
- Prompt Construction: (using Generation Model : T5)
 - Context. According to this, the (MASK SPAN) of this Event Type is Entity.
- Ex. The 1964 Alaskan earthquake, also known as the Great Alaskan earthquake, occurred at 5:36 PM AKST on Good Friday, March 27. According to this, the (MASK SPAN) of this earthquake is 5:36 PM.
 - □ 〈MASK SPAN〉 is expected to be filled with *time* (or *start time*) as the argument role
- Considering the entity's general semantic type: person, location, number, etc., we slightly alter the prompt to fluently and naturally support the unmasking argument roles

Entity Type	Prompt	Prompt design for different entities
PERSON	According to this, Entity play the role of (MASK SP	AN⟩in this Event Type.
LOCATION	According to this, the (MASK SPAN) is Entity i	n this Event Type.
NUMBER	According to this, the number of $\langle MASK SPAN \rangle$ of the	is Event Type is Entity.
OTHER TYPES	According to this, the $\langle MASK SPAN \rangle$ of this Even	ent Type is Entity.

RolePred 2: Candidate Argument Extraction

- **G** Formulate the argument extraction problem into question-answering task
- Input: follow a standard BERT-style format (Model: BERT based pretrained QA model)
 [CLS] What is the <u>Event Role in this Event Type event?</u> [SEP] Document [SEP]
- Ex. [CLS] What is the <u>casualty</u> in this <u>pandemic</u> event? [SEP] The COVID-19 pandemic is an ongoing global pandemic of coronavirus disease. It's estimated that the worldwide total number of deaths has exceeded five million ... [SEP]
 - □ The argument is expected to be five million
 - Note that, for some roles, a given document may not mention its argument. That is, the above-constructed question can be unanswerable. Thus, for each extracted answer, we set a threshold on its probability from the QA model to filter out some unreliable results.
- Benefit
- Widely adaptable to any argument role or event type
- Judge if some arguments exist
- Search for arguments in a document (not within a sentence)

RolePred 3: Argument Role Selection

Role Filtering

- Judge the salience of an argument role by involving multiple event instances of the same type
 - **Ex.** *intensity* of the *earthquake* events; *host* for the *award ceremony* events
- A role name belongs to the event type only if most of the event instances have their associated argument
- Role Merging
 - Different roles can represent similar semantics and share the same arguments in an event
 - Ex. The *date, official date,* and *original date* may refer to the same day for a firework event
 - The semantic similarity of two roles is determined by the frequency that they share the same argument in the event instances
 - Ex. Given 10 instances of the firework event, if two roles, date, and official date, have the same day as their arguments in 5 instances, their similarity is 0.5

Experiment: Argument Role Prediction

	diction	lard Matching			oft Matching		Argumen	t Extractio	n w/o	Gold	en Role
Models	Precision	Recall	, F1	Precision	Recall	F1	Models		Р	R	F1
LiberalEE	0.1342	0.2613	0.1773	0.3474	0.5340	0.4209	LiberalEE		0.2009	0.2941	0.2387
VASE	0.0926	0.1436	0.1125	0.2581	0.4274	0.3218	VASE		0.2123	0.3257	0.2570
ODEE	0.1241	0.3076	0.1768	0.3204	0.4862	0.3862	ODEE		0.2402	0.3712	0.2917 0.3701
CLEVE	0.1363	0.2716	0.1815	0.3599	0.5712	0.4415	CLEVE		0.3529	0.3890	
ROLEPRED (BERT)	0.2128	0.4582	0.2906	0.4188	0.6896	0.5211	ROLEPRE	D (BERT) D (Roberta)	0.4170 0.4131	0.4333 0.5774	0.4250 0.4817
ROLEPRED (T5)	0.2552	0.6461	0.3659	0.4591	0.7079	0.5570	- RoleN		0.3855	0.6187	0.4750
- RoleMerge	0.2233	0.6962	0.3381	0.4234	0.7677	0.5457		lerge - RoleFilter	0.4397	0.5001	0.4679
- RoleMerge - RoleFilter	0.1928	0.6582	0.2983	0.4188	0.7084	0.5264		D (Gold Roles)	0.6664	0.4948	0.5679
Human	0.6098	0.8270	0.7020	0.7365	0.8732	0.7990		Output of		0.1910	0.5017
					Extract	ed events	Victims	Maura Bin		ancy Var	ı Vessem
An example of							State		Floric	da	
generated roles	victims		death toll		by Role	Pred and	Date	1	November	2, 2018	
		cause			has						
					Das	elines	Killer	<u> </u>	Scott Paul	<u>Beierle</u>	
state					Das	elines	Place		Scott Paul		
state	shooter	data and	d time		Das	elines				<u>studio</u>	
state	shooter killer	data and	d time		Das	elines	Place		The yoga	studio . EDT	<u>s</u>
state	shooter	data and date	d time day		Das	elines	Place Time Duration Motive	thre	The yoga 5:37 p.m. be and a ha hatred of y	studio . EDT lf minute women	
state	shooter killer perpetrate gunman	data and date			Das	elines	Place Time Duration	thre	The yoga 5:37 p.m. ee and a ha	studio . EDT lf minute women	
	shooter killer perpetrate	data and date			Das	elines	Place Time Duration Motive	thre	The yoga 5:37 p.m. be and a ha hatred of y	studio . EDT .lf minute women ga, a yoga	
state	shooter killer perpetrate gunman	data and date date place	day		Das	elines	Place Time Duration Motive Target	<u>thre</u> <u>Tallahass</u>	The yoga 5:37 p.m. e and a ha hatred of y ee Hot Yog 2018	studio . EDT .lf minute women ga, a yoga	studio
	shooter killer perpetrate gunman suspect	data and date date place scene site	day motive		Das	elines	Place Time Duration Motive Target Year Output of C	<u>thre</u> <u>Tallahass</u>	The yoga 5:37 p.m. e and a ha hatred of y ee Hot Yog 2018	studio . EDT .lf minute women (a, a yoga 3 t of CLEV	studio
	shooter killer perpetrate gunman	data and date date place	day motive		Das	elines	Place Time Duration Motive Target Year Output of C Agent T	Tallahass	The yoga 5:37 p.m. ee and a ha hatred of y ee Hot Yog 2018 Output	studio . EDT . EDT . If minute women (a, a yoga 	<u>studio</u> VE

