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Pretrained Language Models: Overview

The “pretrain-finetune” paradigm has become the prominent practice in a
wide variety of text applications

“Pretraining”: Train deep language models (usually Transformer models)
via self-supervised objectives on large-scale general-domain corpora

“Fine-tuning”: Adapt the pretrained language models (PLMs) to
downstream tasks using task-specific data

The power of PLMs: Encode generic linguistic features and knowledge
learned through large-scale pretraining, which can be effectively
transferred to the target applications
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Categorization of Pretrained Language Models

A There are multiple ways to categorize PLMs
- By pretraining objectives: Standard language modeling, masked language modeling, permuted
language modeling...
- By pretraining settings: Multilingual, knowledge-enriched, domain-specific...

Q In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

- Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens, usually used for
language generation tasks (e.g., GPT)

2 Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all other (uncorrupted)
tokens, usually used for language understanding/classification tasks (e.g., BERT, XLNet, ELECTRA)

- Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding and generation
tasks (e.g., T5, BART)
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GPT-Style Pretraining: Introduction

1 Generative Pretraining (GPTs [1-3], ChatGPT):

Output: Probabilities over tokens

1 Leverage unidirectional context (usually left-to-right) for T
next token prediction (i.e., language modeling) [ rarsosss ervang W |

k previous tokens as context

( Pointwise feed forward )

( Add & Layer norm )47
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C Masked multi-headed self-attention )

a The Transformer uses unidirectional attention masks (i.e E—
every token can only attend to previous tokens) | Emoacdng mar w, |

Input: x

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding

by generative pre-training. OpenAl blog
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAl blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020).
Language models are few-shot learners. NeurlPS.



GPT-Style Pretraining: Text Generation

1 Unidirectional LMs are commonly used for autoregressive text
generation tasks (e.g., summarization, translation, ...)

1 A lot of downstream tasks can be converted into text generation tasks
(e.g., letting the model generate the sequence label)!

2 They can be very, very large (GPT-3 has 175 billion parameters!) and have
very strong text generation abilities

COMPARISON: NLP PRE-TRAINED MODELS
175,000

SIZE (MILION

PARAMETER

oooooo 17,000

_— e e e e e . " - ey

ODEL




ChatGPT: GPT + Instruction Tuning +

RLHF
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Instruction Tuning: Supervised training on
human annotated prompt-response pairs

Reinforcement Learning from Human Feedback (RLHF):
Train a reward model on human preferences of generation
results; tune the generator to maximize reward
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BERT: Masked Language Modeling

0 Bidirectional: BERT leverages a Masked LM learning to introduce real
bidirectionality training
d Masked LM: With 15% words randomly masked, the model learns bidirectional

I 1
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Token : : : :
Embeddings E[CLS] Emy : s : Eis Eoe E[sep] Ee : Epuse : Eplay E, ing E[sep]
| S —— J e — J
+ + + + + + + + + + +
Sentence
Embedding EA EA EA EA EA EA EB EB EB EB EB
+ -+ -+ + + + + + + -+ +
Transformer
Positional
Embedding EO El E2 E3 E4 ES E6 E? E8 E9 ElO

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." NAACL (2019).
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BERT: Next Sentence Prediction

d Next Sentence Prediction: learn to predict if the second sentence in the pair is the
subsequent sentence in the original document

Class
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Variants of BERT

RoBERTa (Liu et al. 2019): Pretrain BERT on more data for longer, without next
sentence prediction

XLNet (Yang et al. 2019): Permutation language modeling with two-stream self-
attention

ALBERT (Lan et al. 2020): Shared Transformer parameters across layers for
parameter efficiency

ELECTRA (Clark et al. 2020): Replaced token detection by corrupting text sequences
with an auxiliary MLM

DeBERTa (He et al. 2021): Disentangled attention for contents and positions;
absolute position incorporated before decoding

COCO-LM (Meng et al. 2021): Token replacement correction and sequence
contrastive learning
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T5

3 T5: Text-to-Text Transfer Transformer

 Pretraining: Mask out spans of texts; generate the original spans

1 Fine-Tuning: Convert every task into a sequence-to-sequence generation
problem

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in

[Lily couldn't <M>. The waitress

had brought the largest <M> of believe her eyes <M=
chocolate cake <M> seen. piece <M> she had ever

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

peaches are <M> at our]

President Franklin D.
Roosevelt was born
in January 1882. A= = = = = = = = = = -

D

When was Franklin D.
[ Roosevelt born? . |5 i

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer. JMLR.

