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* Assignment 3 due this Friday!

Project midterm proposal guideline released (due 10/18):
https://docs.google.com/document/d/12-

f2KQRH2kYBohxJLj E6gzfilvulmnuaEVBbyXBAiY/edit?usp=sharing
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Overview of Course Contents #8315018  [q]

*  Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
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(Recap) Transformer vs. RNN #8315 018
Transformer
RNN (self-attention computations)
(recurrent computations) Next token long n thanks
t 4
Next word long and thanks for all Iﬁggzl?nge [.og Ig Iog Iog’
l Headg \_ U \ U / \ U /
Loss I—yL)gMgJ =108 Jand] [Flogdmans| EIOgTfor | [=10gTan]  --- . 4 ! S |
sottmaxover (. n i ol i, Stacked -
Vocabulary Transformer
E_ h Blocks
InPUt @ @ $ @ @
Embeddings
|
So long and thanks for En(r:]ggitng
Input tokens So I0|"lg arl1d thalnks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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(Recap) Transformer: Motivation #8315 018

e Parallel token processing
. RNN: process one token at a time (computation for each token depends on previous ones)
. Transformer: process all tokens in a sequence in parallel

* Long-term dependencies
. RNN: bad at capturing distant relating tokens (vanishing gradients)
. Transformer: directly access any token in the sequence, regardless of its position

* Bidirectionality
. RNN: can only model sequences in one direction
. Transformer: inherently allow bidirectional sequence modeling via attention
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(Recap) Transformer Layer #8315 018

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm

A
)/

Add & Normalize

Transformer layer C
L4

POSITIONAL
ENCODING

X1 | ] X2 Ill

Figure source: https://jalammar.github.io/illustrated-transformer/
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(Recap) Self-Attention: Example #8315 018
Context word (key) Center word (query)
The The
chicken chicken
Derive the center word representation as a didn’t didn’t
weighted sum of context representations!
cross cross
Center word representation Context word representation the the
A
‘\’ : road road
a; = E Qg , E 0%72:1 because because
T Ex : T cx ) :
v v it it Current word = “it”
Attention score i = j, summed to 1
was was
too too
tired tired

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 7/40
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(Recap) Self-Attention: Query, Key, and Value  #8315018

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output
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(Recap) Self-Attention: Overall Computation #8315 018

Input: single word vector of each word &;
Compute Q, K, V representations for each word:
q; = iL‘z'WQ ki, = wiWK vV, = wiWV

Compute attention scores with Q and K
The dot product of two vectors usually has an expected magnitude proportional to v/d
Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k
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(Recap) Self-Attention: lllustration #8315 018

e Example: an input sequence with three words [xq, x5, X3] 8 Output of self-attention

* Suppose we want to compute the self-attention for x5

:
&

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,

N © ) "))

Divide the dot product by X 7$

vector dimension Jel Ve Ve
Compare x3’s query with
N the keys of all words

— ) — 4

Compute query, key, value @@ @@ @@
X, X ~J0-

x, ~J0- x, ~J6-

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 10/40
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(Recap) Multi-Head Self-Attention #8315 018

e Transformers use multiple attention heads for each self-attention module

* Intuition:
. Each head might attend to the context for different purposes (e.g., particular kinds of
patterns in the context)

. Heads might be specialized to represent different linguistic relationships
Multi-Head Attention

Concat
1 )

Scaled Dot-Product
Attention

,Jt . l AL
fam fom
[ Linear Linim[ Linear

i i

Concatenate the outputs of all heads

£

u&h h attention heads are computed separately

V K Q
Figure source: https://arxiv.org/pdf/1706.03762
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(Recap) Parallel Computation of QKV #8315 018

Self-attention computation performed for each token is independent of other tokens

Easily parallelize the entire computation, taking advantage of the efficient matrix
multiplication capability of GPUs

Process an input sequence with N words in parallel

Compute QKV for one word: q; = :BiWQ k;, = iBiWK v; = :BiWV € Rd

. .
.........
-----
. .
. .
-----
.
''''''

a v &
— I

X=| 7
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(Recap) Parallel Computation of Attention #8315 018

