

Word Embedding: Word2Vec

Yu Meng University of Virginia <u>yumeng5@virginia.edu</u>

Sep 18, 2024

Reminder

Join at slido.com #2580 145

- Project proposal is due Friday 11:59pm!
- We have set up <u>Rivanna</u> access (GPU compute) for everyone; an instruction will be released

Overview of Course Contents

Join at slido.com #2580 145

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Transformers
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

Join at slido.com #2580 145

(Recap) Pointwise Mutual Information (PMI)

• PMI compares the probability of two words co-occurring with the probabilities of the words occurring independently

PMI =
$$\log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)} = \log_2 \frac{\#(w_1, w_2)}{\#(w_1)\#(w_2)}$$

- PMI = 0: Two words co-occur as expected by chance => no particular association
- PMI > 0: Two words co-occur more often than by chance => the higher the PMI, the stronger the association between the words
- PMI < 0: Two words co-occur less often than expected by chance => negative associations; not much actionable insight
- Positive PMI (PPMI): replaces all negative PMI values with zero

$$PPMI = \max\left(\log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}, 0\right)$$

(Recap) PPMI with Power Smoothing

Join at slido.com #2580 145

 $x^{0.75}$

0.6

0.8

x

Power smoothing: Manually boost low probabilities by raising to a power α

PPMI = max
$$\left(\log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}, 0\right)$$

Original: $p(w) = \frac{\#(w)}{\sum_{w' \in \mathcal{V}} \#(w')}$
Power smoothed:
 $(\alpha < 1)$ $p_{\alpha}(w) = \frac{\#(w)^{\alpha}}{\sum_{w' \in \mathcal{V}} \#(w')^{\alpha}}$

(Recap) PPMI with Add-k Smoothing

• Another way of increasing the counts of rare occurrences is to apply add-*k* smoothing

	computer	data	result	pie	sugar
cherry	2	8	9	442	25
strawberry	0	0	1	60	19
digital	1670	1683	85	5	4
information	3325	3982	378	5	13

Add a constant *k* to all counts

• The larger the k (k can be larger than 1), the more we boost the probability of rare occurrences

Join at slido.com #2580 145

- TF-IDF
 - Measures the importance of a word in a document relative to other documents (corpus)
 - Context granularity: document level

(Recap) TF-IDF vs. PMI Weighting

- Based on heuristics
- High TF-IDF = frequent in a document but infrequent across the corpus
- PMI:
 - Measures the strength of association between two words
 - Context granularity: word pair level (usually based on local context windows)
 - Based on probability assumptions
 - High PMI = words co-occur more often than expected by chance, a strong association

Join at slido.com #2580 145

(Recap) Count-based Vector Limitations

- Count-based vectors are **sparse** (lots of zeros)
 - Zero values in the vectors do not carry any semantics
- Count-based vectors are long (many dimensions)
 - Vector dimension = vocabulary size (usually > 10K)
 - "Curse of dimensionality": metrics (e.g. cosine) become less meaningful in high dimensions

	aardvark		computer	data	result	pie	sugar	
cherry	0		2	8	9	442	25	
strawberry	0		0	0	1	60	19	
digital	0		1670	1683	85	5	4	
information	0	•••	3325	3982	378	5	13	

Many more words!

(Recap) Dense Vectors

Join at slido.com #2580 145

- More efficient & effective vector representations?
- Dense vectors!
 - Most/all dimensions in the vectors are non-zero
 - Usually floating-point numbers; each dimension could be either positive or negative
 - Dimension much smaller than sparse vectors (i.e., << 10K)
- Also called "distributed representations"
 - The information is **distributed** across multiple units/dimensions
 - Each unit/dimension participates in representing multiple pieces of information
 - Analogous to human brains: the brain stores and processes information in a distributed manner: instead of having a single neuron/region represent a concept, information is represented across a network of neurons

(Recap) Dense Vector Example

- One dimension might (partly) contribute to distinguishing animals ("cat" "dog") from vehicles ("car" "truck")
- One dimension might (partly) capture some aspect of size
- Another might (partly) represent formality or emotional tone
- ...
- Each of these dimensions is not exclusively responsible for any single concept, but together, they combine to form a rich and nuanced representation of words!

$$m{v}_{ ext{good}} = [-1.34, 2.58, 0.37, 4.32, -3.21, \dots]$$

 $m{v}_{ ext{nice}} = [-0.58, 1.97, 0.20, 3.13, -2.58, \dots]$

Only showing two decimal places (typically they are floating point numbers!)