Pre-training

Fine-tuning




BART

O BART: Denoising autoencoder for pretraining sequence-to-sequence models

4 Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
to input sequences and train the model to recover the original sequences

Q Fine-Tuning:
- For classification tasks: Feed the same input into the encoder and decoder, and use the final decoder
token for classification

- For generation tasks: The encoder takes the input sequence, and the decoder generates outputs
autoregressively

????E CAicElED) (DE.ABC.) (c.DE.AB)
. _ Token Masking  Sentence Permutation Document Rotation
C Bidirectional Autoregressive
Encoder Decoder
 EEETE ERERS (a.c.e. ) ) (aBC.DE.) <3 (A_.D_E.)
A_B_E <s>A B C D Token Deletion Text Infilling
BART architecture BART pretraining objectives

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising
seguence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.
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Deployment of Pretrained Language Models

1 Pretrained language models (PLMs) are usually trained on large-scale
general domain corpora to learn generic linguistic features that can be
transferred to downstream tasks

a2 Common usages of PLMs in downstream tasks

- Fine-tuning: Update all parameters in the PLM encoder and task-specific layers
(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

- Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

0 Parameter-efficient tuning: Only update a small portion of PLM parameters and keep
other (majority) parameters unchanged

ad Reinforcement learning from human feedback:Reinforce good actions (i.e.,
generation results) with a reward function
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Standard Fine-Tuning of PLMs

1 Add task-specific layers (usually one or two linear layers) on top of the
embeddings produced by the PLMs (sequence-level tasks use [CLS] token
embeddings; token-level tasks use real token embeddings)

1 Task-specific layers and the PLMs are jointly fine-tuned with task-specific

training data
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BERT

el ElE=E]- =]

T —

Tk L. b [SEP] Tk L. L

Sentence 1

Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

E;s:, Start/End Span 0  B-PER : 0
— 20— < F R ﬁ
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BERT BERT BERT
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[CLS] Tok 1 2 m Tok 1 2

Tok Tol [SEP] T“"‘ 7&“ CLS] Tok

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, CoLA

(c) Question Answering Tasks:
SQUAD v1.1

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Prompt-Based Fine-Tuning of PLMs

0 Task descriptions are created to convert

( Best pizzaever! +1 )

training examples to cloze questions l
...................... RTE
Q Highly resemble the pretraining tasks (MLM) : ge pizzaevert 085
.. : Itwas ____. : :
so that pretraining knowledge could be ' ‘“l ; -
better leveraged . . o
H H H . e « classifier run
Q Better than standard fine-tuning especially | 5 oo wwa il
. . = rompting run
for few-shot settings . N : 055 5 o o
I 0 500 1000 1500 2000
S e i .......... .- training points
+1: 0.8
MLM .| great (label:positive) -1:0.2
g (label:negative) V}
Label mapping M (Y
[ [CLS] No reason to watch . It was MASK [SEP] A funride . It was great . [SEP] The drama discloses nothing . It was . [SEP] J
F———— Input — —— Template —1 F— Demonstration for label:positive — F———————— Demonstration for label:negative ——

Schick, T., & Schiitze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.

)1 Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.

