

Introduction to Large Language Models (LLMs)

Yu Meng

University of Virginia

yumeng5@virginia.edu

Oct 16, 2024

Reminder

Midterm report due this Friday! (Guideline: https://docs.google.com/document/d/12-f2KQRH2kYBohxJLj E6gzfj1vulmnuaEVBbyXBAiY/edit?usp=sharing)

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Neural Language Models
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Tokenization

- Segmenting input sequences based on words suffer from several limitations
 - Out-of-vocabulary issue
 - Massive vocabulary size
 - Failure to capture subword information
- Subword tokenization is the common approach to segment input sequences
- Start from single-character vocabulary, iteratively merge adjacent symbols based on frequency in the training set
- Apply the merge rules to test sequences in the order as learned from the training set

(Recap) Transformer

- Transformer is the most commonly-used architecture for language models
- (Multi-head) self-attention
 - Allows every token to directly attend to other tokens in the same input (parallel processing)
 - Can be either bidirectional or unidirectional
 - Quadratic complexity w.r.t. sequence length
- Input embedding
 - Add Token embedding with positional encoding
- Layer normalization
 - Normalize the input across the features to stabilize and speed up training
- Residual connection
 - Add the input of a layer to its output facilitate information & gradient flow
- Feedforward network
 - Help store factual knowledge

(Recap) Pretraining & Fine-tuning

- Pretraining: train LMs with pretext tasks on large-scale text corpora
 - A form of self-supervised learning no human supervision needed
 - A form of multi-task learning learn from diverse domains
 - Different training objectives based on different Transformer architecture
- Fine-tuning: adjust the pretrained model's parameters with fine-tuning data
 - A form of continue training/transfer learning
 - Can use different types of data: task-specific/dialogue annotated data
 - Can apply parameter-efficient techniques (e.g., LoRA) to bring down optimization costs

(Recap) Transformer Architectures

- Based on the type of self-attention, Transformer can be instantiated as
 - Encoder: Bidirectional self-attention
 - Decoder: Unidirectional self-attention
 - Encoder-decoder: Use both encoder and decoder

q1·k1	q1•k2	q1•k3	q1•k4
q2•k1	q2•k2	q2•k3	q2•k4
q3•k1	q3•k2	q3•k3	q3•k4
q4•k1	q4•k2	q4•k3	q4•k4

N					
q1•k1	8	-8	8		
q2•k1	q2•k2	-8	-8		
q3•k1	q3·k2	q3·k3	-8		
q4·k1	q4•k2	q4•k3	q4•k4		

(Recap) Applications of Different Architectures

- Encoder (e.g., BERT):
 - Capture bidirectional context to learn each token representations
 - Suitable for natural language understanding (NLU) tasks
- Decoder (modern large language models, e.g., GPT):
 - Use prior context to predict the next token (conventional language modeling)
 - Suitable for natural language generation (NLG) tasks
 - Can also be used for NLU tasks by generating the class labels as tokens
- Encoder-decoder (e.g., BART, T5):
 - Use the encoder to process input, and use the decoder to generate outputs
 - Can conduct all tasks that encoders/decoders can do

NLU:

Text classification
Named entity recognition
Relation extraction
Sentiment analysis

NLG:

Text summarization Machine translation Dialogue system Question answering

(Recap) Decoder Pretraining & Fine-tuning

- Decoder architecture is the prominent choice in large language models
- Pretraining decoders is first introduced in GPT (generative pretraining) models
- Follow the standard language modeling (cross-entropy) objective

$$\mathcal{L}(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(x_i | x_1, x_2, \dots, x_{i-1})$$

• Fine-tuning decoder is straightforward: apply the same cross-entropy loss to fine-tuning data

(Recap) GPT Series

- GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
- GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
- GPT-3 (2020): 96 layers, 175B parameters, trained in several months

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf
10/37

Join at slido.com

(Recap) Encoder Pretraining: BERT

- BERT pretrains encoder models with bidirectionality
- Masked language modeling (MLM): With 15% words randomly masked, the model learns bidirectional contextual information to predict the masked words

