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Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling and Neural Language Models
• Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
• Week 8: Large Language Models (LLMs) & In-context Learning
• Week 9-10: Reasoning, Knowledge, and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Language Agents
• Week 13: Recap + Future of NLP
• Week 15 (after Thanksgiving): Project Presentations 3/38



(Recap) Scaling Up Pretraining Data

The Pile: 22 sub-datasets (> 800GB), a common choice for pretraining corpus

Figure source: https://arxiv.org/pdf/2101.00027 4/38

https://arxiv.org/pdf/2101.00027


(Recap) Scaling Up Model Sizes

• GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
• GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
• GPT-3 (2020): 96 layers, 175B parameters, trained in several months

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf

GPT-4
(???)

2018 2019 2020

GPT-2
(1.5B)

GPT-3
(175B)

Model
Parameter

2023

GPT-1
(0.1B)

5/38

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf


(Recap) Emergent Abilities

• Consider the few-shot in-context learning paradigm
• Consider an ability to be emergent when a model has random performance until a 

certain scale, after which performance increases to well-above random

• Abilities to test
§ Arithmetic: addition, subtraction, multiplication
§ Transliteration
§ Recover a word from its scrambled letters
§ Persian question answering
§ Question answering (truthfully)
§ Grounded conceptual mappings
§ Multi-task understanding (math, history, law, …)
§ Contextualized semantic understanding
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(Recap) Performance vs. Model Scale

Figure source: https://arxiv.org/pdf/2206.07682

Models exhibit random
performance until a certain 

scale, after which performance 
significantly increases
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(Recap) Scaling Laws of LLMs

• (Pretrained) LLM performance is mainly determined by 3 factors
§ Model size: the number of parameters
§ Dataset size: the amount of training data
§ Compute: the amount of floating point operations (FLOPs) used for training

• Scaling up LLMs involves scaling up the 3 factors
§ Add more parameters (adding more layers or having more model dimensions or both)
§ Add more data
§ Train for more iterations

• Scaling laws: study the correlation between the cross-entropy language modeling loss
and the above three factors

• How to optimally allocate a fixed compute budget?
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(Recap) Scaling Model Parameters

• Language model loss vs. models with a limited number of parameters (𝑁)
§ Only count non-embedding parameters
§ Infinite compute: trained to convergence
§ Infinite dataset: trained with sufficiently large datasets

• Performance depends strongly on scale, weakly on model shape (depth vs. width)

<latexit sha1_base64="x5maR3p20TUp3cotocyGTQtYGuY="></latexit>

L(N) =

✓
Nc

N

◆↵N

, ↵N ⇡ 0.076, Nc ⇡ 8.8⇥ 1013

Model parameters
(non-embedding)
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(Recap) Scaling Dataset Size

• Language model loss vs. a limited dataset size (𝐷)
§ Infinite model size: sufficiently large model
§ With appropriate early stopping: avoid overfitting to the training data

<latexit sha1_base64="ND6jLlw3p0kfbNJNWhg+CBZkEMc="></latexit>

L(D) =

✓
Dc

D

◆↵D

, ↵D ⇡ 0.095, Dc ⇡ 5.4⇥ 1013

Dataset size
(# of tokens)
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(Recap) Scaling Training Compute

• Language model loss vs. a limited amount of compute (𝐶)
§ Infinite dataset size: sufficiently large training corpus
§ Optimal model size: can effectively learn the data and not excessively compute-consuming

Compute
(# Peta-FLOP days)

<latexit sha1_base64="4vcWMlW8rfuOXAwxzLgdYGW/254="></latexit>

L(C) =

✓
Cc

C

◆↵C

, ↵C ⇡ 0.050, Cc ⇡ 3.1⇥ 108
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(Recap) Optimal Model Size

• Given a specific amount of training compute 𝐶, what’s the optimal model size 𝑁(𝐶)
that leads to minimal language modeling loss?