End of dataset
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Prompt-Based Fine-Tuning of PLMs

1 Further improve prompt-based few-shot fine-tuning:

- Prompt templates and label words can be automatically generated
- Demonstrations can be concatenated with target sequences to provide hints
SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
MajorityJr 50.9 23.1 50.0 50.0 50.0 50.0 18.8 0.0
Prompt-based zero-shot! 83.6 35.0 80.8 79.5 67.6 514 32.0 2.0
“GPT-3” in-context learning 84.8 (1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 262(24) -1524
Fine-tuning 81.4(3.8) 439200 769(59) 758(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1) 33.9(14.3)
Prompt-based FT (man) 92.7(09) 47425) 87.0(1.2) 903(1.0) 84.7(222) 91.2(1.1) 84.8(5.1) 93(73)
+ demonstrations 92.6 (0.5) 50.6(1.4) 86.6(22) 90.2(1.2) 87.0(l.1) 92.3(0.8) 87.5(32) 18.7(8.8)
Prompt-based FT (auto) 923(1.0) 492(1.6) 85.5(2.8) 89.0(1.4) 858(1.9) 91.2(l.1) 88.2(20) 14.0(14.1)
+ demonstrations 93.0 (0.6) 49.5(1.7) 87.7(1.4) 91.0(0.9) 86.5(2.6) 91.4(1.8) 89.4(1.7) 21.8(15.9)
Fine-tuning (full)f 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6
MNLI MNLI-mm SNLI QNLI RTE MRPC QQpP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)
Majority! 32.7 33.0 33.8 49.5 52.7 87:2 0.0 .
Prompt-based zero-shot* 50.8 51.7 49.5 50.8 513 61.9 49.7 -3.2
“GPT-3” in-context learning  52.0 (0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 604 (1.4) 457(6.0) 36.1(52) 143 (2.8)
Fine-tuning 458 (6.4) 47.8(6.8) 484 (4.8) 60.2(6.5) 54.4(39) 76.6(2.5) 60.7(43) 53.5(8.5)
Prompt-based FT (man) 68.3(2.3) 70.5(1.9) 7727 645(42) 69.1(3.6) 745(53) 655(53) 71.0(7.0)
+ demonstrations 70.7 (1.3) 72.0(1.2) 79.7(1.5) 69.2(19) 68.72.3) 77.8(2.0) 69.8(1.8) 73.5(5.1)
Prompt-based FT (auto) 68.3(2.5) 70.1(26) 77.1(2.1) 683(74) 73922) 762(123) 67.03.00 750(3.3)
+ demonstrations 700 (3.6) 720(3.1) 775(35) 68.5(54) 71.1(53) 781(34) 67.7(58) 764 (6.2)
Fine-tuning (full)t 89.8 89.5 92.6 93.3 80.9 91.4 81.7 91.9

Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL



Prompt-Based Zero-$hot Inference

4

d
4

d

Even without any training, knowledge can be
extracted from PLMs through cloze patterns

PLMs can serve as knowledge bases

Pros: require no schema engineering, and support an
open set of queries

Cons: retrieved answers are not guaranteed to be
accurate

Memory Query Answer

(DANTE, born-in, X)
Y
Symbolic

KG DANTE et . ~___—» FLORENCE
Memory Access

Neural LM

> Florence
Memory Access

e.g. ELMo/BERT

Figure 1: Querying knowledge bases (KB) and lan-
guage models (LM) for factual knowledge.

1 Could be used for unsupervised open-domain QA

systems

as knowledge bases? EMNLP.

Petroni, F., Rocktaschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models
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In-Context Learning: Few-Shot Inference

2 Large PLMs (e.g., GPT-3)
have strong few-shot
learning ability without any
tuning on large task-specific
training sets

1 Generate answers based on

natural language
descriptions and prompts

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task descriptio
sea otter > loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese > prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1

peppermint => menthe poivrée

plush giraffe =>

cheese => prompt

girafe peluche example #N
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Zero-$hot Fine~-Tuning of PLMs

1 Prompt-based approaches have remarkable few-shot fine-tuning
performance, but their zero-shot performance is significantly worse

1 Without any task-specific samples, it is challenging for PLMs to interpret
the prompts that come in different formats and are unseen in the

pretraining data
1 The current mainstream of zero-shot learning is based on transfer

learning
- Train PLMs on a large variety of different tasks with abundant annotations, and
transfer to unseen tasks
- Require many cross-task annotations and gigantic model sizes which are not
practical for common application scenarios



26

Zero-$hot Fine~-Tuning of PLMs

Can we do fully zero-shot learning, without any task-related or cross-
task annotations?

