
Yu Meng
University of Virginia

yumeng5@virginia.edu

Smoothing & Evaluation of N-gram Language Models

Sep 06, 2024

mailto:yumeng5@virginia.edu

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling and Transformers
• Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
• Week 8: Large Language Models (LLMs) & In-context Learning
• Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Language Agents
• Week 13: Recap + Future of NLP
• Week 15 (after Thanksgiving): Project Presentations 2/34

(Recap) N-gram Language Model

• Challenge of language modeling: hard to keep track of all previous tokens!

• Instead of keeping track of all previous tokens, assume the probability of a word is only
dependent on the previous N−1 words

Long context!
(Can we model long contexts at all?

Yes, but not for now!)

N-gram assumption

Should N be larger or smaller?

3/34

(Recap) N-gram Language Model

• Unigram LM (N=1): each word’s probability does not depend on previous words
• Bigram LM (N=2): each word’s probability is based on the previous word
• Trigram LM (N=3): each word’s probability is based on the previous two words

• …
• Example: p(“The cat is on the mat”)
• Unigram: = p(“The”) p(“cat”) p(“is”) p(“on”) p(“the”) p(“mat”)
• Bigram: = p(“The”) p(“cat”|“The”) p(“is”|“cat”) p(“on”|“is”) p(“the”|“on”) p(“mat”|“the”)
• Trigram: = p(“The”) p(“cat”|“The”) p(“is”|“The cat”) p(“on”|“cat is”) p(“the”|“is on”)

p(“mat”|“on the”)
• …

For simplicity, omitting [BOS] & [EOS] in these examples

4/34

(Recap) How to Learn N-grams?

• Probabilities can be estimated by frequencies (maximum likelihood estimation)!

• Unigram:

• Bigram:

• Trigram:

How many times (counts) the
sequences occur in the corpus

5/34

(Recap) Practice: Learning N-grams

• Consider the following mini-corpus:

Treating “The” & “the” as
one word

6/34

• Learned unigram probabilities:

• Is unigram reliable for estimating the sequence likelihood?

• Why? Unigram ignores the relationships between words!

(Recap) Unigram Issues: No Word Correlations

For simplicity, omitting [BOS] & [EOS] in the calculation

7/34

(Recap) Bigram Issues: Sparsity

• Learned bigram probabilities:

• Does bigram address the issue of unigram?

• But…

For simplicity, omitting [EOS] in the calculation

Sparsity: Valid bigrams having zero probability due to no occurrence in the training corpus
8/34

(Recap) Bigram Issues: Sparsity

Bigram counts can be mostly zero even for larger corpora!

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Berkeley Restaurant Project Corpus
(>9K sentences)

First word

Second word

Lots of zero entries!

9/34

https://web.stanford.edu/~jurafsky/slp3/3.pdf

(Recap) Practice: Learning Trigrams

• Consider the following mini-corpus:

• Trigram estimated from the mini-corpus

… there are more trigrams!

Treating “The” & “the” as
one word

Sparsity grows compared to bigram!
10/34

(Recap) N-gram Properties

• As N becomes larger
§ Better modeling of word correlations (incorporating more contexts)
§ Sparsity increases

• The number of possible N-grams (parameters) grows exponentially with N!
§ Suppose vocabulary size = 10K words
§ Possible unigrams = 10K
§ Possible bigrams = (10K)^2 = 100M
§ Possible trigrams = (10K)^3 = 1T
§ …

11/34

(Recap) N-gram Sparsity

With a larger N, the context becomes more specific, and the chances of encountering any
particular N-gram in the training data are lower

Figure source: https://lm-class.org/lectures/05%20-%20language%20models.pdf

Bigram counts Trigram counts 4-gram counts

12/34

https://lm-class.org/lectures/05%20-%20language%20models.pdf

Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models

13/34

Addressing Sparsity in N-gram Language Models

• Unseen N-grams in the training corpus always lead to a zero probability
• The entire sequence will have a zero probability if any of the term is zero!

• Can we fix zero-probability N-grams?

All terms must be non-zero

14/34

Smoothing

• Intuition: guarantee all N-grams have non-zero probabilities regardless of their counts
in the training corpus

• Smoothing techniques:
§ Add-one smoothing (Laplace smoothing)
§ Add-k smoothing
§ Language model interpolation
§ Backoff
§ …

15/34

Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Original counts

Smoothed counts

16/34

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Add-one Smoothing (Laplace Smoothing)

• Probability of N-grams under add-one smoothing

• Issues? Over-smoothing: too much probability mass allocated to unseen N-grams

Original (no smoothing):

Add-one smoothing:

Vocabulary size

17/34

Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

• Probability of N-grams under add-k smoothing

• How to choose k? Use a validation set!

Original (no smoothing):

Add-one smoothing:

Add-k smoothing:

18/34

Smoothing via Language Model Interpolation

• Intuition: Combine the advantages of different N-grams
§ Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
§ Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse

• Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams,
bigrams, trigrams)

• How to pick ? Use a validation set!

