
Yu Meng
University of Virginia

yumeng5@virginia.edu

Introduction to Transformer

Sep 30, 2024

mailto:yumeng5@virginia.edu


Announcement

No class/instructor office hours on Wednesday (10/02) due to instructor’s travel

2/37



Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling and Neural Language Models
• Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
• Week 8: Large Language Models (LLMs) & In-context Learning
• Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Language Agents
• Week 13: Recap + Future of NLP
• Week 15 (after Thanksgiving): Project Presentations 3/37



(Recap) RNN Computation

• Hidden states in RNNs are computed based on
§ The hidden state at the previous step (memory)
§ The word embedding at the current step

• Parameters:
§ : weight matrix for the recurrent connection
§ : weight matrix for the input connection

[BOS]

Hidden states at the
previous word (time step)

Word embedding of the
current word (time step)

4/37



(Recap) RNN Computation

• Input:
• Initialize
• For each time step (word) in the input:

§ Compute hidden states:

§ Compute output:

5/37



(Recap) RNN for Language Modeling

• Recall that language modeling predicts the next word given previous words

• How to use RNNs to represent ?

Output probability at (t-1) step:

……

𝒉("#$) is a function of 𝒉("#&) and 𝒙("#$) :

𝒉("#&) is a function of 𝒉("#') and 𝒙("#&) :

𝒉($) is a function of 𝒉(() and 𝒙($) :

6/37



(Recap) RNN Language Model Training

Train the output probability at each time step to predict the next word

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Training target is the input shifted
to the left by one time step

7/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


[BOS]

(Recap) RNN for Text Generation

• Input [BOS] (beginning-of-sequence) token to the model
• Sample a word from the softmax distribution at the first time step
• Use the word embedding of that first word as the input at the next time step

• Repeat until the [EOS] (end-of-sequence) token is generated

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 8/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


Agenda

• RNN Limitations
• Advanced RNNs
• Transformer Overview

9/37



(Recap) Vanishing & Exploding Gradient

• Gradient signal from far away can be unstable!
• Vanishing gradient = many small gradients multiplied together
• Exploding gradient = many large gradients multiplied together

Gradient backpropagation

Lots of gradient multiplications!

10/37



(Recap) Long-Term Dependencies

• RNNs are theoretically capable of remembering information over arbitrary lengths of 
input, but they struggle in practice with long-term dependencies

• RNNs use a fixed-size hidden state to encode an entire sequence of variable length; 
the hidden state is required to compress a lot of information

• RNNs might give more weight to the most recent inputs and may ignore or “forget” 
important information at the beginning of the sentence while processing the end

Fixed size hidden states!

11/37



(Recap) Lack of Bidirectionality

• RNNs process the input sequence step by step from the beginning to the end (left to 
right for English)

• At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

• Example: “The bank is on the river” the word “bank” can be correctly disambiguated 
only if the model has access to the word “river” later in the sentence

Left to right processing

12/37



Exposure Bias

• Teacher forcing/exposure bias: during RNN training, the model always receives the 
correct next word from the training data as input for the next step

• When the model has to predict sequences on its own, it may perform poorly if it 
hasn’t learned how to correct its own mistakes

During training:
Next word = actual next word

During generation:
Next word = model’s prediction

13/37



Agenda

• RNN Limitations
• Advanced RNNs
• Transformer Overview

14/37



Long Short-Term Memory (LSTM)

• Challenge in RNNs: information encoded in hidden states tends to be local; distant
information gets lost

• LSTM design intuition:
§ Remove information no longer needed from the context
§ Add information likely to be needed for future time steps

• Inputs at each time step:
§ Word embedding of the current word
§ Hidden state from the previous time step
§ Memory/cell state

• Three gates:
§ Forget gate
§ Add/input gate
§ Output gate

15/37



LSTM Computation (Forget Gate)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Hidden state

Word embedding

Cell state

Decides what information to 
discard from the cell state

16/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


LSTM Computation (Add/Input Gate)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Hidden state

Word embedding

Cell state

Decides what new
information to store
to the cell state

17/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


LSTM Computation (Candidate Cell State)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Hidden state

