

Introduction to Word Senses & Semantics

Yu Meng University of Virginia <u>yumeng5@virginia.edu</u>

Sep 09, 2024

Reminders

- Assignment 1 is due this Wednesday (09/11) 11:59pm!
- Assignment 2 will be released shortly
- Project proposal is due next Friday (guideline will be released soon)

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Transformers
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

Join at slido.com #3387 013

(Recap) Language Modeling

- Language modeling is the core problem in NLP
- Every NLP task can be formulated as language modeling
- (Autoregressive) language models can be used to generate texts
- Language model distributions are estimated (trained) on a training corpus

Join at **slido.com** #3387 013

(Recap) N-gram Language Models

- N-gram language models simplifies the (general) language modeling assumption: the probability of a word is only dependent on the previous N-1 words
- Lower-order N-grams (small N) capture less context information/word correlations
- Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
- Smoothing techniques can be used to address sparsity in N-gram language models
 - Add-one smoothing
 - Add-k smoothing
 - Language model interpolation
 - Backoff

(Recap) Language Model Evaluation

- Training/validation/test split required before training & evaluating language models
- Perplexity measures how "confused" the language model is about the next word
- Lower perplexity on the test set = better language model
- Perplexity is the commonly used intrinsic evaluation metric for language modeling
- Perplexity is practically computed in the log scale

(Recap) How to Evaluate Language Models?

- What language models should be considered "good"?
 - A perfect language model should be able to correctly predict every word in a corpus
 - We hope the language model can assign a high probability to the next word
 - Better language model = "less surprised" by the next word
- Just use the next word probability assigned by a language model as the metric!
- Does the choice of the evaluation corpus matter?

(Recap) Training/Validation/Test Corpus

- Training corpus/set: The text data we train our models on
- Does it make sense to evaluate language model probability on the training corpus?
- If we evaluate on the training corpus, we will get misleadingly high probabilities for next word prediction -> train-test data leakage
- **Test corpus/set**: A held-out set of data without overlapping with the training set
- We should always evaluate the model performance using the test corpus which measures the model's generalization ability to unseen data!
- Test sets should NOT be used to evaluate language models many times for tuning hyperparameters/design choices -> indirectly learn from test set characteristics
- Validation/development corpus/set (optional): Tuning hyperparameters & making design choices before evaluating on the test set

(Recap) Training/Validation/Test Split

- If we have a fixed amount of data, how should we split into train/valid/test sets?
- We want the training set to be as large as possible
- But the validation/test sets should be also reasonably large to yield reliable evaluation results
- The test set should reflect the data/task we aim to apply language models to

UNIVERSITY JURGINIA

Join at slido.com #3387 013

- Perplexity (abbreviation: PPL) is an **intrinsic** evaluation metric for language models
- PPL = the per-word inverse probability on a test sequence $m{x}_{ ext{test}} = [x_1, x_2, \dots, x_n]$

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i | x_{i-N+1}, \dots, x_{i-1})}}$$

• A lower PPL = a better language model (less surprised/confused by the next word)

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i)}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-1})}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-2}, x_{i-1})}}$$

Unigram Bigram Trigram

Perplexity can be used to evaluate general language models (e.g., large language models) too

• Computation of PPL in the raw probability scale can cause numerical instability

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i | x_{i-N+1}, \dots, x_{i-1})}} \qquad \begin{array}{l} \text{Multiplication of many} \\ \text{small probability values!} \end{array}$$

Example: (1/10) ^ 100 = 10^-100 -> risks of underflow (round to 0)

• PPL is usually computed in the log-scale in practice

$$\operatorname{PPL}(\boldsymbol{x}_{\text{test}}) = \exp\left(\log\left(\sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1},\dots,x_{i-1})}}\right)\right) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log p(x_i|x_{i-N+1},\dots,x_{i-1})\right)$$

Log probabilities are numerically stable

Example: log(1/10) = -2.3

Intrinsic vs. Extrinsic Evaluation

- Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling per se, independent of any application
- **Extrinsic metrics** (e.g., accuracy) measure the language model's performance for specific tasks/applications (e.g., classification, translation)
- Intrinsic evaluations are good for development to iterate quickly and understand specific properties of the model
- Extrinsic evaluations are essential to validate that the model improves the performance of an application in a real-world scenario
- Both intrinsic and extrinsic evaluations are commonly used to evaluation language models (they may not be always positively correlated!)