• 𝑁(𝐶) can be fit with a power-law wrt 𝐶
• Additional compute needs to be used when model size is suboptimal

<latexit sha1_base64="2Escv+fdeMaJMtRvfNMKm1BjleI="></latexit>

N(Cmin) / (Cmin)
0.73 12/38



Agenda

• Chain-of-thought Reasoning
• Reasoning Benchmarks
• Question Answering & Hallucination
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Reasoning: Overview

• Reasoning (rough definition): perform deductive, inductive, commonsense, or logical
reasoning via generating or analyzing text 

• Deductive reasoning: draw specific conclusions from general principles or premises
§ E.g.: “All humans are mortal” + “Socrates is a human” => “Socrates is mortal”

• Inductive reasoning: make generalizations based on specific observations
§ E.g.: “The sun has risen in the east every day” => “The sun will rise in the east tomorrow”

• Commonsense reasoning: rely on world knowledge or commonsense understanding to 
make predictions or answer questions
§ E.g.: “If I drop a ball, what will happen?” => “It will fall”

• Mathematical/logical reasoning: follow specific rules or procedures to arrive at a 
correct answer
§ E.g.: “If 3 apples cost $6, how much do 5 apples cost?” => “$10”
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Latest LLMs for Reasoning: OpenAI o1

Screenshot source: https://openai.com/index/learning-to-reason-with-llms/ 15/38

https://openai.com/index/learning-to-reason-with-llms/


OpenAI o1: Commonsense Reasoning

Screenshot source: https://openai.com/index/introducing-openai-o1-preview/ 16/38

https://openai.com/index/introducing-openai-o1-preview/


Chain-of-thought (CoT) Prompting

• Chain-of-thought (CoT): the model breaks down complex problems into a step-by-step 
reasoning process

• Instead of directly providing an answer to a question or task, the model is prompted to 
explain its reasoning or thought process in a logical sequence

Paper: https://arxiv.org/pdf/2201.11903 17/38
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Standard Prompting vs. CoT Prompting

Paper: https://arxiv.org/pdf/2201.11903 18/38

https://arxiv.org/pdf/2201.11903


Standard vs. CoT Prompting Performance

CoT prompting is especially effective for large models
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CoT Can Be Triggered Zero-shot

Just add “Let’s think step by step” at the beginning of the answer

Paper: https://arxiv.org/pdf/2205.11916 20/38

https://arxiv.org/pdf/2205.11916


CoT Demo

Figure source: https://lmarena.ai/?model=llama-3.1-70b-instruct

No-CoT prompt: How many 'r' letters are there in the 
following word: strawberry? Answer without reasoning steps

CoT prompt: How many 'r' letters are there in the following 
word: strawberry? Let's think step by step

Wrong result

Correct result
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Self-consistency CoT

Intuition: if multiple different ways of thinking lead to the same answer, one has greater
confidence that the final answer is correct

Paper: https://arxiv.org/pdf/2203.11171 22/38

https://arxiv.org/pdf/2203.11171


Self-consistency CoT Demo

• Prompt: When rolling two dice, what is the probability that you roll a total number 
that is at least 3?

Figure source: https://lmarena.ai/?model=llama-3.1-70b-instruct

(Previous generation cropped)(Previous generation cropped)

Wrong result Correct result

Generated twice with temperature = 0.1, top-𝑝 = 0.7
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Further Reading on LLM Reasoning

• Least-to-Most Prompting Enables Complex Reasoning in Large Language Models [Zhou
et al., 2022]

• Large Language Models Can Self-Improve [Huang et al., 2022]

• Tree of Thoughts: Deliberate Problem Solving with Large Language Models [Yao et al.,
2023]

• Let’s Verify Step by Step [Lightman et al., 2023]
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Agenda

• Chain-of-thought Reasoning
• Reasoning Benchmarks
• Question Answering & Hallucination
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Grade School Math (GSM8K)

8.5K high quality grade school math problems created by human problem writers

Paper: https://arxiv.org/pdf/2110.14168 26/38

https://arxiv.org/pdf/2110.14168


MATH

12.5K challenging competition mathematics problems

Paper: https://arxiv.org/pdf/2103.03874 27/38

https://arxiv.org/pdf/2103.03874


AI2 Reasoning Challenge (ARC)