BERT: https://arxiv.org/pdf/1810.04805.pdf Fi

Figure source: https://web.stanford.edu/~jurafsky/slp3/11.pdf

Agenda

- Encoder-decoder Pretraining (Continued)
- Prompting and Parameter Efficient Fine-tuning
- Large Language Models (LLMs) for Text Generation
- In-context Learning

Encoder-Decoder Architecture: BART

- Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
 to input sequences and train the model to recover the original sequences
- Fine-tuning:
 - For NLU tasks: Feed the same input into the encoder and decoder, and use the final decoder token for classification
 - For NLG tasks: The encoder takes the input sequence, and the decoder generates outputs autoregressively

BART Performance

- Comparable to encoders on NLU tasks
- Good performance on NLG tasks

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
UniLM	-/-	80.5/83.4	87.0/85.9	94.5	-	92.7	-	70.9	-	61.1
XLNet	89.0 /94.5	86.1/88.8	89.8/-	95.6	91.8	93.9	91.8	83.8	89.2	63.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

	CN	N/Daily	Mail	XSum		
	R 1	R2	RL	R1	R2	RL
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72
UniLM	43.33	20.21	40.51	-	-	-
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27
BART	44.16	21.28	40.90	45.14	22.27	37.25

Encoder-Decoder Architecture: T5

- T5: Text-to-Text Transfer Transformer
- Pretraining: Mask out spans of texts; generate the original spans
- Fine-tuning: Convert every task into a sequence-to-sequence generation problem
- We'll see this model again in the instruction tuning lectures

T5 Performance

- Good performance across various tasks
- T5 vs. BART performance: unclear comparison due to difference in model sizes & training setups

Model	GLUE Average		CoLA SST-2 Matthew's Accuracy		MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	-89.4^{a}	69.2^{b}	97.1	a 93.6 ^b	91.5^b	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^{b}	91.3^{a}	91.0^{a}	99.2^{a}	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	$\boldsymbol{92.2}$	91.9	96.9	92.8	94.5

Encoder-Decoder vs. Decoder-Only

- Modern LLMs are mostly based on the decoder-only Transformer architecture
- Simplicity:
 - Decoder-only models are simpler in structure (one Transformer model)
 - Encoder-decoder models require two Transformer models
- Efficiency:
 - Decoder-only models are more parameter-efficient for text generation
 - Encoder-decoder models' encoder part does not contribute to generation
- Scalability:
 - Decoder-only models scale very well with increased model size and data
 - Encoder-decoder models do not outperform decoder-only models at large model sizes

Agenda

- Encoder-decoder Pretraining (Continued)
- Prompting and Parameter Efficient Fine-tuning
- Large Language Models (LLMs) for Text Generation
- In-context Learning

Prompting

- **Prompt**: initial user input/instructions given to the model to guide text generation
- Example (sentiment analysis):

```
P(\text{positive}|\text{The sentiment of the sentence 'I like Jackie Chan' is:}) P(\text{negative}|\text{The sentiment of the sentence 'I like Jackie Chan' is:})
```

Example (question answering):

```
P(w|\mathbb{Q}: \mathbb{Q}): Who wrote the book 'The Origin of Species"? A: prompt
```

Prompting: directly use trained LMs to generate text given user prompts (no fine-tuning)

For good prompting performance, we need instruction-tuning (later lectures)

Prompt Engineering

- Some LMs (especially small ones) can be sensitive to specific formats of prompts
- Multiple prompts can make sense for the same task, but the resulting model performance might differ

$$P_1(a)=$$
 It was _____ a $P_2(a)=$ Just ____! $\parallel a$ $P_3(a)=$ a . All in all, it was ____. Model predicts the masked word $P_4(a)=$ a \parallel In summary, the restaurant is ____. Prompt templates for BERT sentiment classification

- **Prompt engineering**: designing and refining prompts to achieve desired outcomes from LMs (e.g., manually tune on a validation set)
- A guide on prompt engineering: https://www.promptingguide.ai/

Prompt Tuning

- Prompt tuning: instead of manually testing the prompt design, consider prompt tokens as learnable model parameters ("soft prompts")
- Optimize a small amount of prompt token embeddings while keeping the LM frozen

Prompt tuning is a parameter efficient fine-tuning (PEFT) method

Parameter Efficient Fine-tuning (PEFT)

Fine-tuning all model parameters is expensive

Pretrained weight (can represent any module)

$$\boldsymbol{W}_0 \in \mathbb{R}^{d \times d}$$

Fine-tuned weight
$$\mathbf{W}^* = \mathbf{W}_0 + \Delta \mathbf{W}, \quad \Delta \mathbf{W} \in \mathbb{R}^{d \times d}$$

Can we update only a small number of model parameters on fine-tuning data?

