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* Assignment 2 grades posted; reference answer released

* Contact Zhepei (tgf5gb@virginia.edu) if you have questions about your grade
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Overview of Course Contents #1107 551

*  Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
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(Recap) Long Short-Term Memory (LSTM) #1107 551

e Challenge in RNNs: information encoded in hidden states tends to be local; distant
information gets lost

e LSTM design intuition:
. Remove information no longer needed from the context
. Add information likely to be needed for future time steps

* Inputs at each time step:
. Word embedding of the current word
. Hidden state from the previous time step
. Memory/cell state

* Three gates:
. Forget gate
. Add/input gate
. Output gate
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(Recap) LSTM w/ Three Gates
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Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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(Recap) Bidirectional RNNs #1107 551

* Separate models are trained in the forward and backward directions

* Hidden states from both RNNs are concatenated as the final representations
Y1 Yo Y3 Yn

U‘T concatenated
»O outputs >
( [ 1 RNN 2 ——] \J Backward RNN

( - ——RNNT 1] )

Forward RNN

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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(Recap) Deep RNNs #1107 551

* We can stack multiple RNN layers to build deep RNNs
* The output of a lower level serves as the input to higher levels

* The output of the last layer is used as the final output
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Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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(Recap) Transformer: Overview #1107 551

* Transformer is a specific kind of sequence modeling architecture (based on DNNs)
e Use attention to replace recurrent operations in RNNs

* The most important architecture for language modeling (almost all LLMs are based on
Transformers)!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
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Transformer: https://arxiv.org/pdf/1706.03762
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Transformer vs. RNN
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Transformer
(self-attention computations)
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Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Transformer: Motivation #1107 551

e Parallel token processing
. RNN: process one token at a time (computation for each token depends on previous ones)
. Transformer: process all tokens in a sequence in parallel

* Long-term dependencies
. RNN: bad at capturing distant relating tokens (vanishing gradients)
. Transformer: directly access any token in the sequence, regardless of its position

* Bidirectionality
. RNN: can only model sequences in one direction
. Transformer: inherently allow bidirectional attention via attention
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Transformer Layer #1107 551

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm
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Figure source: https://jalammar.github.io/illustrated-transformer/
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Self-Attention: Intuition #1107 551

Attention: weigh the importance of different words in a sequence when processing a
specific word

. “When I'm looking at this word, which other words should | pay attention to in order to
understand it better?”

Self-attention: each word attends to other words in the same sequence

Example: “The chicken didn’t cross the road because it was too tired”
. Suppose we are learning attention for the word “it”
. With self-attention, “it” can decide which other words in the sentence it should focus on to
better understand its meaning
. Might assign high attention to “chicken” (the subject) & “road” (another noun)
. Might assign less attention to words like “the” or “didn’t”
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Self-Attention: Example #1107 551
Context word (key) Center word (query)
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Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 13/28
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Self-Attention: Attention Score Computation #1107 551

* Attention score is given by the softmax function over vector dot product

a; = E Qi Ly, E Qg5 = 1
TjExT TjEx
Q5 = Softmax(a:i . a:j)

. .
......
......
. L
. LN
. L
. LN

Center word (query) representation Context word (key) representation

*  Why use two copies of word representations for attention computation?
. We want to reflect the different roles a word plays (as the target word being compared to
others, or as the context word being compared to the target word)
. If using the same copy of representations for attention calculation, a word will (almost)
always attend to itself heavily due to high dot product with itself!
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Self-Attention: Query, Key, and Value #1107 551

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output
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Self-Attention: Query, Key, and Value #1107 551

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

guery representation

key representation

value representation

16/28
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Self-Attention: Overall Computation #1107 551

Input: single word vector of each word &;
Compute Q, K, V representations for each word:
q; = iL‘z'WQ ki, = wiWK vV, = wiWV

Compute attention scores with Q and K
. The dot product of two vectors usually has an expected magnitude proportional to v/d
. Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k
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Self-Attention: lllustration #1107 551

e Example: an input sequence with three words [xq, x5, X3] 83 Output of self-attention