Extrinsic Evaluations for SOTA Language Models #3387 013

Math reasoning, question answering, general knowledge understanding...

<u>e</u> Open LLM Leaderboard

Model	BBH 🔺	MATH Lvl 5	GPQA 🔺	MUSR 🔺	MMLU-PRO
MaziyarPanahi/calme-2.1-rys-78b	59.47	36.4	19.24	19	49.38
MaziyarPanahi/calme-2.2-rys-78b	59.27	37.92	20.92	16.83	48.73
MaziyarPanahi/calme-2.1-qwen2-72b 📄	57.33	36.03	17.45	20.15	49.05
MaziyarPanahi/calme-2.2-qwen2-72b 📑	56.8	41.16	16.55	16.52	49.27
<u>Qwen/Qwen2-72B-Instruct</u>	57.48	35.12	16.33	17.17	48.92
alpindale/magnum-72b-v1	57.65	35.27	18.79	15.62	49.64
meta-llama/Meta-Llama-3.1-70B-Instruct 🕒	55.93	28.02	14.21	17.69	47.88
abacusai/Smaug-Qwen2-72B-Instruct 🕒	56.27	35.35	14.88	15.18	46.56
MaziyarPanahi/calme-2.2-llama3-70b 唐	48.57	22.96	12.19	15.3	46.74
NousResearch/Hermes-3-Llama-3.1-70B	53.77	13.75	14.88	23.43	41.41
tenyx/Llama3-TenyxChat-70B 🕒	49.62	22.66	6.82	12.52	46.78

Figure source: https://huggingface.co/spaces/open-IIm-leaderboard/open_IIm_leaderboard

Join at

slido.com

13/33

Agenda

- Introduction to Word Senses & Semantics
- Classic Word Representations
- Vector Space Model Basics

Join at slido.com #3387 013

Why Care About Word Semantics?

- Understanding word meanings helps us build better language models!
- Recall the example from N-gram lectures:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

$$p(ext{``cat"}| ext{``the"}) = rac{2}{3}, \quad p(ext{``mat"}| ext{``the"}) = rac{1}{3},$$

- Sparsity: many valid bigram counts are zero count-based measures do not account for word semantics!
- If we know "cat" is semantically similar to "dog", then $p(\text{"dog"}|\text{"the"}) \approx p(\text{"cat"}|\text{"the"})$

What Types of Word Semantics Exist in NLP?

- Synonyms: words with similar meanings
 - "happy" & "joyful"
- Antonyms: words with opposite meanings
 - "hot" & "cold"
- Hyponyms & hypernyms: one word is a more specific instance of another
 - "rose" is a hyponym of "flower"
 - "flower" is a hypernym of "rose"
- Polysemy: A single word having multiple related meanings
 - "mouse" can mean small rodents or the device that controls a cursor
- The study of these aspects of word meanings is called **lexical semantics** in linguistics

Lemmas

- Lemma: the base or canonical form of a word, from which other forms can be derived
 - "run" "runs" "ran" and "running" all share the lemma "run"
 - "better" and "best" share the lemma "good"
- Lemmatization: reducing words to their lemma
 - Allows models to recognize that different forms of a word carry the same meaning
 - An important pre-processing step in early NLP models
 - Contemporary LLMs (sort of) perform lemmatization through tokenization (later lectures!)