Parameter Efficient Fine-tuning: LoRA

- Assume the parameter update is **low-rank**
 - Overparameterization: large language models typically have many more parameters than strictly necessary to fit the training data
 - Empirical observation: parameter updates in neural networks tend to be low-rank in practice
- Solution: approximate weight updates with low-rank factorization

Freeze pretrained weights

Further Reading on PEFT

- <u>Parameter-Efficient Transfer Learning for NLP</u> [Houlsby et al., 2019]
- <u>Prefix-Tuning: Optimizing Continuous Prompts for Generation</u> [Li & Liang, 2021]
- The Power of Scale for Parameter-Efficient Prompt Tuning [Lester et al., 2021]
- <u>GPT Understands, Too</u> [Liu et al., 2021]

Agenda

- Encoder-decoder Pretraining (Continued)
- Prompting and Parameter Efficient Fine-tuning
- Large Language Models (LLMs) for Text Generation
- In-context Learning

Large Language Models (LLMs)

- The field of LLMs is rapidly evolving!
 - In 2018, BERT-large with 340 million parameters was considered large
 - In 2019, GPT-2 with 1.5 billion parameters was considered very large
 - In 2020, GPT-3 with 175 billion parameters set a new standard for "large"
- In 2024, how should we define LLMs?
- General definition:
 - Transformer-decoder architecture (or variants) that can generate text
 - Pretrained on vast and diverse general-domain corpora
 - With (at least) billions of parameters
 - General-purpose solvers for a wide range of NLP tasks and beyond

Decoding with LLMs

- **Decoding:** convert Transformer representations into natural language tokens
- Autoregressive decoding typically involves iterative sampling from LMs' output distributions, until an [EOS] token is generated

$$p_{\boldsymbol{\theta}}(w|x_1, x_2, \dots, x_{i-1}) = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h}_{i-1}) = \left[\frac{\exp(\boldsymbol{u}_1 \cdot \boldsymbol{h}_{i-1})}{\sum_{j=1}^{|\mathcal{V}|} \exp(\boldsymbol{u}_j \cdot \boldsymbol{h}_{i-1})}, \dots, \frac{\exp(\boldsymbol{u}_{|\mathcal{V}|} \cdot \boldsymbol{h}_{i-1})}{\sum_{j=1}^{|\mathcal{V}|} \exp(\boldsymbol{u}_j \cdot \boldsymbol{h}_{i-1})}\right]$$

Model parameters Unembedding matrix

Hidden states at token i-1

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

Greedy Decoding

Always pick the token with the highest probability estimated by the LM for every step

$$x_i \leftarrow \arg\max_w p_{\boldsymbol{\theta}}(w|x_1, x_2, \dots, x_{i-1})$$

- Pros:
 - Simplicity: easy to implement and understand
 - Deterministic: guarantee the same output given the same input
 - Efficient: makes only one (simple) decision at each step w/o additional operations
- Cons:
 - Suboptimal solutions: may not find the globally optimal sequence
 - Lack of diversity: cannot produce multiple outputs given the same input

Top-*k* **Sampling**

- Motivation: Instead of choosing the single most probable word to generate, sample from the top-k most likely tokens (candidates) avoid generating low probability tokens
- *k* is a hyperparameter (typically 5-10)

Compute the probability distribution only over the top-k tokens

$$p_{\boldsymbol{\theta}}(w|x_1, x_2, \dots, x_{i-1}) = \operatorname{softmax}(\boldsymbol{U}_{\text{top-}k}\boldsymbol{h}_{i-1}) = \left[\frac{\exp(\boldsymbol{u}_1 \cdot \boldsymbol{h}_{i-1})}{\sum_{j=1}^k \exp(\boldsymbol{u}_{\text{top-}j} \cdot \boldsymbol{h}_{i-1})}, \dots, \frac{\exp(\boldsymbol{u}_{\text{top-}k} \cdot \boldsymbol{h}_{i-1})}{\sum_{j=1}^k \exp(\boldsymbol{u}_{\text{top-}j} \cdot \boldsymbol{h}_{i-1})}\right]$$