When there are no training data, we can create them from scratch using
PLMs!

Humans can generate training data pertaining to a specific label upon
given a label-descriptive prompt (e.g., “write a negative review:”)

We can leverage the strong text generation power of PLMs to do the
same job



Prompt-Based Zero-Shot Training Data Generation

O SuperGen: A Supervision Generation approach
O Use a unidirectional PLM to generate class-conditioned texts guided by prompts
3 Fine-tune a bidirectional PLM on the generated data for the corresponding task

------------------------------

Single-Sequence Tasks ; Label Smoothing

Label Y: negative (e.g. Sentiment Classification) 'y . q X
p t w Generated Sequence 7 : o X
rompt Ty Selected Quality ! X
o . Generator Gy It is a waste of Training Sample . Yy V!
This film is terrible.

(Unidirectional PLM) | | tmeandmoney. |  , , , T TTTTooTTmToemsmoctettotTC

time and money.

(x9,y) Regularize ;
___________________________________________ > C'aSSifier Cd’ Fine-Tuning
Label ¥: entailment Sequence-Pair Tasks ‘ (Bidirectional PLM) . A
Sampled Sequence z° (€:9- Natural Language Inference) (*,@f,y) — | Regularize ,
g ; .
-+ Prompt wy Generated Sequence T Selected Quality - p l Temporal Ensembling

mid-2020. In other words, (Unidirectional PLM) open in 2020.

o Training Sample
The opening fiate of the Generator Gy The station was to 9 P
station was estimated to be

..............................

Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models:

Towards Zero-Shot Language Understanding. NeurlPS.
27



Zero-Shot Learning Results

d  Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned
on generated training data) is comparable or even better than strong few-shot
methods (fine-tuned on 32 manually annotated training samples per class)

MNLI-(m/mm) QQP QNLI  SST-2 CoLA RTE MRPC AVG

Method (Acc.) (F1)  (Acc) (Acc) (Matt) (Acc)  (F1)

Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).

PromptingT 50.80_0/51.70_0 49.70_0 50.80,0 83.60_0 2.00-0 51.30,0 61.90_0 50.1

SuperGen 72.30_5/73.80,5 66.11_1 73.31_9 92.80_6 32.75_5 65.31_2 82.2()_5 69.4
- data selection 63.71.5/64.21 6 62.32.9 63.93 9 91.32.0 30.58 8 62.41 5 81.60.2 65.1
- label smooth 70.70.8/72.10.7 65.10.9 71.45 5 91.00.0 9.51.0 64.81 .1 83.0, .7 65.2

- temporal ensemble  62.04.6/63.64.8 63.90.3 72.420 92.509 23.570 63.510 78822 65.3
Few-Shot Setting: Use 32 labeled samples/class (half for training and half for development).

Fine-tuningT 45.86,4/47.86_8 60.74,3 60.26,5 81.43,8 33.914_3 54.43,9 76.62,5 59.1
Manual promptlr 68.32.3/70.51.9 65.553 64.542 92.70.9 9.37.3 69.136 74.553 63.6

+ demonstrationT 70.71 3/72.01 2 69.8: 5 69.2, 9 92.60.5 18.78.8 68.72.3 77.82.0 66.9
Auto promptT 68.32.5/70.12 ¢ 67.03.0 68.37.4 92.31.0 14.014 1 73.9; 5 76.25 3 65.8

+ demonstrationT 70-03.6/72-03.1 67.75,8 68.55,4 93-00.6 21.815,9 71.15,3 78.13,4 67.3
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