Synonyms

- Word that have the same meaning in some or all contexts
- Two words are synonyms if they can be substituted for each other
- Perfect synonym is very rare!
 - Typically, words are slightly different in notions of politeness, connotation, genre/style...
 - "Child" vs. "kid": "child" is often more formal/neutral; "kid" is more informal/casual
 - "Slim" vs. "skinny": "slim" is often more positive in connotation than "skinny"
 - "Big" vs. "Large": "big sister" is a common phrase but "large sister" is not

Antonyms

- Words that have opposite meanings
- Gradable antonyms: exist on the ends of a spectrum or scale
 - "Hot" vs. "cold"
 - "Tall" vs. "short"
- Complementary antonyms: the presence of one directly excludes the other
 - "Alive" vs. "dead"
 - "True" vs. "false"
- Relational antonyms: express a relationship between two dependent entities
 - "Teacher" vs. "student"
 - "Buyer" vs. "seller"

Join at slido.com #3387 013

Hyponyms & Hypernyms

- Describe hierarchical relationships between words based on specificity and generality
- **Hypernym** is a word that is more general/broader in meaning and can encompass a variety of more specific words
- **Hyponym** is a word that is more specific in meaning and falls under a broader category
- "Vehicle" is a hypernym for "car" "bicycle" "airplane" "boat" etc.
- "Car" "bicycle" "airplane" "boat" are hyponyms of "vehicle"
- Hypernym/hyponym relationship is usually transitive
 - A is a hypernym of B; B is a hypernym of C => A is a hypernym of C

- **Polysemy & Senses**
 - **Polysemy**: a single word has multiple related meanings
 - "Light": "This bag is light" / "Turn on the light" / "She made a light comment"
 - Sense: a particular meaning or interpretation of a word in a given context
 - Word relations (e.g., synonyms, antonyms, hypernyms/hyponyms) are defined between word senses!
 - Word sense disambiguation (WSD): determine which sense of a word is being used in a specific context
 - She went to the **bank** to deposit money
 - She lives by the river **bank**
 - WSD can be challenging especially when the context is short/insufficient
 - Is the query "mouse info" looking for a pet or a tool?

Word Sense Disambiguation

Join at slido.com #3387 013

WSD can be an interesting/challenging test case even for the latest LLMs

Image generated by GPT4V under the user prompt: "generate an image of a baseball player caring for his bat in the cave where he lives with all the other bats"

Figure source: https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf

"cat" is not a synonym of "dog", but they are similar in meaning

vanish	disappear	9.8
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

UNIVERSITY of VIRGINIA

Word Similarity

Word similarity (on a scale from 0 to 10) manually annotated by humans

• We'll introduce word embeddings to automatically learn word similarity next week!

Word Relatedness & Semantic Field

- Word relatedness: the meaning of words can be related in ways other than similarity
 - Functional relationship: "doctor" and "hospital" doctors work in hospitals
 - Thematic relationship: "bread" and "butter" often used together in the context of food
 - Conceptual relationship: "teacher" and "chalkboard" both part of the educational context
- **Semantic field**: a set of words which cover a particular semantic domain and bear structured relations with each other
 - Semantic field of "houses": door, roof, kitchen, family, bed...
 - Semantic field of "restaurants": waiter, menu, plate, food, chef...
 - Semantic field of "hospitals": surgeon, nurse, anesthetic, scalpel...

Connotation

- Subjective/cultural/emotional associations that words carry beyond their literal meanings
 - Youthful (positive) vs. childish (negative)
 - Confident (positive) vs. arrogant (negative)
 - Economical (positive) vs. cheap (negative)
- Connotation can be described via three dimensions:
 - Valence: the pleasantness of the stimulus
 - Arousal: the intensity of emotion provoked by the stimulus
 - Dominance: the degree of control exerted by the stimulus

Connotation

Join at slido.com #3387 013

- Valence: the pleasantness of the stimulus
 - High: "happy" / "satisfied"; low: "unhappy" / "annoyed"
- Arousal: the intensity of emotion provoked by the stimulus
 - High: "excited"; low: "calm"
- Dominance: the degree of control exerted by the stimulus
 - High: "controlling"; low: "influenced"

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

Earliest work on representing words with multi-dimensional vectors!