Outline

Span Detection

- Entity Typing
- Relation and Event Extraction
 - Relation Extraction
 - Event Discovery
 - □ Argument Role Prediction
 - Event Chain Mining

Unsupervised Event Chain Mining from Multiple Documents [WWW'23]

Multiple Documents Share Salient Events

Multiple News Reports

An intense <u>earthquake hit southern Mexico</u> on Monday, <u>damaging houses</u>, <u>blocking loads</u> and sparking reports of <u>four</u> <u>deaths</u>. "This quake was pretty strong. There are <u>houses</u> <u>destroyed</u>", <u>said Luis Rivera</u>, governor of the San Marcos region, which <u>was also hit by a 7.4 magnitude earthquake</u> ...

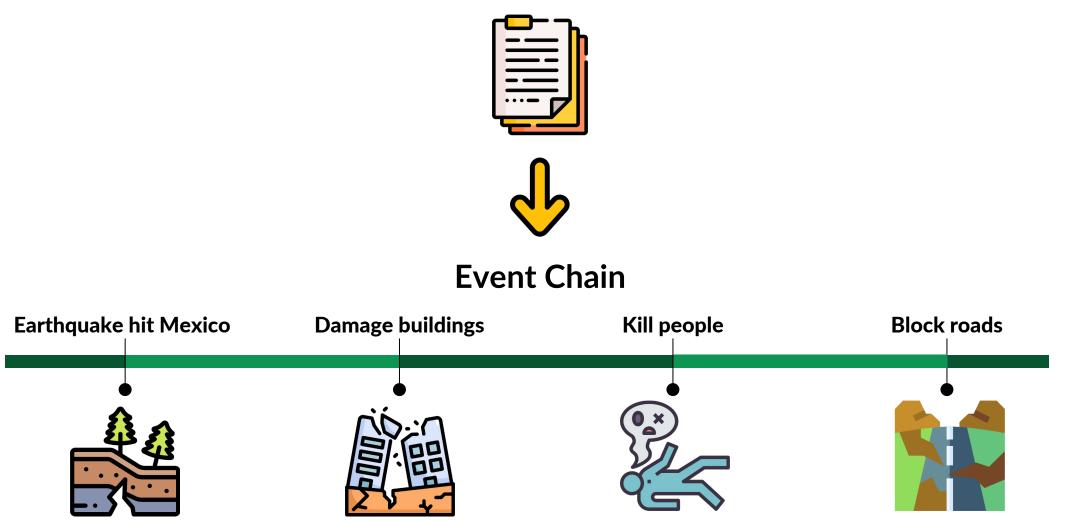
A significant 6.9 magnitude <u>earthquake rocked southern</u> <u>Mexico</u> on Monday <u>killing at least three people</u> - including a newborn baby at a hospital - and <u>injuring dozens</u>. The epicenter was just two kilometers from the Mexican town of Madero, and 200 kilometers from Guatemala City. ...

A strong <u>earthquake hit the border</u> of Mexico on Monday, <u>killing at least three people</u>, including a newborn boy, <u>damaging dozens of houses</u> and <u>blocking roads</u>. This quake was pretty strong. <u>Families in the area are really scared</u> because of the whole experience of 2012...

News reports can be summarized as the chains of salient events in temporal order.