Attention computation can also be written in matrix form

L Attention matrix
q,;- j)
. v]

Vd

Q KT q2:'k1 [q2:k2 |q2-k3 | q2-k4
V N

Compute attention for one word: a; = Softmax (
qi-k1 [q1-k2 [q1-k3 [qi1-k4

Vd

Compute attention for one N words: A = Softmax
q3:k1 [q3:k2 (q3-k3 | q3-k4

q4-k1 | q4-k2 | q4-k3 | q4-k4

Attention is quadratic in the length of the input: need to

compute dot products between each pair of tokens in the input N

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 13/40
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(Recap) Bidirectional Self-Attention #8315 018

e Self-attention can capture different context dependencies

 Bidirectional self-attention:

Each position to attend to all other positions in the input sequence

Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)
Use case: natural language understanding (NLU) where the entire input is available at once,
such as text classification & named entity recognition

hsa hp he every token attends to
. all tokens
,’:“\:\ o ]
AN AN Bidirectional
/ E NN Self-Attention
¥ ) s R Y
P+
(2 J)ls Jc ]
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(Recap) Unidirectional Self-Attention #8315 018

e Self-attention can capture different context dependencies

* Unidirectional (or causal) self-attention:
. Each position can only attend to earlier positions in the sequence (including itself).
. Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
. Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf

hs hp he every token attends to qi-ki| —o0 | —o0 | —oo
T e its previous tokens
g q2-k1|g2:k2| —co0 | —co
S Unidirectional N
’/,/ ! Self-Attention q3-k1|q3-k2|q3-k3| —oo
A
4 %
(a )8 )c)--- q4-k1|q4-k2|q4-k3|qa-k4
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e Position Encoding
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Position Encoding #8315 018

*  Motivation: inject positional information to input vectors
q;, = aziWQ k;, = a:iWK v; = miWV c Rd

a; = Softmax q; kj\ v, When x is W(?I’-d empeddlng, _q and k do
\/E not have positional information!

* How to know the word positions in the sequence? Use position encoding!

( Transformer Block

X = Composite @ @
Embeddings
(word + position) 0

Word S
Embeddings (@
Position . .
he bill

xoeq

Embeddings

Janet will back t

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Position Encoding Methods #8315 018

e Absolute position encoding (the original Transformer paper)
. Learn position embeddings for each position
. Not generalize well to sequences longer than those seen in training

* Relative position encoding (Self-Attention with Relative Position Representations)
. Encode the relative distance between words rather than their absolute positions
. Generalize better to sequences of different lengths

* Rotary position embedding (RoFormer: Enhanced Transformer with Rotary Position

Embedding)
. Apply a rotation matrix to the word embeddings based on their positions
. Incorporate both absolute and relative positions

. Generalize effectively to longer sequences
. Widely-used in latest LLMs


https://arxiv.org/pdf/1803.02155
https://arxiv.org/pdf/2104.09864
https://arxiv.org/pdf/2104.09864
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e Tokenization



Tokenization: Overview #8315 018
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Tokenization: splitting a string into a sequence of tokens

Simple approach: use whitespaces to segment the sequence

. One token = one word
. We have been using “tokens” and “words” interchangeably

However, segmentation using whitespaces is not the approach used in modern large
language models

Multiple models, each with different capabilities and price points. Prices can be viewed in
units of either per 1M or 1K tokens. You can think of tokens as pieces of words, where 1,000

tokens is about 750 words.

Figure source: https://openai.com/api/pricing/
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Limitation of Word-Based Segmentation #8315 018

*  Qut-of-vocabulary (OOV) issues:
. Cannot handle words never seen in our training data
. Reserving an [UNK] token for unseen words is a remedy

*  Subword information:
. Loses subword information valuable for understanding word meaning and structure
. Example: “unhappiness” -> “un” + “happy” + “ness”

e Data sparsity and exploded vocabulary size:
. Require a large vocabulary (vocabulary size = number of unique words)
. The model sees fewer examples of each word (harder to generalize)
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* How about segmenting sequences by character?
. No OQV issue
. Small vocabulary size

* Increased sequence length:
. Significantly increases the length of input sequences
. Transformer’s self-attention has quadratic complexity w.r.t. sequence length!