Sample from the top-k tokens
$$x_i \sim p_{\theta}(w|x_1, x_2, \dots, x_{i-1})$$

• With k = 1, top-k sampling is equivalent to greedy decoding

Nucleus (Top-p) sampling

- Top-k sampling does not account for the shape of the probability distribution
 - For the next-token distribution of "the 46th US president Joe", top-k sampling may consider more tokens than necessary
 - For the next-token distribution of "the spacecraft", top-k sampling may consider fewer tokens than necessary
- Nucleus sampling sets cutoff based on the top-p percent of the probability mass
- *p* is a hyperparameter (typically 0.9)
- Top-p vocabulary is the smallest set of words such that

$$\sum_{w \in \mathcal{V}_{\text{top-p}}} p(w|x_1, x_2, \dots, x_{i-1}) \ge p$$

• Sample from the top-p vocabulary in a similar way as top-k sampling

Temperature Sampling

- Intuition comes from thermodynamics
 - A system at a high temperature is flexible and can explore many possible states
 - A system at a lower temperature is likely to explore a subset of lower energy (better) states
- Reshape the probability distribution by incorporating a temperature hyperparameter

$$p_{\boldsymbol{\theta}}(w|x_1, x_2, \dots, x_{i-1}) = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h}_{i-1}/\boldsymbol{\tau}) = \left[\frac{\exp(\boldsymbol{u}_1 \cdot \boldsymbol{h}_{i-1}/\boldsymbol{\tau})}{\sum_{j=1}^{|\mathcal{V}|} \exp(\boldsymbol{u}_j \cdot \boldsymbol{h}_{i-1}/\boldsymbol{\tau})}, \dots, \frac{\exp(\boldsymbol{u}_{|\mathcal{V}|} \cdot \boldsymbol{h}_{i-1}/\boldsymbol{\tau})}{\sum_{j=1}^{|\mathcal{V}|} \exp(\boldsymbol{u}_j \cdot \boldsymbol{h}_{i-1}/\boldsymbol{\tau})}\right]$$

• With $\tau \to 0$, temperature sampling approaches greedy decoding

Practical Considerations of Decoding Algorithms

- If aiming for simplicity and efficiency without diversity requirements, use greedy decoding
- If multiple responses are required for the same input, use sampling-based decoding
 - Top-p is usually better than Top-k
 - Temperature sampling is commonly used
 - Top-p can be used together with temperature sampling

Agenda

- Encoder-decoder Pretraining (Continued)
- Prompting and Parameter Efficient Fine-tuning
- Large Language Models (LLMs) for Text Generation
- In-context Learning

In-context Learning

- In-context learning is a type of few-shot learning
 - User provides a few examples of input-output pairs in the prompt
 - The model uses given examples to predict the output for new, similar inputs
- First studied in the GPT-3 paper
- No model parameter updates

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```


In-context Learning Demo

Prompt: "Swap the second and the penultimate letter of the following word: gaot"

Wrong generation only given the prompt

Generated with greedy decoding (temperature = 0)

In-context Learning Demo

Prompt: "Directly give the answer for the last one: brid -> bird, fsih -> fish, dcuk -> duck, gaot ->"

llama-3.2-3b-instruct	•
C Expand to see the descripti	ons of 74 models
Scroll down and start chatting	
	Directly give the answer for the last one: brid -> bird, fsih -> fish, dcuk -> duck, gaot ->
goat	Correctly learn from the in-context examples

Generated with greedy decoding (temperature = 0)

Further Reading on In-context Learning

- An Explanation of In-context Learning as Implicit Bayesian Inference [Xie et al., 2021]
- Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? [Min et al., 2022]
- What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
 [Garg et al., 2022]
- What learning algorithm is in-context learning? Investigations with linear models [Akyurek et al., 2023]

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu