

Smoothing & Evaluation of N-gram Language Models

Yu Meng University of Virginia <u>yumeng5@virginia.edu</u>

Sep 06, 2024

Overview of Course Contents

Join at slido.com #3141 043

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Transformers
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

(Recap) N-gram Language Model

• Challenge of language modeling: hard to keep track of all previous tokens!

$$p(\boldsymbol{x}) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$
 (Can we model long contexts at all?
Yes, but not for now!)

 Instead of keeping track of all previous tokens, assume the probability of a word is only dependent on the previous N-1 words

$$p(\boldsymbol{x}) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1}) \approx \prod_{i=1}^{n} p(x_i | x_{i-N+1}, \dots, x_{i-1})$$
 N-gram assumption

Should N be larger or smaller?

(Recap) N-gram Language Model

- Unigram LM (N=1): each word's probability does not depend on previous words
- Bigram LM (N=2): each word's probability is based on the previous word
- Trigram LM (N=3): each word's probability is based on the previous two words
- ...
- Example: p("The cat is on the mat") For simplicity, omitting [BOS] & [EOS] in these examples
- Unigram: = p("The") p("cat") p("is") p("on") p("the") p("mat")
- Bigram: = p("The") p("cat" | "The") p("is" | "cat") p("on" | "is") p("the" | "on") p("mat" | "the")
- Trigram: = p("The") p("cat" | "The") p("is" | "The cat") p("on" | "cat is") p("the" | "is on") p("mat" | "on the")
- ...

(Recap) How to Learn N-grams?

• Probabilities can be estimated by frequencies (maximum likelihood estimation)!

$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})}$$

How many times (counts) the sequences occur in the corpus

• Unigram:
$$p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$$

• Bigram:
$$p(x_i|x_{i-1}) = \frac{\#(x_{i-1}, x_i)}{\#(x_{i-1})}$$

• Trigram:
$$p(x_i|x_{i-2}, x_{i-1}) = \frac{\#(x_{i-2}, x_{i-1}, x_i)}{\#(x_{i-2}, x_{i-1})}$$

(Recap) Practice: Learning N-grams

Join at slido.com #3141 043

• Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

(Recap) Unigram Issues: No Word Correlations

Join at

slido.com

#3141043

• Learned unigram probabilities:

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("I") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

• Is unigram reliable for estimating the sequence likelihood?

For simplicity, omitting [BOS] & [EOS] in the calculation

 $\begin{aligned} p(\text{``the the the''}) &= p(\text{``the''}) \times p(\text{``the''}) \times p(\text{``the''}) \times p(\text{``the''}) \approx 0.0003 \\ p(\text{``I have a cat''}) &= p(\text{``I''}) \times p(\text{``have''}) \times p(\text{``a''}) \times p(\text{``cat''}) \approx 0.00004 \end{aligned}$

• Why? Unigram ignores the relationships between words!

(Recap) Bigram Issues: Sparsity

• Learned bigram probabilities:

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

• Does bigram address the issue of unigram?

For simplicity, omitting [EOS] in the calculation

 $p(\text{``the the the "}) = p(\text{``the"} | [BOS]) \times p(\text{``the"} | \text{``the"}) \times p(\text{``the"} | \text{``the"}) \times p(\text{``the"} | \text{``the"}) = 0$ $p(\text{``I have a cat"}) = p(\text{``I"} | [BOS]) \times p(\text{``have"} | \text{``I"}) \times p(\text{``a"} | \text{``have"}) \times p(\text{``cat"} | \text{``a"}) \approx 0.17$

• But... $p(\text{``a cat''}) = p(\text{``a''}|[BOS]) \times p(\text{``cat''}|\text{``a''}) = 0$

Sparsity: Valid bigrams having zero probability due to no occurrence in the training corpus

(Recap) Bigram Issues: Sparsity

Join at slido.com #3141 043

Bigram counts can be mostly zero even for larger corpora!

Berkeley Restaurant Project Corpus (>9K sentences)

can you tell me about any good cantonese restaurants close by tell me about chez panisse i'm looking for a good place to eat breakfast when is caffe venezia open during the day

Second word

		i	want	to	eat	chinese	food	lunch	spend
	i	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
	to	2	0	4	686	2	0	6	211
First word	eat	0	0	2	0	16	2	42	0
	chinese	1	0	0	0	0	82	1	0
	food	15	0	15	0	1	4	0	0
	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0

Lots of zero entries!