* Loss of word-level semantics:
. Characters alone often don't carry semantic meaning/linguistic patterns
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Subword Tokenization #8315 018

* Strike a balance between character-level and word-level tokenization
. Capture meaningful subword semantics
. Handle out-of-vocabulary words better
. Efficient sequence modeling

e Three common algorithms:
. Byte-Pair Encoding (BPE): Sennrich et al. (2016)
. WordPiece: Schuster and Nakajima (2012)
. SentencePiece: Kudo and Richardson (2018)

e Subword tokenization usually consists of two parts:

. A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens)
. A token segmenter that takes a raw sentence and tokenizes it according to that vocabulary


https://arxiv.org/pdf/1508.07909
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/37842.pdf
https://arxiv.org/pdf/1808.06226
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Byte-Pair Encoding (BPE) Overview #8315 018

e BPE is the most commonly used tokenization algorithm in modern LLMs

* Intuition: start with a character-level vocabulary and iteratively merges the most
frequent pairs of tokens

* Initialization: Let vocabulary be the set of all individual characters: {A, B, C, D, ..., a, b,
c,d, ...}

*  Frequency counting: count all adjacent symbol pairs (could be a single character or a
previously merged pair) in the training corpus

*  Pair merging: merge the most frequent pair of symbols (e.g. ‘t’, ‘h’ => “th”)

* Update corpus: replace all instances of the merged pair in the corpus with the new
token & update the frequency of pairs

* Repeat: repeat the process of counting, merging, and updating until a predefined
number of merges (or vocabulary size) is reached
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BPE: Token Learner #8315 018

Token learner of BPE

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V< all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k times

11, tr < Most frequent pair of adjacent tokens in C

tvew <1 + IR # make new token by concatenating

VeV +tyew # update the vocabulary

Replace each occurrence of 77, tg in C with #y.y # and update the corpus
return V

Figure source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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Suppose we have the following corpus

low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

Special “end-of-word” character

corpus ¥ (distinguish between subword units
5 low _~ vs. whole word)
2 lowest_
6 newer _
3 wider _
2 new_
vocabulary

_,d, e, i, 1, n, o, r, s, t, w

26/40

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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BPE: Counting & Merging #8315 018
The adjacent symbol pair with the highest frequency is “er” (count = 9)
low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new
corpus corpus
5 low _ Merge “er” 5 low _
2 lowest _ - 2 lowest_
6 newi_er:_ 6 newi_er!_
3 widleri_ 3 widleri_
2 new_ 2 new_
vocabulary » vocabulary ==

oy Oy 6; 4, Ay iy Dy B, 8 Ts W _,d, e i, 1, n, o, r, s, t, w, er!

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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BPE: Counting & Merging #8315 018

The adjacent symbol pair with the highest frequency is “er_” (count = 9)

low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 low _ Merge “er ” 5 low _
2 lowest _ 2 lowest _
6 ne Wi-éi‘__;_i » 6 ne wi-er_i
3 wider | 3 widier_:
2 new_ 2 new_
vocabulary - vocabulary R :

., d, e, i, 1, n, o, r, s, t, w, er

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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il UNIVERSITY,/ VIRGINIA  Jonat
slido.com

BPE: Counting & Merging #8315 018

The adjacent symbol pair with the highest frequency is “ne” (count = 8)

low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 1 oOw __ Merge “ne” 5 1 oOw _
2 lowest _ 2 lowest _
r====1 ‘ ===
6 'neiwer_ 6 | new er_
(R I | -
3 wider_ 3 wider_
re===n re———
2 new _ 2 ineiw _
(— | -
vocabulary vocabulary R
. . 1 1
_,d,e,i,1,n,0, 1,5, t,w, er, er_ - _,d,e,i,1,n,0,1,s,t,w, er,er_J/ne i

