
Yu Meng
University of Virginia

yumeng5@virginia.edu

Recurrent Neural Networks

Sep 25, 2024

mailto:yumeng5@virginia.edu


Reminders

• Assignment 2 is due today!
• Assignment 3 has been released

2/31



Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling and Neural Language Models
• Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
• Week 8: Large Language Models (LLMs) & In-context Learning
• Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Language Agents
• Week 13: Recap + Future of NLP
• Week 15 (after Thanksgiving): Project Presentations 3/31



(Recap) Word Embedding Limitations

• Static representations (context independence): A word is always assigned a single 
vector representation regardless of its context
§ Words can have multiple meanings (polysemy) 
§ Example: “bank” can mean a financial institution or the side of a river

• Shallow representations: Word embedding learning only focus on local context (a 
fixed window size of nearby words) 
§ Cannot capture complex syntactic or long-range dependencies
§ Example: “The book that the president, who everyone admires, recommended is fascinating.”

– distant subject (“book”) and adjective (“fascinating”)

• Single-word representations: Can only represent single words rather than larger 
linguistic units (phrases, sentences, paragraphs)
§ Many tasks require modeling relationships & compositionality between larger text chunks
§ Example: “They sell delicious hot dogs.” – “hot dogs” should be understood as an entire unit

4/31



(Recap) Sequence Modeling: Overview

• Use deep learning methods to understand, process, and generate text sequences
• Goals:

§ Learn context-dependent representations
§ Capture long-range dependencies
§ Handle complex relationships among large text units

• Sequence modeling architectures are based on deep neural networks (DNNs)!
§ Language exhibits hierarchical structures (e.g., letters form words, words form phrases, 

phrases form sentences)
§ DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level 

patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence 
meanings) in higher layers

§ Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of 
words and sequences

5/31



(Recap) Sequence Modeling Architectures

6/31

RNN neural networks:
https://web.stanford.edu/class/cs224n/sli
des/cs224n-spr2024-lecture05-rnnlm.pdf

Transformer: https://arxiv.org/pdf/1706.03762

Multiple layers! Multiple layers!

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://arxiv.org/pdf/1706.03762


(Recap) Basic Neural Network Unit (Perceptron)

• Input:
• Model parameters (weights & bias): &
• Linear computation:

• Nonlinear activation:

7/31Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf

https://web.stanford.edu/~jurafsky/slp3/7.pdf


(Recap) Common Non-linear Activations

• Why non-linear activations?
• Stacking linear operations will only result in another linear operation
• We wish our network to model complex, non-linear relationships between inputs and 

outputs

8/31Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf

Hyperbolic
tangent (tanh)

Rectified linear unit
(ReLU)

https://web.stanford.edu/~jurafsky/slp3/7.pdf


Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs

9/31



Feedforward Network (FFN)

• Feedforward network (FFN) = multilayer network where the outputs from units in
each layer are passed to units in the next higher layer

• FFNs are also called multi-layer perceptrons (MLPs)

• Model parameters in each layer in FFNs: a weight matrix and a bias vector
§ Each layer has multiple hidden units
§ Recall: a single hidden unit has as a weight vector and a bias parameters
§ Weight matrix: combining the weight vector for each unit 
§ Bias vector: combining the bias for each unit 

10/31



Example: 2-layer FFN

• Input:
• Model parameters (weights & bias): , &
• Forward computation:

11/31Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf

First layer:

Non-linear function (element-wise)

Second layer:

Output: 

Convert to probability 
distribution

https://web.stanford.edu/~jurafsky/slp3/7.pdf


Replacing the Bias Term

• In neural network computations, we often use a slightly simplified notation that 
represents exactly the same function without an explicit bias node

• We assume the input will always have a dummy node 𝑥! = 1

12/31



Training Objective

• We’ll need a loss function that models the distance between the model output and 
the gold/desired output

• The common loss function for classification tasks is cross-entropy (CE) loss

13/31

Model output probability Ground-truth probability

K-way classification (K classes):

Usually a one-hot vector (one dimension is 1; others are 0):

c is the ground-truth class

Also called “negative log 
likelihood (NLL) loss”



Model Training (Forward Pass)

• Most optimization methods for DNNs are based on gradient descent 
• First, randomly initialize model parameters 
• In each optimization step, run two passes

§ Forward pass: evaluate the loss function given the input and current model parameters

14/31



Model Training (Backward Pass)

• Most optimization methods for DNNs are based on gradient descent 
• First, randomly initialize model parameters 
• In each optimization step, run two passes

§ Forward pass: evaluate the loss function given the input and current model parameters
§ Backward pass: update the parameters following the opposite direction of the gradient

• Gradient computed via the chain rule

15/31

Gradient computation taken care of by deep learning libraries 
(e.g., PyTorch)



Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs

16/31



Simple Neural Language Model

Instantiate FFN as a neural language model

17/31

2-layer FFN 2-layer neural language model

Word embeddings

Hidden layer

Output distribution

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf


• Address sparsity issue:
§ Strictly positive probability on every token in the

vocabulary
§ Semantically similar words tend to have similar

probabilities

Benefits of Neural Language Models

18/31

Output distribution

-dimensions
Word embedding matrix



Limitations of (Simple) Neural Language Models

• Context window is fixed (same as N-gram language models)
• Increasing N will enlarge 𝑾

19/31

Fixed sizeConcatenated word embeddings



Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs

20/31



Recurrent Neural Network (RNN) Overview

A neural language model that can process inputs of arbitrary lengths

21/31Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

Simple neural
language model

Recurrent neural
language model

Different words
multiplied with

different subparts in W Reuse the same
weights for all words

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf


RNN Computation

• Hidden states in RNNs are computed based on
§ The hidden state at the previous step (memory)
§ The word embedding at the current step

• Parameters:
§ : weight matrix for the recurrent connection
§ : weight matrix for the input connection

22/31

[BOS]

Hidden states at the
previous word (time step)

Word embedding of the
current word (time step)



RNN Computation

• Input:
• Initialize
• For each time step (word) in the input:

§ Compute hidden states:

§ Compute output:

23/31



RNN Weight Tying

• Role of matrix 𝑼: score the likelihood of each word in the vocabulary

• Use the same input embeddings in the softmax layer!

• Weight tying benefits:
§ Improve learning efficiency & effectiveness
§ Reduce the number of parameters in the model

24/31

Same dimensionality of the
word embedding matrix!



RNN for Language Modeling

• Recall that language modeling predict the next word given previous words

• How to use RNNs to represent ?

25/31

Output probability at (t-1) step:

……

𝒉("#$) is a function of 𝒉("#&) and 𝒙("#$) :

𝒉("#&) is a function of 𝒉("#') and 𝒙("#&) :

𝒉($) is a function of 𝒉(() and 𝒙($) :



RNN Language Model Training

Train the output probability at each time step to predict the next word

26/31Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

https://web.stanford.edu/~jurafsky/slp3/8.pdf


[BOS]

RNN for Text Generation

• Input [BOS] (beginning-of-sequence) token to the model
• Sample a word from the softmax distribution at the first time step
• Use the word embedding of that first word as the input at the next time step

• Repeat until the [EOS] (end-of-sequence) token is generated

27/31Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

https://web.stanford.edu/~jurafsky/slp3/8.pdf


Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs

28/31



Vanishing & Exploding Gradient

• Gradient signal from far away can be unstable!
• Vanishing gradient = many small gradients multiplied together
• Exploding gradient = many large gradients multiplied together

29/31

Gradient backpropagation

Lots of gradient multiplications!



Difficulty in Capturing Long-Term Dependencies

• RNNs are theoretically capable of remembering information over arbitrary lengths of 
input, but they struggle in practice with long-term dependencies

• RNNs use a fixed-size hidden state to encode an entire sequence of variable length; 
the hidden state is required to compress a lot of information

• RNNs might give more weight to the most recent inputs and may ignore or “forget” 
important information at the beginning of the sentence while processing the end

30/31

Fixed size hidden states!



Lack of Bidirectionality

• RNNs process the input sequence step by step from the beginning to the end (left to 
right for English)

• At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

• Example: “The bank is on the river” the word “bank” can be correctly disambiguated 
only if the model has access to the word “river” later in the sentence

31/31

Left to right processing



Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