~8K natural science questions on commonsense knowledge/reasoning

Paper: https://arxiv.org/pdf/1803.05457 28/38

https://arxiv.org/pdf/1803.05457


HellaSwag

~10K commonsense natural language inference problems: select the best follow-up

Paper: https://arxiv.org/pdf/1905.07830 29/38

https://arxiv.org/pdf/1905.07830


BIG-Bench Hard (BBH)

23 challenging tasks covering a wide range of reasoning (e.g. arithmetic, logical, spatial…)

Paper: https://arxiv.org/pdf/2210.09261 30/38

https://arxiv.org/pdf/2210.09261


Agenda

• Chain-of-thought Reasoning
• Reasoning Benchmarks
• Question Answering & Hallucination
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Introduction to Question Answering

• Question Answering (QA): build systems that can automatically answer questions 
posed by humans in natural language

• Categorization by application domain: closed-domain vs. open-domain QA

• Closed-domain QA: answer questions within a specific domain 
§ Example: medical, legal, technical fields
§ Models are trained on specialized knowledge to be highly accurate within their domain

• Open-domain QA: answer questions from any domain
§ Typically rely on vast (external) knowledge sources like the web or large text corpora
§ Most LLM applications consider open-domain QA settings
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Introduction to Question Answering

• Question Answering (QA): build systems that can automatically answer questions 
posed by humans in natural language

• Categorization by modeling approach: extractive vs. abstractive QA

• Extractive QA: output a span of text extracted directly from a given context
§ A natural language understanding task (reading comprehension)
§ Example: context: “The human brain contains approximately 86 billion neurons” Q: “How 

many neurons are in the human brain?” A: “86 billion”
§ Can be done with encoder-only LMs (e.g., BERT)

• Abstractive QA: synthesize the answer in its own words (rephrasing/summarizing)
§ Example: context: “Albert Einstein published his theory of special relativity which introduced 

the famous equation E=mc², which relates energy (E) to mass (m) and the speed of light (c)”
Q: “What did Einstein contribute to physics?” A: “Einstein made significant contributions to 
the theory of special relativity which established the relationship between energy and mass”

§ Need to use a generative LM (e.g., GPT)
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Introduction to Question Answering

• Question Answering (QA): build systems that can automatically answer questions 
posed by humans in natural language

• Categorization by access to external source: closed-book vs. open-book QA

• Closed-book QA: answer questions without access to any external information 
§ Accuracy depends heavily on how well the training data covered the relevant information
§ Similar to a human answering a question from memory without looking anything up

• Open-book QA: can access external knowledge source to answer the questions
§ Typically using retrieval from reliable external sources that contain
§ Similar to a human answering a question by looking it up in a book or online resource
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Hallucination

• Hallucination: LM generates information that is factually incorrect, misleading, or 
fabricated, even though it may sound plausible or convincing

• Why does hallucination happen?
§ Limited knowledge: LLMs are trained on finite datasets, which don’t have access to all 

possible information; when asked about topics outside their training data, they may 
generate plausible-sounding but incorrect responses

§ Overgeneralization: LLMs may apply patterns they’ve learned from one context to another 
where they don’t apply, leading to incorrect conclusions

§ Lack of common sense: While LLMs can process and generate human-like text, they often 
lack the ability to apply commonsense reasoning to their outputs

§ …
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Hallucination Examples

• (Limited knowledge) Q: “What were the main features of the iPhone 15 Pro Max?”
LLM (trained before 2023): “The iPhone 15 Pro Max features a revolutionary 
holographic display, quantum computing chip, and telepathic user interface.”

• (Overgeneralization) Q: “How do you form the past tense in Japanese?”
LLM: “In Japanese, you typically add '-ed' to the end of verbs to form the past tense, 
just like in English.” (incorrect)

• (Lack of common sense) Q: “How many tennis balls can fit in a typical smartphone?”
LLM: “Approximately 15-20 tennis balls can fit in a typical smartphone, depending on 
the model and screen size.”
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Concerns About Hallucination

Still a concerning issue in modern LLMs!

Figure source: https://www.pymnts.com/artificial-
intelligence-2/2023/attorneys-face-sanctions-after-
citing-information-hallucinated-by-chatgpt/
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