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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BPE: Counting & Merging #8315 018
Continue the process to merge more adjacent symbols corpus
5 low _
low low low low low lowest lowest newer newer newer 2 lowest_
newer newer newer wider wider wider new new 6 newer_
3 wider_
2 new_
merge current vocabulary
(ne, w) _,d,e,i,1,n,0, 1, s, t,w, er, er__, ne, new
(1, o) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo
(lo, w) —,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, 1o, low
(new, er_) _,d,e,i,1,n, 0,1, s, t,w, er, er_, ne, new, 1o, low, newer__
(low, ) _,d,e,i,1,n, 0, 1, s, t,w, er, er_, ne, new, 1o, low, newer__, low__

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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BPE: Token Segmenter #8315 018

* Once we learn our vocabulary, we need a token segmenter to tokenize an unseen
sentence (from test set)

e Just run (greedily based on training data frequency) on the merge rules we have
learned from the training data on the test data

e Example:
. Assume the merge rules: [(e, r), (er, _), (n, e), (ne, w), (I, 0), (lo, w), (new, er_), (low, )]
. First merge all adjacent “er”, then all adjacent “er_”, then all adjacent “ne”...
. “newer_” from the test set will be tokenized as a whole word
. “lower_”" from the test set will be tokenized as “low” + “er_”

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

2.

“lower_" is an unseen word from the training set
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e QOther Transformer Modules
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Transformer Block #8315 018

* Modules in Transformer layers:

h. h, . h.

= Multi-head attention -1 i Residual i+1
L _ - Stream
. Layer normalization (LayerNorm) |-
= Feedforward network (FFN) A
. Residual connection
Feedforward
"~ (LayerNorm]
Xi-1 X Xit1

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Layer Normalization: Motivation #8315 018

* Proposed in Ba et al. (2016)

e The distribution of inputs to DNN can change during training — “internal covariate shift”

* Slow down the training process: the model constantly adapts to changing distributions

hi1 Mi " Residual N+t
_ -~ Stream
|-
Feedforward
__________ |
_________“4.“
Xi-1 X Xit1

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Layer Normalization: Solution #8315 018

Normalize the input vector x
Calculate the mean & standard deviation over the input vector dimensions

1 & d
=720 2 (i
i=1 i=1

T —p

o
Learn to scale and shift the normalized output with parameters

SLI'—‘

Apply normalization

T =

T — |

LayerNorm(x) = v

4

+ 8

Learnable parameters
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Feedforward Network (FFN) #8315 018

FFN(mZ) = ReLU(wzwl)WQ hi1 hi
&

Apply non-linear activation after the first layer

* Same weights applied to every token

Weights are different across different Transformer layers

FFN in Transformer is a 2-layer network (one hidden layer, two weight matrices)

Residual
-~ Stream

-
—
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Residual Connections #8315 018
* Add the original input to the output of a sublayer (e.g., attention/FFN)
Yy=x + f(w) Mt hj Residual Pis

* Benefits
. Address the vanishing gradient problem
. Facilitate information flow across the network
. Help scale up model

Layer NormJ "

i i+1
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Language Model Head #8315 018

* Language model head is added to the final layer

Usually apply the weight tying trick (share weights between input embeddings and the
output embeddings

Word probabilities 1 x|V|

Language Model Head [ (Lo ) ] Softmax over vocabulary V
L
takes h™\ and outputs a @ . Logits 1x|V|

distribution over vocabulary V

Unembedding layer

Unembedding layer dx|V|
U=ET g y I |
[}
L Dy O (hy ) 1xd
LayerL ,——d-———-- t ot \
Transformer ! |
Block —_" """" { """""""""""
(Cwt )] (w2 )

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Transformer Language Model: Overview

Token probabilities e ylVI
| |

softmax .| VT O O

Language
Modeling

Head logits Ef) '..4
U
h

L
i

Layer L layer norm

layer norm
L-1 L
h=

X5
h, = &,

Layer 2 layer norm

i

layer norm

L8]

1
h'; = x

Layer 1 layer norm

1

layer norm

Input p<{i]
Encoding E

Input token Wi

Join at
slido.com

#8315 018

Wit
Sample token to
generate at position i+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Thank You!

Yu Meng
University of Virginia
yumeng5@virginia.edu
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