Unigram Bigram N-gram

Interpolation weights sum to 1

19/34

The idea of ensembling distributions from multiple
LMs is commonly used in today’s LLMs!

Smoothing via Backoff

• Start with the highest-order N-gram available
• If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
• Continue backing off to lower-order N-grams until we reach a non-zero N-gram

• Is it possible that even after backing off to unigram, the probability is still zero?

𝛼 (<1): discount factor that adjusts the
lower-order probability

(N-1)-gram probability

20/34

Out-of-vocabulary Words

• Unigrams will have a zero probability for words not occurring in the training data!
• Simple remedy: reserve a special token [UNK] for unknown/unseen words
• During testing, convert unknown words to [UNK] -> use [UNK]’s probability

• How to estimate the probability of [UNK]?
• During training, replace all rare words with [UNK], and estimate its probability as if it is

a normal word
• How to determine rare words? Threshold based on counts in the training corpus
• Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K

will be converted to [UNK] in training

21/34

Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models

22/34

How to Evaluate Language Models?

• What language models should be considered “good”?
§ A perfect language model should be able to correctly predict every word in a corpus
§ We hope the language model can assign a high probability to the next word
§ Better language model = “less surprised” by the next word

• Just use the next word probability assigned by a language model as the metric!
• Does the choice of the evaluation corpus matter?

23/34

Training/Validation/Test Corpus

• Training corpus/set: The text data we train our models on
• Does it make sense to evaluate language model probability on the training corpus?
• If we evaluate on the training corpus, we will get misleadingly high probabilities for

next word prediction -> train-test data leakage
• Test corpus/set: A held-out set of data without overlapping with the training set
• We should always evaluate the model performance using the test corpus which

measures the model’s generalization ability to unseen data!
• Test sets should NOT be used to evaluate language models many times for tuning

hyperparameters/design choices -> indirectly learn from test set characteristics
• Validation/development corpus/set (optional): Tuning hyperparameters & making

design choices before evaluating on the test set

24/34

Training/Validation/Test Split

• If we have a fixed amount of data, how should we split into train/valid/test sets?
• We want the training set to be as large as possible
• But the validation/test sets should be also reasonably large to yield reliable evaluation

results
• The test set should reflect the data/task we aim to apply language models to

25/34

Perplexity

• Perplexity (abbreviation: PPL) is an intrinsic evaluation metric for language models
• PPL = the per-word inverse probability on a test sequence

• A lower PPL = a better language model (less surprised/confused by the next word)

Unigram Bigram Trigram

Perplexity can be used to evaluate general language models (e.g., large language models) too 26/34

• Computation of PPL in the raw probability scale can cause numerical instability

• PPL is usually computed in the log-scale in practice

Perplexity: Log-Scale Computation

Multiplication of many
small probability values!

Example: (1/10) ^ 100 = 10^-100 -> risks of underflow (round to 0)

Log probabilities are numerically stable
Example: log(1/10) = -2.3

27/34

Perplexity: Important Intrinsic Metric

PPL is an important metric to benchmark the development of language models

Figure source: https://paperswithcode.com/sota/language-modelling-on-wikitext-2 28/34

https://paperswithcode.com/sota/language-modelling-on-wikitext-2

Intrinsic vs. Extrinsic Evaluation

• Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling
per se, independent of any application

• Extrinsic metrics (e.g., accuracy) measure the language model’s performance for
specific tasks/applications (e.g., classification, translation)

• Intrinsic evaluations are good during the development to iterate quickly and
understand specific properties of the model

• Extrinsic evaluations are essential to validate that the model improves the
performance of an application in a real-world scenario

• Both intrinsic and extrinsic evaluations are commonly used to evaluation language
models (they may not be always positively correlated!)

29/34

Extrinsic Evaluations for SOTA Language Models

Math reasoning, question answering, general knowledge understanding…

Figure source: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard 30/34

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Summary: Language Modeling

• Language modeling is the core problem in NLP
• Every NLP task can be formulated as language modeling
• (Autoregressive) language models can be used to generate texts

• Language model distributions are estimated (trained) on a training corpus

31/34

Summary: N-gram Language Models

• N-gram language models simplifies the (general) language modeling assumption: the
probability of a word is only dependent on the previous N−1 words

• Lower-order N-grams (small N) capture less context information/word correlations

• Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
• Smoothing techniques can be used to address sparsity in N-gram language models

§ Add-one smoothing
§ Add-k smoothing
§ Language model interpolation
§ Backoff

32/34

Summary: Language Model Evaluation

• Training/validation/test split required before training & evaluating language models
• Perplexity measures how “confused” the language model is about the next word
• Lower perplexity on the test set = better language model

• Perplexity is the commonly used intrinsic evaluation metric for language modeling
• Perplexity is practically computed in the log scale
• Both intrinsic and extrinsic evaluations are important

33/34

Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

