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Reminder

• Midterm report due today! (Guideline: https://docs.google.com/document/d/12-
f2KQRH2kYBohxJLj_E6gzfj1vulmnuaEVBbyXBAiY/edit?usp=sharing)

• Assignment 4 has been released
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Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling and Neural Language Models
• Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
• Week 8: Large Language Models (LLMs) & In-context Learning
• Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Language Agents
• Week 13: Recap + Future of NLP
• Week 15 (after Thanksgiving): Project Presentations 3/37



(Recap) Encoder-Decoder Architecture: BART

• Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations…) 
to input sequences and train the model to recover the original sequences

• Fine-tuning:
§ For NLU tasks: Feed the same input into the encoder and decoder, and use the final decoder 

token for classification
§ For NLG tasks: The encoder takes the input sequence, and the decoder generates outputs 

autoregressively

BART: https://arxiv.org/pdf/1910.13461.pdf 4/37
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(Recap) Encoder-Decoder Architecture: T5

• T5: Text-to-Text Transfer Transformer
• Pretraining: Mask out spans of texts; generate the original spans
• Fine-tuning: Convert every task into a sequence-to-sequence generation problem

• We’ll see this model again in the instruction tuning lectures

T5: https://arxiv.org/pdf/1910.10683 5/37
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(Recap) Encoder-Decoder vs. Decoder-Only

• Modern LLMs are mostly based on the decoder-only Transformer architecture
• Simplicity:

§ Decoder-only models are simpler in structure (one Transformer model)
§ Encoder-decoder models require two Transformer models

• Efficiency:
§ Decoder-only models are more parameter-efficient for text generation
§ Encoder-decoder models’ encoder part does not contribute to generation

• Scalability:
§ Decoder-only models scale very well with increased model size and data
§ Encoder-decoder models do not outperform decoder-only models at large model sizes

6/37



(Recap) Prompting

• Prompt: initial user input/instructions given to the model to guide text generation
• Example (sentiment analysis):

• Example (question answering):

• Prompting: directly use trained LMs to generate text given user prompts (no fine-
tuning)

prompt

prompt

Example source: https://web.stanford.edu/~jurafsky/slp3/10.pdf

For good prompting performance, we need instruction-tuning (later lectures)
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(Recap) Prompt Tuning

• Prompt tuning: instead of manually testing the prompt design, consider prompt
tokens as learnable model parameters (“soft prompts”)

• Optimize a small amount of prompt token embeddings while keeping the LM frozen

• Prompt tuning is a parameter efficient fine-tuning (PEFT) method

Figure source: https://www.googblogs.com/guiding-frozen-language-models-with-learned-soft-prompts/ 8/37
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(Recap) Parameter Efficient Fine-tuning (PEFT)

• Fine-tuning all model parameters is expensive

• Can we update only a small number of model parameters on fine-tuning data?

<latexit sha1_base64="IRtkmTUki+bb7fZQBkYWwtuoG8M="></latexit>

W 0 2 Rd⇥d

<latexit sha1_base64="0PN1KwddYk5FC46ZJGs5neOAbNk="></latexit>

W ⇤ = W 0 +�W , �W 2 Rd⇥d

Pretrained weight
(can represent any module)

Fine-tuned weight
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(Recap) Parameter Efficient Fine-tuning: LoRA

• Assume the parameter update is low-rank
§ Overparameterization: large language models typically have many more parameters than 

strictly necessary to fit the training data
§ Empirical observation: parameter updates in neural networks tend to be low-rank in 

practice

• Solution: approximate weight updates with low-rank factorization

LoRA: https://arxiv.org/pdf/2106.09685

<latexit sha1_base64="WMREx34fQ/OduAzd7O+/F5qe5Hg="></latexit>

�W ⇡ BA, B 2 Rd⇥r, A 2 Rr⇥d, r ⌧ d

Low-rank approximation

Freeze pretrained weights
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(Recap) Large Language Models (LLMs)

• The field of LLMs is rapidly evolving!
§ In 2018, BERT-large with 340 million parameters was considered large
§ In 2019, GPT-2 with 1.5 billion parameters was considered very large
§ In 2020, GPT-3 with 175 billion parameters set a new standard for “large”

• In 2024, how should we define LLMs?
• General definition:

§ Transformer-decoder architecture (or variants) that can generate text
§ Pretrained on vast and diverse general-domain corpora
§ With (at least) billions of parameters
§ General-purpose solvers for a wide range of NLP tasks and beyond
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Agenda

• Large Language Models (LLMs) for Text Generation
• In-context Learning
• Scaling Up LLMs
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Decoding with LLMs

• Decoding: convert Transformer representations into natural language tokens
• Autoregressive decoding typically involves iterative sampling from LMs’ output

distributions, until an [EOS] token is generated

Model parameters Unembedding matrix Hidden states at token 𝑖 − 1

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 13/37
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• Always pick the token with the highest probability estimated by the LM for every step

• Pros:
§ Simplicity: easy to implement and understand
§ Deterministic: guarantee the same output given the same input
§ Efficient: makes only one (simple) decision at each step w/o additional operations

• Cons:
§ Suboptimal solutions: may not find the globally optimal sequence
§ Lack of diversity: cannot produce multiple outputs given the same input

Greedy Decoding
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Top-𝑘 Sampling

• Motivation: Instead of choosing the single most probable word to generate, sample
from the top-𝑘 most likely tokens (candidates) – avoid generating low probability
tokens

• 𝑘 is a hyperparameter (typically 5-10)

• With 𝑘 = 1, top-𝑘 sampling is equivalent to greedy decoding

Compute the probability distribution only over the top-k tokens

Sample from the top-k tokens

15/37



Nucleus (Top-𝑝) sampling

• Top-𝑘 sampling does not account for the shape of the probability distribution
§ For the next-token distribution of “the 46th US president Joe”, top-𝑘 sampling may consider

more tokens than necessary
§ For the next-token distribution of “the spacecraft”, top-𝑘 sampling may consider fewer

tokens than necessary

• Nucleus sampling sets cutoff based on the top-𝑝 percent of the probability mass

• 𝑝 is a hyperparameter (typically 0.9)
• Top-𝑝 vocabulary is the smallest set of words such that

• Sample from the top-𝑝 vocabulary in a similar way as top-𝑘 sampling
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Temperature Sampling

• Intuition comes from thermodynamics
§ A system at a high temperature is flexible and can explore many possible states
§ A system at a lower temperature is likely to explore a subset of lower energy (better) states

• Reshape the probability distribution by incorporating a temperature hyperparameter

• With 𝜏 → 0, temperature sampling approaches greedy decoding

Figure source: https://arxiv.org/pdf/1611.01144v5 17/37
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Practical Considerations of Decoding Algorithms

• If aiming for simplicity and efficiency without diversity requirements, use greedy
decoding

• If multiple responses are required for the same input, use sampling-based decoding
§ Top-𝑝 is usually better than Top-𝑘
§ Temperature sampling is commonly used
§ Top-𝑝 can be used together with temperature sampling
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Agenda

• Large Language Models (LLMs) for Text Generation
• In-context Learning
• Scaling Up LLMs
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In-context Learning

• In-context learning is a type of few-shot learning
§ User provides a few examples of input-output pairs in the prompt
§ The model uses given examples to predict the output for new, similar inputs

• First studied in the GPT-3 paper
• No model parameter updates

Figure source: https://arxiv.org/pdf/2005.14165 20/37
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In-context Learning Demo

Prompt: Swap the second and the penultimate letter of the following word: gaot

Figure source: https://lmarena.ai/?model=llama-3.2-3b-instruct

Generated with greedy decoding
(temperature = 0)

Wrong generation only
given the prompt
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Prompt: Directly give the answer for the last one: brid -> bird, fsih -> fish, dcuk -> duck, 
gaot ->

In-context Learning Demo

Generated with greedy decoding
(temperature = 0)

Figure source: https://lmarena.ai/?model=llama-3.2-3b-instruct

Correctly learn from the
in-context examples
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In-context Learning Demo

Prompt: how many 'r' letters are there in the following word: strawberry

23/37Figure source: https://lmarena.ai/?model=llama-3.2-3b-instruct

Generated with greedy decoding
(temperature = 0)

Wrong generation only
given the prompt

https://lmarena.ai/?model=llama-3.2-3b-instruct


In-context Learning Demo

Prompt: how many 'r' letters are there in the following words: red: 1, roar: 2, strawberry:

24/37Figure source: https://lmarena.ai/?model=llama-3.2-3b-instruct

Generated with greedy decoding
(temperature = 0)

