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e Assignment 2 is due today!

e Assignment 3 has been released
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Overview of Course Contents #1931885  [aji:

i UNIVERSITYo VIRGINIA soinat Bl

e Week 5: Sequence Modeling and Neural Language Models
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(Recap) Word Embedding Limitations #1931885

Static representations (context independence): A word is always assigned a single
vector representation regardless of its context

. Words can have multiple meanings (polysemy)
. Example: “bank” can mean a financial institution or the side of a river

Shallow representations: Word embedding learning only focus on local context (a
fixed window size of nearby words)

. Cannot capture complex syntactic or long-range dependencies
. Example: “The book that the president, who everyone admires, recommended is fascinating.’
— distant subject (“book”) and adjective (“fascinating”)

)

Single-word representations: Can only represent single words rather than larger
linguistic units (phrases, sentences, paragraphs)

. Many tasks require modeling relationships & compositionality between larger text chunks

. Example: “They sell delicious hot dogs.” — “hot dogs” should be understood as an entire unit
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(Recap) Sequence Modeling: Overview #1931885

* Use deep learning methods to understand, process, and generate text sequences

* Goals:
. Learn context-dependent representations
. Capture long-range dependencies
. Handle complex relationships among large text units

* Sequence modeling architectures are based on deep neural networks (DNNs)!

. Language exhibits hierarchical structures (e.g., letters form words, words form phrases,
phrases form sentences)

. DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level
patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence
meanings) in higher layers

. Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of
words and sequences
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(Recap) Sequence Modeling Architectures #1931885
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Transformer: https://arxiv.org/pdf/1706.03762 6/31
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(Recap) Basic Neural Network Unit (Perceptron) #1931885 [ju

* Input: * = [x1, T2, x3]

*  Model parameters (weights & bias): w = [wy, wo, w3] & b

e Linear computation: z =w -ax + b I y = o(x)
*  Nonlinear activation: a = o (2) /

+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf 7/31
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(Recap) Common Non-linear Activations #1931885

Why non-linear activations?
e Stacking linear operations will only result in another linear operation
*  We wish our network to model complex, non-linear relationships between inputs and

outputs
1.0 10
e’ —e
tanh(z) = ReLU(z) = max(z,0)
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Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf
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Agenda #1931 885 EH:;

* Feedforward Network (FFN)
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Feedforward Network (FFN) #1931885

* Feedforward network (FFN) = multilayer network where the outputs from units in
each layer are passed to units in the next higher layer

*  FFNs are also called multi-layer perceptrons (MLPs)

* Model parameters in each layer in FFNs: a weight matrix W and a bias vector b
. Each layer has multiple hidden units
. Recall: a single hidden unit has as a weight vector and a bias parameters
. Weight matrix: combining the weight vector for each unit
. Bias vector: combining the bias for each unit
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Example: 2-layer FFN #1931885  [aji:

*  |nput: & = [xl,xz,...,xno]
* Model parameters (weights & bias): W € R"1*™, [ ¢ R™*™ & b ¢ R™

 Forward computation:

Firstlayer: b = o(Wa + b)
v
Non-linear function (element-wise) X5

Second layer: z = Uh

Output: Y = Softmax(z)

Xpy—oe—
Convert to probability _ exp(z1) exp(zn,) 1
distribution "2 exp(z:) "2 exp(z;
J=1 p( J ) ZJ =1 p( ‘7) input layer hidden layer output layer

Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf
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Replacing the Bias Term #1931885 [wu

* In neural network computations, we often use a slightly simplified notation that
represents exactly the same function without an explicit bias node

*  We assume the input will always have a dummy node x5 = 1

h=oc(Wzx+b) h=c(W'z)

/
T = 21,89, Tpy] W € RMXT0 ' =[1,21,22,...,Tn,| W' €RM*(otD)



i UNIVERSITYs VIRGINIA Join at
slido.com
Training Objective #1931 885

 We'll need a loss function that models the distance between the model output and
the gold/desired output

* The common loss function for classification tasks is cross-entropy (CE) loss

K-way classification (K classes): Lcg(9,y) = — Z yi log Uk

Model output probability Ground-truth probability
v
Usually a one-hot vector (one dimension is 1; othersare 0): y = [0,...,1,...,0]

exp(zc) Also called “negative log
S iexp(z;)  likelihood (NLL) loss”

Lce(y,y) = —logy. = —log

v
c is the ground-truth class
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Model Training (Forward Pass) #1931885

*  Most optimization methods for DNNs are based on gradient descent
*  First, randomly initialize model parameters

* In each optimization step, run two passes
Forward pass: evaluate the loss function given the input and current model parameters

14/31
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Model Training (Backward Pass) #1931885

Most optimization methods for DNNs are based on gradient descent
First, randomly initialize model parameters

In each optimization step, run two passes
. Forward pass: evaluate the loss function given the input and current model parameters
. Backward pass: update the parameters following the opposite direction of the gradient

w Y  w® — V., L(7,y)

0L 0L 0y 0z
ow Oy 0z Ow

Gradient computed via the chain rule Vw£(§,y) =

Gradient computation taken care of by deep learning libraries
(e.g., PyTorch)
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Agenda #1931 885 EH:;

Simple Neural Language Model



il UNIVERSITYs VIRGINIA Join at

slido.com
Simple Neural Language Model #1931 885
Instantiate FFN as a neural language model P00k aptops
Output distribution
y = softmax(Uh) ﬁﬂﬂmﬂ
U
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w

(0000 0000 0000 0000)|

Word embeddings T T '[ T

input layer hidden layer output layer the students opened their
2D ) NE) 2
2-layer FFN
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Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
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Benefits of Neural Language Models

Output distribution
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#1931 885

books

laptops
y = softmax(Uh) = e)l?l(ul h) o eXE(“IVI ) ] rlll_rmll_ﬂl
> _i—1 exp(z)) > i1 €xp(2;) 5 =
-

-
|V|-dimensions

e Address sparsity issue:
Strictly positive probability on every token in the
vocabulary
Semantically similar words tend to have similar
probabilities

U Word embedding matrix
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Limitations of (Simple) Neural Language Models #1931885

books

* Context window is fixed (same as N-gram language models) laptops
* Increasing N will enlarge W m

a Z00

U
(ee0000000000)|
' =N T T d' X (N-d)
Concatenated word embeddings Fixed size < WeR

e=zW ez @z cRV? <o (0000 0000 0000 0000)|

T

the  students opened their
e 22 23 z®

c R4 c R? € R4 c R4
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Agenda #1931 885 EH:;

* Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN) Overview #1931 885
books
A neural language model that can process inputs of arbitrary lengths laptops
books laptops
Simple neural Recurrent neural . —~
language model language model U
a z00 R h(L h(L h4)
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Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnim.pdf 21/31
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RNN Computation #1931885  [jii
* Hidden states in RNNs are computed based on A

. The hidden state at the previous step (memory)
. The word embedding at the current step

a Z00

previous word (time step) current word (time step)

* Parameters: U
» Wy, : weight matrix for the recurrent connection ” B 1@ B
= W, : weight matrix for the input connection o) o) ®
Wi |l@|Wh |@| Wh |@®
L (] L
(t) (t=1) (t) 2 2 >
WO =0 (Wint D+ wal) T Tw Tw
o T N (@) (@) o
Hidden states at the Word embedding of the : | : | :
6] 6) o
T b

Te

the  students opened their
21 22 2(3) @
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RNN Computation

Input: @« = [az(l),m@), .. ,w(N)]
Initialize (¥

For each time step (word) in the input:
Compute hidden states:

RO = o (WihY + W)
Compute output:

y® = softmax (Uh(t)>

Join at
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#1931 885
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RNN Weight Tying #1931885

books

* Role of matrix U: score the likelihood of each word in the vocabulary m
exp(u1 - h) exp(upy| - h)

y = softmax(Uh) = > ey ] _—
|j:|1 exp(z;) Zj:l exp(zj) | e

200
. U
h(2) h3) h&® | e
) ' ’0’.

U 6 R|V|Xd h(l)
() () () e
Same dimensionality of the Wi @ W, (@ Wh 0| Wr |@
. . @ [ o [
word embedding matrix! ® ® ® ®
I"fe IWe IWE Iwe
e Use the same input embeddings in the softmax layer! o S 'S S
o ) ) o) )
*  Weight tying benefits: B G B ... ... °).%.
= Improve learning efficiency & effectiveness TEET;E ........ T;’J ........ T;J ...... 5
. Reduce the number of parameters in the model the  students opened  their

2D 22 e 2@
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RNN for Language Modeling #1931885  [aji:

e Recall that language modeling predict the next word given previous words
p(x)=p(zM)p x(2)‘x(1) ceep x(")\x(l), oz = Hp x(t)|x(1), Gy
[+ (x1) - )11 ( )
*  How to use RNNs to represent p (x(t)|w(1), . -,x(t_l)) ?
Output probability at (t-1) step: y(t_l) = softmax (Uh(t_l)) = f (:1:(1), e ,:I:(t_z), .’I:(t_l))
h®=D is a function of Rt=2) and xt~D : Rt~ — 4 (Whh(t_2) + Wew(t_l)) =g (h(t_2), m(t_1)>

h(=2 is a function of Rt~ and x(t=2) ;. p(t=2) _ & (Whh,(t_3) + Wea:(t_2)) =g (h(t_:”), m(t—Z))

h® is a function of A® and x® : B = & (Whh(o) + Wea:(l)) =g (h(o), :n(l))
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RNN Language Model Training #1931885
Train the output probability at each time step to predict the next word
_ly 20 ®) Z LN peea® _ LN~ exp (z(*))
Lim(z) = n ;'CCE (y ,y' ) =0 ; logy, ) = n ; log S ey exp(w’)

Next word long and thanks for all
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el L S B .
Embeddings

So long and thanks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf



https://web.stanford.edu/~jurafsky/slp3/8.pdf

i UNIVERSITYs VIRGINIA Join at
slido.com
RNN for Text Generation #1931 885

* Input [BOS] (beginning-of-sequence) token to the model
 Sample a word from the softmax distribution at the first time step
* Use the word embedding of that first word as the input at the next time step

* Repeat until the [EOS] (end-of-sequence) token is generated

P P
- |

270 -
Sampled Word SO long and

Softmax ( il

A

: :
: Hen
: :

[ RNN ] : ] : [ ]
| |
| !
: :
| |
| |

A

1
]
N

Embedding

— oo+

Input Word [BOS] Iong

@
-
o

\,

/

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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Agenda #1931 885 EH:;

* RNN Limitations
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Vanishing & Exploding Gradient #1931885

«  Gradient signal from far away can be unstable! — Ling (x(4))
e Vanishing gradient = many small gradients multiplied together Mﬂ

* Exploding gradient = many large gradients multiplied together

- TJ)  desesesesesesesesessaeasasseseas e e e e e e e e e e e e s e e ae e ananans U
Gradient backpropagation <« i o o h(i
L (] e
o\ W. 0| Wr |@
Lots of gradient multiplications! : : :
OLin (z@) 9rD 9h® 0R®) Gh® DL (2@) IW‘* IWe IWe
or®  :6n® opM 9p® op®):  op™ o (o o
*ermsmssssmsnssnannnnnnnnnnnnnnns® (@] o o
@) o @)
T Tz e

the  students opened their
=0 ) NE) @
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Difficulty in Capturing Long-Term Dependencies #1931885

* RNNs are theoretically capable of remembering information over arbitrary lengths of
input, but they struggle in practice with long-term dependencies

* RNNs use a fixed-size hidden state to encode an entire sequence of variable length;
the hidden state is required to compress a lot of information

* RNNs might give more weight to the most recent inputs and may ignore or “forget”
important information at the beginning of the sentence while processing the end

Fixed size hidden states!

.
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Lack of Bidirectionality #1931885

* RNNs process the input sequence step by step from the beginning to the end (left to
right for English)

* At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

* Example: “The bank is on the river” the word “bank” can be correctly disambiguated
only if the model has access to the word “river” later in the sentence

h() h(D h(2) h®) 4
S —

(] ()
o\ W, |@| W,
€} e
o (]

Wi, Wi,

Left to right processing

F%)[....
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Yu Meng
University of Virginia
yumeng5@virginia.edu
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