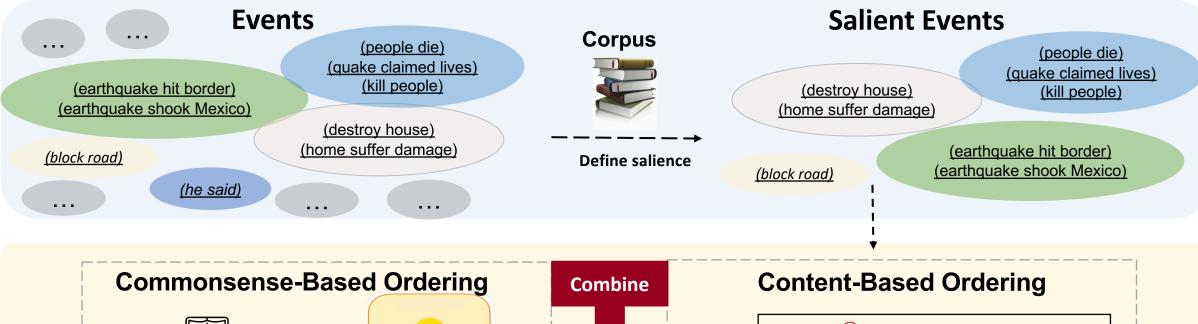
Event Chain Mining

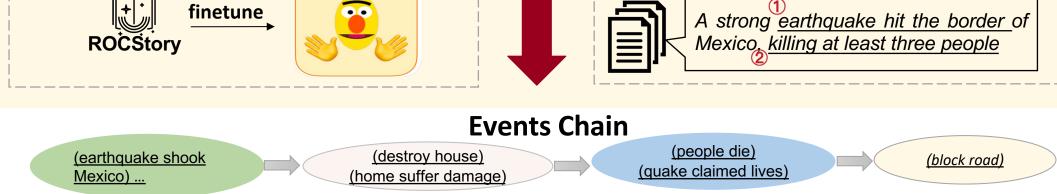
Multiple Documents



Method

Select salient and informative events Arrange salient events in temporal order





Super Event: Mexico Earthquake in 2017									
Extracted Event Mentions	Event Cluster	Representative Mention in Salient Events	Event Chain	Reference					
earthquake strike state near coast	{earthquake strike state near coast,	trigger landslide							
earthquake felt in city	mexico locate at point,	kill people	1. hit by earthquake	1 conthemates reals					
trigger landslide	earthquake strike border on	family feel scared because	2. house destroy	1.earthquake rock Mexico					
area be fill with vacationer	monday,	experience	3. trigger landslides						
section closed by rockslide	evacuate in region,	house destroy	4. people died	2.damage houses					
they separate to temblor	area strike by quake,	block road	5. block roads	3.kill people					
kill people	hit by earthquake,	quake felt in salvador	6. crack open in	4.trigger landslides 5.block roads					
home suffer damage in town	quake strike off coast,	report quake at magnitude	building	5.010CK TOAUS					
	quake occur on coast }	suffer disruption to communication							

Extracted Event Mentions	Event Cluster	Representative Mention in Salient Events	Event Chain	Reference
peterson accused of fires, fire led investigation, he arrested on allegations, peterson entered plea at court, peterson hails from community, scenario rounded with megawatts, organization preserved parcels, transaction culminated years, peterson suspected of fires,	<pre>{firefighter arrested, peterson arrested on charges, firefighter arrested on suspicion, peterson arrested, peterson arrested on Tuesday, peterson arrested after capt., he arrested on allegations, } {destroy structures, destroyed by fire, destroying structures, damaging by flames, destroyed by fire, structures claimed by fire, burn homes}</pre>	arrest came after months turn into fire body found inside home destroy dozen homes left person injured peterson face years for charge suffer losses fire burn throughout area	 arrest came after months turn into fire body found inside home destroy dozen homes leave person injured peterson faces years for charge suffer losses fire burn throughout area 	 man started fires fire destroyed dozen homes fire left person dead officers arrested man on suspicion man entered plea at court fire burned miles over week fire fanned by winds

References

- Xiaotao Gu, Zihan Wang, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang. "UCPhrase: Unsupervised Contextaware Quality Phrase Tagging." (KDD'21)
- Xiaotao Gu, Yikang Shen, Jiaming Shen, Jingbo Shang, Jiawei Han, "Phrase-aware Unsupervised Constituency Parsing" (ACL'22)
- Jiaxin Huang, Yu Meng, and Jiawei Han, "Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation and Instance Generation", (KDD'22)
- Tanay Komarlu, Minhao Jiang, Xuan Wang, Jiawei Han, "ONTOTYPE: Ontology-Guided Annotation-Free Fine-Grained Entity Typing", (Arxiv'22)
- Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han, "EIDER: Evidence-enhanced Document-level Relation Extraction", (ACL'22 Findings)
- Sizhe Zhou, Suyu Ge, Jiawei Han, "Corpus-Based Relation Extraction by Identifying and Refining Relation Patterns", (ECMLPKDD'23)
- Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han "Open-Vocabulary Argument Role Prediction for Event Extraction", (EMNLP'22)
- Yizhu Jiao, Ming Zhong, Jiaming Shen, Yunyi Zhang, Chao Zhang and Jiawei Han, "Unsupervised Event Chain Mining from Multiple Documents", in Proc. 2023 The Web Conf. (WWW'23)

Q&A