Agenda

- Introduction to Word Senses & Semantics
- Classic Word Representations
- Vector Space Model Basics

WordNet

- Word semantics is complex (multiple senses, various relations)!
- How did people represent word senses and relations in early NLP developments?
- WordNet: A manually curated large lexical database
- Three separate databases: one each for nouns, verbs and adjectives/adverbs
- Each database contains a set of lemmas, each one annotated with a set of senses
- Synset (synonym set): The set of near-synonyms for a sense
- Word relations (hypernym, hyponym, antonym) defined between synsets

WordNet Relations

Join at **slido.com**

#3387 013

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 \rightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 ightarrow lunch^1$
Instance Hypernym	Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Instance Hyponym	Has-Instance	From concepts to their instances	$composer^1 \rightarrow Bach^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follower^1$
Derivation		Lemmas w/same morphological root	$destruction^1 \iff destroy$

Noun relations

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From events to subordinate event	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 \rightarrow sleep^1$
Antonym	Semantic opposition between lemmas	$increase^1 \iff decrease^1$

Verb relations

Figure source: <u>https://web.stanford.edu/~jurafsky/slp3/G.pdf</u>

WordNet as a Graph

WordNet Demo

Category	Unique Strings
Noun	117798
Verb	11529
Adjective	22479
Adverb	4481

Figure source: <u>https://lm-class.org/lectures/04%20-</u> %20word%20embeddings.pdf

Join at slido.com #3387 013

Word to search for: light Search WordNet

Display Options: (Select option to change) V Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) light, visible light, visible radiation ((physics) electromagnetic radiation that can produce a visual sensation) "the light was filtered through a soft glass window"
 - direct hyponym | full hyponym
 - <u>domain category</u>
 - direct hypernym | inherited hypernym | sister term
 - part holonym
 - <u>derivationally related form</u>
- S: (n) light, light source (any device serving as a source of illumination) "he stopped the car and turned off the lights"
- S: (n) light (a particular perspective or aspect of a situation) "although he saw it in a different light, he still did not understand"
- S: (n) luminosity, brightness, brightness level, luminance, luminousness, light (the quality of being luminous; emitting or reflecting light) "its luminosity is measured relative to that of our sun"
- <u>S:</u> (n) light (an illuminated area) "he stepped into the light"
 - <u>direct hypernym</u> | <u>inherited hypernym</u> | <u>sister term</u>
 derivationally related form
- S: (n) light, illumination (a condition of spiritual awareness; divine illumination) "follow God's light"
- <u>S:</u> (n) light, lightness (the visual effect of illumination on objects or scenes as created in pictures) "he could paint the lightest light and the darkest dark"
- <u>S:</u> (n) light (a person regarded very fondly) "the light of my life"
- S: (n) light, lighting (having abundant light or illumination) "they played as long as it was light"; "as long as the lighting was good"
- S: (n) light (mental understanding as an enlightening experience) "he finally saw the light"; "can you shed light on this problem?"
- S: (n) sparkle, twinkle, spark, light (merriment expressed by a brightness or gleam or animation of countenance) "he had a sparkle in his eye"; "there's a perpetual twinkle in his eyes"
- S: (n) light (public awareness) "it brought the scandal to light"
- S: (n) Inner Light, Light, Light Within, Christ Within (a divine presence

WordNet web browser: <u>http://wordnetweb.princeton.edu/perl/webwn</u>

31/33

WordNet for Word Sense Disambiguation

- All words WSD task: map all input words (nouns/verbs/adjectives/adverbs) to WordNet senses
- Strong baseline: map to the first sense in WordNet (most frequent)
- Modern approaches: sequence modeling architectures (later lectures!)

Figure source: <u>https://web.stanford.edu/~jurafsky/slp3/G.pdf</u>

Thank You!

Yu Meng University of Virginia yumeng5@virginia.edu