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Announcement: Assignment 1 Out

• Deadline: 09/11 11:59pm
• Released on course website: https://yumeng5.github.io/teaching/2024-fall-cs4501

Download the LaTeX script here
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Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling and Transformers
• Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
• Week 8: Large Language Models (LLMs) & In-context Learning
• Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Language Agents
• Week 13: Recap + Future of NLP
• Week 15 (after Thanksgiving): Project Presentations 3/38



Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models
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Overview: Language Modeling

• The core problem in NLP is language modeling
• Goal: Assigning probability to a sequence of words
• For text understanding: p(“The cat is on the mat”) >> p(“Truck the earth on”)

• For text generation: p(w | “The cat is on the”) -> “mat”

Autocomplete empowered by
language modeling
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Language Model Applications
Chatbots

Code Assistants

Shopping Assistants Generating Math Proofs 6/38

https://chatgpt.com/
https://github.com/features/copilot
https://www.amazon.com/gp/help/customer/display.html?nodeId=Tvh55TTsQ5XQSFc7Pr
https://www.nature.com/articles/s41586-023-06747-5


Language Models = Universal NLP Task Solvers

• Every NLP task can be converted into a text-to-text task!
§ Sentiment analysis: The movie’s closing scene is attractive; it was ___ (good)
§ Machine translation: “Hello world” in French is ___ (Bonjour le monde)
§ Question answering: Which city is UVA located in? ___ (Charlottesville)
§ …

• All these tasks can be formulated as a language modeling problem!
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Language Modeling: Probability Decomposition

• Given a text sequence , how can we model ?
• Autoregressive assumption: the probability of each word only depends on its previous

tokens

• Are there other possible decomposition assumptions?
§ Yes, but they are not considered “conventional” language models
§ We’ll see in word embedding/BERT lectures
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Language Modeling: Probability Decomposition

• Given a text sequence , how can we model ?
• Autoregressive assumption: the probability of each word only depends on its previous

tokens

• How to guarantee the probability distributions are valid?
§ Non-negative

§ Summed to 1:

• The goal of language modeling is to learn the distribution !
vocabulary
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Language Models Are Generative Models

• Suppose we have a language model that gives us the estimate of                                 , 
we can generate the next tokens one-by-one!

• Sampling: 

• Or greedily:
• But how do we know when to stop generation?
• Use a special symbol [EOS] (end-of-sequence) to denote stopping vocabulary
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Example: Language Models for Generation

• Recursively sample until we generate [EOS]
• Generate the first word:
• Generate the second word:

• Generate the third word:
• Generate the fourth word:
• Generate the fifth word:
• Generate the sixth word:
• Generate the seventh word:

• Generation finished!

beginning-of-sequence
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How to Obtain A Language Model?

Learn the probability distribution from a training corpus!

Text corpora contain rich distributional statistics!

Learning target:
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History of Language Models

• Language models started to be built with statistical methods
§ Sparsity
§ Poor generalization

Before 2000s

Statistical language models
(e.g., n-gram language models)

Weeks 2-3
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History of Language Models

• The introduction of neural networks into language models mitigated sparsity and
improved generalization
§ Neural networks for language models were small-scale and inefficient for a long time
§ Task-specific architecture designs required for different NLP tasks
§ These language models were trained on individual NLP tasks as task-specific solvers

Before 2000s 2000s – 2018

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

Weeks 4-5
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History of Language Models

• Transformer became the dominant architecture for language modeling; scaling up
model sizes and (pretraining) data enabled significant generalization ability
§ Transformer demonstrated striking scalability and efficiency in sequence modeling
§ One pretrained model checkpoint fine-tuned to become strong task-specific models
§ Task-specific fine-tuning was still necessary

Before 2000s 2000s – 2018 2018 – 2022

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

Weeks 4-5

Weeks 6-7
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History of Language Models

• Generalist large language models (LLMs) became the universal task solvers and
replaced task-specific language models
§ Real-world NLP applications are usually multifaceted (require composite task abilities)
§ Tasks are not clearly defined and may overlap
§ Single-task models struggle to handle complex tasks

Large language models
(e.g., ChatGPT, GPT-4)

Before 2000s 2000s – 2018 2018 – 2022 2022 – Now

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

Weeks 4-5

Weeks 6-7

Weeks 8-12
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Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models
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N-gram Language Model: Simplified Assumption

• Challenge of language modeling: hard to keep track of all previous tokens!

• Instead of keeping track of all previous tokens, assume the probability of a word is only
dependent on the previous N−1 words

Long context!
(Can we model long contexts at all? 

Yes, but not for now!)

N-gram assumption

Should N be larger or smaller?
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N-gram Language Model: Simplified Assumption

• Unigram LM (N=1): each word’s probability does not depend on previous words
• Bigram LM (N=2): each word’s probability is based on the previous word
• Trigram LM (N=3): each word’s probability is based on the previous two words

• …
• Example: p(“The cat is on the mat”)
• Unigram: = p(“The”) p(“cat”) p(“is”) p(“on”) p(“the”) p(“mat”)
• Bigram: = p(“The”) p(“cat”|“The”) p(“is”|“cat”) p(“on”|“is”) p(“the”|“on”) p(“mat”|“the”)
• Trigram: = p(“The”) p(“cat”|“The”) p(“is”|“The cat”) p(“on”|“cat is”) p(“the”|“is on”)

p(“mat”|“on the”)
• …

For simplicity, omitting [BOS] & [EOS] in these examples
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How to Learn N-grams?

• Probabilities can be estimated by frequencies (maximum likelihood estimation)!

• Unigram:

• Bigram:

• Trigram:

How many times (counts) the
sequences occur in the corpus
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