* Suppose we want to compute the self-attention for x5 @

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,
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Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Multi-Head Self-Attention #1107 551

e Transformers use multiple attention heads for each self-attention module

* Intuition:
. Each head might attend to the context for different purposes (e.g., particular kinds of
patterns in the context)

. Heads might be specialized to represent different linguistic relationships
Multi-Head Attention

Concat
1 4

Scaled Dot-Product .
e D&h h attention heads are computed separately

e o= r'—t — | =
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Concatenate the outputs of all heads
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Figure source: https://arxiv.org/pdf/1706.03762
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Multi-Head Self-Attention Variants #1107 551

*  Multi-query attention (Fast Transformer Decoding: One Write-Head is All You Need):
share keys and values across all attention heads

* Grouped-query attention (GQA: Training Generalized Multi-Query Transformer Models
from Multi-Head Checkpoints): share keys and values within groups of heads
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Values
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Used in latest LLMs (e.g., Llama3)
Figure source: https://arxiv.org/pdf/2305.13245 20/28
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Parallel Computation of QKV #1107 551

Self-attention computation performed for each token is independent of other tokens

Easily parallelize the entire computation, taking advantage of the efficient matrix
multiplication capability of GPUs

Process an input sequence with N words in parallel

Compute QKV for one word: q; = a:7;WQ k;, = :BiWK v; = a}iWV € Rd

Stacking N input vectors: Q = XWQ K = XWK V = XWV c RN xd
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Parallel Computation of Attention

Attention computation can also be written in matrix form

Compute attention for one word: a; = Softmax (ql—‘7 -V

S

-
Compute attention for one N words: A = Softmax (Q ) \%

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Attention matrix
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Bidirectional vs. Unidirectional Self-Attention #1107 551

e Self-attention can capture different context dependencies

 Bidirectional self-attention:

. Each position to attend to all other positions in the input sequence
. Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)

. Use case: natural language understanding (NLU) where the entire input is available at once,
such as text classification & named entity recognition

hsa hp he every token attends to
. all tokens
YARNS —
AN AN Bidirectional
ST AN Self-Attention
¥ ) > I Y
f—+ ¥
(A Jle Jle ).
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e Self-attention can capture different context dependencies

* Unidirectional (or causal) self-attention:

Each position can only attend to earlier positions in the sequence (including itself).
Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf
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T ... itsprevious tokens
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S Unidirectional N
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A
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Position Encoding #1107 551

*  Motivation: inject positional information to input vectors
q;, = a:iWQ k;, = miWK v; = mz'WV c Rd

a; = Softmax q; kj\ v, When x is W(?I’.d empeddlng, _q and k do
\/E not have positional information!

* How to know the word positions in the sequence? Use position encoding!
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Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Position Encoding Methods #1107 551

e Absolute position encoding (the original Transformer paper)
. Learn position embeddings for each position
. Not generalize well to sequences longer than those seen in training

* Relative position encoding (Self-Attention with Relative Position Representations)
. Encode the relative distance between words rather than their absolute positions
. Generalize better to sequences of different lengths

* Rotary position embedding (RoFormer: Enhanced Transformer with Rotary Position

Embedding)
. Apply a rotation matrix to the word embeddings based on their positions
. Incorporate both absolute and relative positions

. Generalize effectively to longer sequences
. Widely-used in latest LLMs
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Summary #1107 551

* Motivation: weigh the importance of different words in a sequence when processing a
specific word

* Implementation: represent each word with three vectors:
. Query: the current word that seeks information

. Key: context word to be retrieved information from
. Value: semantic content to be aggregated as the new word representation

e Allow parallel computation of all input words
e Usually deployed with multiple heads to capture various linguistic relationships

* Can be either unidirectional (only attend to previous words) or bidirectional (attend to
all words)

* Need to use position encodings to inject positional information
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