Correctly learn from the
in-context examples

https://lmarena.ai/?model=llama-3.2-3b-instruct


Further Reading on In-context Learning

• An Explanation of In-context Learning as Implicit Bayesian Inference [Xie et al., 2021]
• Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? [Min

et al., 2022]

• What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
[Garg et al., 2022]

• What learning algorithm is in-context learning? Investigations with linear models
[Akyurek et al., 2023]
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Agenda

• Large Language Models (LLMs) for Text Generation
• In-context Learning
• Scaling Up LLMs
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Scaling Up Pretraining Data

The Pile: 22 sub-datasets (> 800GB), a common choice for pretraining corpus

27/37Figure source: https://arxiv.org/pdf/2101.00027
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Broader Range of Knowledge by Scaling Up Data

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-
uof9M0yFVd3FA4/edit#slide=id.g28e2e9aa709_0_1

• In my free time, I like to {run, banana} (Grammar)
• I went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)
• The capital of Denmark is {Copenhagen, London} (World knowledge)

• I was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

• The word for “pretty” in Spanish is {bonita, hola} (Translation)
• 3 + 8 + 4 = {15, 11} (Math)
• …

28/40
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Scaling Up Model Sizes

• GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
• GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
• GPT-3 (2020): 96 layers, 175B parameters, trained in several months

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf

GPT-4
(???)

2018 2019 2020

GPT-2
(1.5B)

GPT-3
(175B)

Model
Parameter

2023

GPT-1
(0.1B)
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Emergent Ability

• Larger models develop emergent abilities
§ Skills or capabilities that were not explicitly learned but arise as a result of model capacity 
§ Larger models demonstrate surprising abilities in challenging tasks even when they were not 

explicitly trained for them

• Emergent capabilities typically become noticeable only when the model size reaches a 
certain threshold (cannot be predicted by small model’s performance)
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Experiment Setting

• Consider the few-shot in-context learning paradigm
• Consider an ability to be emergent when a model has random performance until a 

certain scale, after which performance increases to well-above random

• Abilities to test
§ Arithmetic: addition, subtraction, multiplication
§ Transliteration
§ Recover a word from its scrambled letters
§ Persian question answering
§ Question answering (truthfully)
§ Grounded conceptual mappings
§ Multi-task understanding (math, history, law, …)
§ Contextualized semantic understanding
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Performance vs. Model Scale

32/37Figure source: https://arxiv.org/pdf/2206.07682

Models exhibit random
performance until a certain 

scale, after which performance 
significantly increases

https://arxiv.org/pdf/2206.07682


Scaling Laws of LLMs

• (Pretrained) LLM performance is mainly determined by 3 factors
§ Model size: the number of parameters
§ Dataset size: the amount of training data
§ Compute: the amount of floating point operations (FLOPs) used for training

• Scaling up LLMs involves scaling up the 3 factors
§ Add more parameters (adding more layers or having more model dimensions or both)
§ Add more data
§ Train for more iterations

• Scaling laws: study the correlation between the cross-entropy language modeling loss
and the above three factors

• How to optimally allocate a fixed compute budget?
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Scaling Laws of LLMs

Performance has a power-law relationship with each of the three scale factors (model size, 
dataset size, compute) when not bottlenecked by the other two

34/37Paper: https://arxiv.org/pdf/2001.08361

https://arxiv.org/pdf/2001.08361


Summary: Large Language Models (LLMs)

• Rough definition:
§ Transformer-decoder architecture
§ Pretrained on vast and diverse general-domain corpora
§ Billions of parameters
§ General-purpose NLP task solvers

• In-context learning:
§ A unique learning paradigm in LLMs
§ No parameter updates
§ Learn from the provided few-shot demonstrations in context
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Summary: LLMs Decoding

• Various decoding algorithms
§ Greedy decoding 
§ Top-𝑝 (Nucleus) sampling
§ Top-𝑘 sampling
§ Temperature sampling

• Greedy decoding is most commonly used for its simplicity and efficiency

• If generation diversity is required, top-𝑝 sampling is usually used together with
temperature sampling
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Summary: LLMs Scaling

• LLMs exhibit emergent abilities
§ Noticeable only when the model size reaches a certain threshold
§ Cannot be extrapolated from small model performance

• Scaling up LLMs involves three factors
§ Model size
§ Dataset size
§ Compute

• Language modeling loss has a power-law relationship with each of the three scale 
factors
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