Figure source: <u>https://web.stanford.edu/~jurafsky/slp3/3.pdf</u>

• Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS]
[BOS] I have a cat and a mat [EOS]
[BOS] I like the cat [EOS]

• Trigram estimated from the mini-corpus $p(x_i|x_{i-2}, x_{i-1}) = \frac{\#(x_{i-2}, x_{i-1}, x_i)}{\#(x_{i-2}, x_{i-1})}$

$$\begin{split} p(\text{``like''}|[\text{BOS}],\text{``I''}) &= \frac{1}{2}, \quad p(\text{``have''}|[\text{BOS}],\text{``I''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``mat''}) = 1, \\ p(\text{``is''}|\text{``the''},\text{``cat''}) &= \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``cat''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``a''},\text{``mat''}) = 1, \\ p(\text{``the''}|\text{``I''},\text{``like''}) &= 1, \quad p(\text{``a''}|\text{``I''},\text{``have''}) = 1, \quad p(\text{``mat''}|\text{``on''},\text{``the''}) = 1 \end{split}$$

Sparsity grows compared to bigram!

... there are more trigrams!

Join at slido.com #3141 043

(Recap) N-gram Properties

- As N becomes larger
 - Better modeling of word correlations (incorporating more contexts)
 - Sparsity increases
- The number of possible N-grams (parameters) grows exponentially with N!
 - Suppose vocabulary size = 10K words
 - Possible unigrams = 10K
 - Possible bigrams = (10K)² = 100M
 - Possible trigrams = (10K)^3 = 1T
 - ...

(Recap) N-gram Sparsity

Join at slido.com #3141 043

With a larger N, the context becomes more specific, and the chances of encountering any particular N-gram in the training data are lower

198015222 the first 194623024 the same 168504105 the following 158562063 the world ... 14112454 the door ______ 23135851162 the * 197302close the window191125close the door152500close the gap116451close the thread87298close the deal

3785230 close the *

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate ... 0 please close the first ------13951 please close the *

Bigram counts

Trigram counts

4-gram counts

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

Join at slido.com #3141 043

Join at slido.com #3141 043

Unseen N-grams in the training corpus always lead to a zero probability ۲

Addressing Sparsity in N-gram Language Models

The entire sequence will have a zero probability if any of the term is zero! ۲

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1}) \approx \prod_{i=1}^{n} p(x_i | x_{i-N+1}, \dots, x_{i-1})$$

All terms must be non-zero

Can we fix zero-probability N-grams? ٠

Smoothing

Join at slido.com #3141 043

- Intuition: guarantee all N-grams have non-zero probabilities regardless of their counts in the training corpus
- Smoothing techniques:
 - Add-one smoothing (Laplace smoothing)
 - Add-k smoothing
 - Language model interpolation
 - Backoff
 - ...

Join at slido.com #3141 043

Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

Original counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Smoothed counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Figure source: <u>https://web.stanford.edu/~jurafsky/slp3/3.pdf</u>

Join at slido.com #3141 043

Add-one Smoothing (Laplace Smoothing)

Original (no smoothing):
$$p(x_i | x_{i-N+1}, \dots, x_{i-1}) = \frac{\#(x_{i-N+1}, \dots, x_{i-1}, x_i)}{\#(x_{i-N+1}, \dots, x_{i-1})}$$

• Probability of N-grams under add-one smoothing

Add-one smoothing:
$$p_{\text{Add-1}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)+1}{\#(x_{i-N+1},\ldots,x_{i-1})+|\mathcal{V}|}$$

Vocabulary size

• Issues? Over-smoothing: too much probability mass allocated to unseen N-grams

UNIVERSITY of VIRGINIA Add-k Smoothing

Join at slido.com #3141 043

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

Original (no smoothing):
$$p(x_i | x_{i-N+1}, \dots, x_{i-1}) = \frac{\#(x_{i-N+1}, \dots, x_{i-1}, x_i)}{\#(x_{i-N+1}, \dots, x_{i-1})}$$
Add-one smoothing: $p_{Add-1}(x_i | x_{i-N+1}, \dots, x_{i-1}) = \frac{\#(x_{i-N+1}, \dots, x_{i-1}, x_i) + 1}{\#(x_{i-N+1}, \dots, x_{i-1}) + |\mathcal{V}|}$

• Probability of N-grams under add-*k* smoothing

Add-*k* smoothing:
$$p_{\text{Add-}k}(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i)+k}{\#(x_{i-N+1},\dots,x_{i-1})+k|\mathcal{V}|}$$

• How to choose k? Use a validation set!