Word embedding

Cell state

Compute information needed 
from the previous hidden 
state and current inputs

18/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


LSTM Computation (Cell State Update)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Hidden state

Word embedding

Cell state

Cell state updated by 
combining the input 
gate, candidate cell 
state, forget gate & 
previous cell state 

19/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


LSTM Computation (Output Gate)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Hidden state

Word embedding

Cell state

Decides what parts of the 
cell state will be output

20/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


LSTM Computation (Hidden State Update)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Hidden state

Word embedding

Cell state

Hidden state updated 
using the output gate & 
the updated cell state

21/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


Bidirectional RNNs

• Separate models are trained in the forward and backward directions
• Hidden states from both RNNs are concatenated as the final representations

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Forward RNN

Backward RNN

22/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


Deep RNNs

• We can stack multiple RNN layers to build deep RNNs
• The output of a lower level serves as the input to higher levels
• The output of the last layer is used as the final output

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 23/37

https://web.stanford.edu/~jurafsky/slp3/8.pdf


Summary: Sequence Modeling

• Sequence modeling goals:
§ Learn context-dependent representations
§ Capture long-range dependencies
§ Handle complex relationships among large text units

• Use deep learning architectures to understand, process, and generate text sequences
• Why DNNs?

§ The multi-layer structure in DNNs mirrors the hierarchical structures in language
§ DNNs learn multiple levels of semantics across layers: low-level patterns (e.g., relations

between words) in lower layers & high-level patterns (e.g., sentence meanings) in higher 
layers

24/37



Summary: Neural Language Models

• Address the sparsity issue in N-gram language models by computing the output 
distribution based on distributed representations (with semantic information)

• Simple neural language models based on feedforward networks suffer from the fixed 
context window issue
§ Can only model a fixed number of words (similar to N-gram assumption)
§ Increasing the context window requires adding more model parameters

25/37



Summary: Recurrent Neural Networks

• General idea: Use the same set of model weights to process all input words
• RNNs as language models

§ Theoretically able to process infinitely long sequences
§ Practically can only keep track of recent contexts 

• Training issues: vanishing & exploding gradients 
• LSTM is a prominent RNN variant to keep track of both long-term and short-term 

memories via multiple gates

26/37



Agenda

• RNN Limitations
• Advanced RNNs
• Transformer Overview

27/37



Transformer: Overview

• Transformer is a specific kind of sequence modeling architecture (based on DNNs)
• Use attention to replace recurrent operations in RNNs
• The most important architecture for language modeling (almost all LLMs are based on 

Transformers)! 

28/37Transformer: https://arxiv.org/pdf/1706.03762

https://arxiv.org/pdf/1706.03762


Transformer vs. RNN

29/37Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN
(recurrent computations)

Transformer
(self-attention computations)

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Transformer: Motivation

• Parallel token processing
§ RNN: process one token at a time (computation for each token depends on previous ones)
§ Transformer: process all tokens in a sequence in parallel

• Long-term dependencies
§ RNN: bad at capturing distant relating tokens (vanishing gradients)
§ Transformer: directly access any token in the sequence, regardless of its position

• Bidirectionality
§ RNN: can only model sequences in one direction
§ Transformer: inherently allow bidirectional attention via attention

30/37



Transformer Layer

Each Transformer layer contains the following important components:
§ Self-attention
§ Feedforward network
§ Residual connections + layer norm

31/37

Transformer layer

Figure source: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Self-attention: Intuition

• Attention: weigh the importance of different words in a sequence when processing a 
specific word
§ “When I'm looking at this word, which other words should I pay attention to in order to 

understand it better?”

• Self-attention: each word attends to other words in the same sequence
• Example: “The quick brown fox jumps over the lazy dog.”

§ Suppose we are learning attention for the word “jumps”
§ With self-attention, “jumps” can decide which other words in the sentence it should focus 

on to better understand its meaning
§ Might assign high attention to “fox” (the subject) & “over” (the preposition)
§ Might assign less attention to words like “the” or “lazy”

32/37



Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