Join at slido.com #3141 043

Smoothing via Language Model Interpolation

- Intuition: Combine the advantages of different N-grams
 - Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
 - Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse
- Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams, bigrams, trigrams)

 $p_{\text{Interpolate}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \lambda_1 p(x_i) + \lambda_2 p(x_i|x_{i-1}) + \cdots + \lambda_N p(x_i|x_{i-N+1},\ldots,x_{i-1})$

Unigram Bigram N-gram
$$\sum_{n=1}^N \lambda_n = 1$$
 Interpolation weights sum to 1

• How to pick λ_n ? Use a validation set!

The idea of ensembling distributions from multiple LMs is commonly used in today's LLMs!

Smoothing via Backoff

Join at slido.com #3141 043

- Start with the highest-order N-gram available
- If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
- Continue backing off to lower-order N-grams until we reach a non-zero N-gram

$$p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \begin{cases} p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) & \text{If } \#(x_{i-N+1},\ldots,x_{i-1},x_i) > 0\\ \alpha \cdot p_{\text{Backoff}}(x_i|x_{i-N+2},\ldots,x_{i-1}) & \text{Otherwise} \end{cases}$$

$$\alpha \ (<1): \text{ discount factor that adjusts the } (N-1)-\text{gram probability} \end{cases}$$

• Is it possible that even after backing off to unigram, the probability is still zero?

Join at slido.com #3141 043

Out-of-vocabulary Words

- Unigrams will have a zero probability for words not occurring in the training data!
- Simple remedy: reserve a special token [UNK] for unknown/unseen words
- During testing, convert unknown words to [UNK] -> use [UNK]'s probability
- How to estimate the probability of [UNK]?
- During training, replace all rare words with [UNK], and estimate its probability as if it is a normal word
- How to determine rare words? Threshold based on counts in the training corpus
- Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K will be converted to [UNK] in training

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

Join at slido.com #3141 043

Join at slido.com #3141 043

How to Evaluate Language Models?

- What language models should be considered "good"?
 - A perfect language model should be able to correctly predict every word in a corpus
 - We hope the language model can assign a high probability to the next word
 - Better language model = "less surprised" by the next word
- Just use the next word probability assigned by a language model as the metric!
- Does the choice of the evaluation corpus matter?

Join at slido.com #3141 043

Training/Validation/Test Corpus

- Training corpus/set: The text data we train our models on
- Does it make sense to evaluate language model probability on the training corpus?
- If we evaluate on the training corpus, we will get misleadingly high probabilities for next word prediction -> train-test data leakage
- **Test corpus/set**: A held-out set of data without overlapping with the training set
- We should always evaluate the model performance using the test corpus which measures the model's generalization ability to unseen data!
- Test sets should NOT be used to evaluate language models many times for tuning hyperparameters/design choices -> indirectly learn from test set characteristics
- Validation/development corpus/set (optional): Tuning hyperparameters & making design choices before evaluating on the test set

Join at slido.com #3141 043

Training/Validation/Test Split

- If we have a fixed amount of data, how should we split into train/valid/test sets?
- We want the training set to be as large as possible
- But the validation/test sets should be also reasonably large to yield reliable evaluation results
- The test set should reflect the data/task we aim to apply language models to

UNIVERSITY URGINIA

Join at slido.com #3141 043

- Perplexity (abbreviation: PPL) is an intrinsic evaluation metric for language models
- PPL = the per-word inverse probability on a test sequence $m{x}_{ ext{test}} = [x_1, x_2, \dots, x_n]$

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i | x_{i-N+1}, \dots, x_{i-1})}}$$

• A lower PPL = a better language model (less surprised/confused by the next word)

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i)}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-1})}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-2}, x_{i-1})}}$$

Unigram Bigram Trigram

Perplexity can be used to evaluate general language models (e.g., large language models) too

Perplexity: Log-Scale Computation

• Computation of PPL in the raw probability scale can cause numerical instability

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}} \qquad \begin{array}{l} \text{Multiplication of many} \\ \text{small probability values!} \end{array}$$

Example: (1/10) ^ 100 = 10^-100 -> risks of underflow (round to 0)

• PPL is usually computed in the log-scale in practice

$$\operatorname{PPL}(\boldsymbol{x}_{\text{test}}) = \exp\left(\log\left(\sqrt[n]{n}\left[\prod_{i=1}^{n}\frac{1}{p(x_i|x_{i-N+1},\dots,x_{i-1})}\right]\right)\right) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log p(x_i|x_{i-N+1},\dots,x_{i-1})\right)$$

Log probabilities are numerically stable

Example: log(1/10) = -2.3

Perplexity: Important Intrinsic Metric

PPL is an important metric to benchmark the development of language models

Language Modelling on WikiText-2

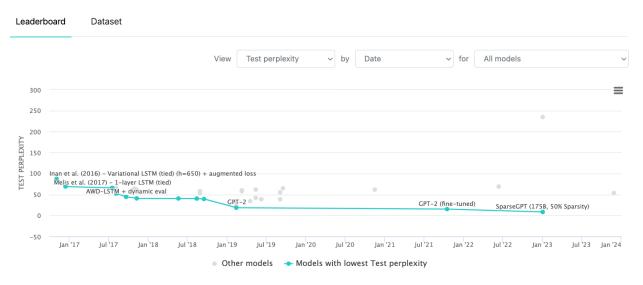


Figure source: https://paperswithcode.com/sota/language-modelling-on-wikitext-2

Join at slido.com #3141 043

Intrinsic vs. Extrinsic Evaluation

- Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling per se, independent of any application
- **Extrinsic metrics** (e.g., accuracy) measure the language model's performance for specific tasks/applications (e.g., classification, translation)
- Intrinsic evaluations are good during the development to iterate quickly and understand specific properties of the model
- Extrinsic evaluations are essential to validate that the model improves the performance of an application in a real-world scenario
- Both intrinsic and extrinsic evaluations are commonly used to evaluation language models (they may not be always positively correlated!)

Extrinsic Evaluations for SOTA Language Models #3141 043

Math reasoning, question answering, general knowledge understanding...

🥮 Open LLM Leaderboard

Model	BBH 🔺	MATH Lvl 5	GPQA 🔺	MUSR 🔺	MMLU-PRO
MaziyarPanahi/calme-2.1-rys-78b 📑	59.47	36.4	19.24	19	49.38
MaziyarPanahi/calme-2.2-rys-78b	59.27	37.92	20.92	16.83	48.73
MaziyarPanahi/calme-2.1-qwen2-72b 📑	57.33	36.03	17.45	20.15	49.05
MaziyarPanahi/calme-2.2-qwen2-72b 📑	56.8	41.16	16.55	16.52	49.27
<u>Qwen/Qwen2-72B-Instruct</u>	57.48	35.12	16.33	17.17	48.92
alpindale/magnum-72b-v1 📑	57.65	35.27	18.79	15.62	49.64
meta-llama/Meta-Llama-3.1-70B-Instruct 🕒	55.93	28.02	14.21	17.69	47.88
abacusai/Smaug-Qwen2-72B-Instruct 🕒	56.27	35.35	14.88	15.18	46.56
MaziyarPanahi/calme-2.2-llama3-70b 🖹	48.57	22.96	12.19	15.3	46.74
NousResearch/Hermes-3-Llama-3.1-70B	53.77	13.75	14.88	23.43	41.41
tenyx/Llama3-TenyxChat-70B	49.62	22.66	6.82	12.52	46.78

Figure source: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Join at

slido.com

Join at slido.com #3141 043

Summary: Language Modeling

- Language modeling is the core problem in NLP
- Every NLP task can be formulated as language modeling
- (Autoregressive) language models can be used to generate texts
- Language model distributions are estimated (trained) on a training corpus

Join at slido.com #3141 043

Summary: N-gram Language Models

- N-gram language models simplifies the (general) language modeling assumption: the probability of a word is only dependent on the previous N-1 words
- Lower-order N-grams (small N) capture less context information/word correlations
- Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
- Smoothing techniques can be used to address sparsity in N-gram language models
 - Add-one smoothing
 - Add-k smoothing
 - Language model interpolation
 - Backoff

Summary: Language Model Evaluation

- Training/validation/test split required before training & evaluating language models
- Perplexity measures how "confused" the language model is about the next word
- Lower perplexity on the test set = better language model
- Perplexity is the commonly used intrinsic evaluation metric for language modeling
- Perplexity is practically computed in the log scale
- Both intrinsic and extrinsic evaluations are important

Thank You!

Yu Meng University of Virginia yumeng5@virginia.edu