Join at slido.com #2580 145

(Recap) Dense Vectors Pros & Cons

- (+) Compactness: Represent a large number of concepts using fewer resources (richer semantic information per dimension); easier to use as features to neural networks
- (+) Robustness: Information is spread across many dimensions => more robust to the randomness/noise in individual units
- (+) Scalability & Generalization: Efficiently handle large-scale data and generalize to various applications
- (-) Lack of Interpretability: (Unlike sparse vectors) difficult to assign a clear meaning to individual dimensions, making model interpretation challenging

Agenda

- Sparse vs. Dense Vectors
- Word Embeddings: Overview
- Word2Vec Training
- Word Embedding Properties & Evaluation

Join at slido.com #2580 145

Join at slido.com #2580 145

Distributional Hypothesis

- Words that occur in similar contexts tend to have similar meanings
- A word's meaning is largely defined by the company it keeps (its context)
- Example: suppose we don't know the meaning of "Ong choy" but see the following:
 - Ong choy is delicious sautéed with garlic
 - Ong choy is superb over rice
 - ... ong choy leaves with salty sauces
- And we've seen the following contexts:
 - ... spinach sautéed with garlic over rice
 - ... chard stems and leaves are delicious
 - ... collard greens and other **salty** leafy greens
- Ong choy = water spinach!

Join at slido.com #2580 145

Word Embeddings: General Idea

- Learn dense vector representations of words based on distributional hypothesis
- Semantically similar words (based on context similarity) will have similar vector representations
- **Embedding**: a mapping that takes elements from one space and represents them in a different space

$$m{v}_{
m to} = [1, 0, 0, 0, 0, 0, ...] \ m{v}_{
m by} = [0, 1, 0, 0, 0, 0, ...] \ m{v}_{
m that} = [0, 0, 1, 0, 0, 0, ...] \ m{v}_{
m good} = [0, 0, 0, 1, 0, 0, ...] \ m{v}_{
m nice} = [0, 0, 0, 0, 1, 0, ...] \ m{v}_{
m bad} = [0, 0, 0, 0, 0, 1, ...]$$

2D visualization of a word embedding space

Join at slido.com #2580 145

...

Learning Word Embeddings

• Assume a large text collection (e.g., Wikipedia)

...

- Hope to learn similar word embeddings for words occurring in similar contexts
- Construct a prediction task: use a center word's embedding to predict its contexts!
- Intuition: If two words have similar embeddings, they will predict similar contexts, thus being semantically similar!

Word Embedding Is Self-Supervised Learning

• **Self-supervised learning**: a model learns to predict parts of its input from other parts of the same input

Input: Ong choy is superb over rice

- Self-supervised learning vs. supervised learning:
 - Self-supervised learning: no human-labeled data the model learns from unlabeled data by generating supervision through the structure of the data itself
 - Supervised learning: use human-labeled data the model learns from human annotated input-label pairs

Word Embedding as Input Features

des/cs224n-spr2024-lecture05-rnnlm.pdf

Join at slido.com #2580 145

Output Probabilities Word embeddings are commonly used as input features to language models Softmax Linear Add & Norm $oldsymbol{h}^{(0)}$ $h^{(1)}$ $h^{(2)}$ $h^{(3)}$ $h^{(4)}$ Feed Forward hidden states $oldsymbol{W}_h$ $oldsymbol{W}_h$ $oldsymbol{W}_h$ W_h $oldsymbol{h}^{(t)} = \sigma \left(oldsymbol{W}_h oldsymbol{h}^{(t-1)} + oldsymbol{W}_e oldsymbol{e}^{(t)} + oldsymbol{b}_1
ight)$ Add & Norm Add & Norm $m{h}^{(0)}$ is the initial hidden state Multi-Head Feed Attention Forward N× W_{e} W_{e} W_e **W**_e 0 0 0 0 Add & Norm word embeddings 0 Õ N× $e^{(1)}$ $e^{(2)}$ $e^{(3)}$ $e^{(4)}$ Add & Norm Masked 0 0 0 \circ $\boldsymbol{e}^{(t)} = \boldsymbol{E} \boldsymbol{x}^{(t)}$ Multi-Head Multi-Head 0 0 Attention Attention E \boldsymbol{E} \mathbf{F} words / one-hot vectors students their the opened Positional Positional $\boldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$ $r^{(1)}$ $\mathbf{r}^{(2)}$ $x^{(4)}$ $x^{(3)}$ Encoding Encoding Output Input **Note:** this input sequence could be much Embedding Embeddina lonaer now! **RNN** Language Model: Inputs Outputs (shifted right) https://web.stanford.edu/class/cs224n/sli

17/29

Transformer: https://arxiv.org/pdf/1706.03762

Agenda

- Sparse vs. Dense Vectors
- Word Embeddings: Overview
- Word2Vec Training
- Word Embedding Properties & Evaluation

Word2Vec Overview

Join at slido.com #2580 145

- The earliest & most well-known word embedding learning method (published in 2013)
- Two variants: Skip-gram and CBOW (Continuous Bag-of-Words)
- We will mainly cover Skip-gram in this lecture

Word2Vec paper: https://arxiv.org/pdf/1301.3781

Word2Vec Setting

Join at slido.com #2580 145

- Input: a corpus *D* the larger, the better!
- Training data: word-context pairs (*w*, *c*) where *w* is a center word, and *c* is a context word
 - Each word in the corpus can act as center word
 - Context words = neighboring words of the center word in a local context window ($\pm l$ words)
- Parameters to learn: $\theta = \{v_w, v_c\}$ each word has two vectors (center word representation & context word representation)
- The center word representations v_w are usually used as the final word embeddings
- Number of parameters to store: $d \times |V|$
 - *d* is the embedding dimension; usually 100-300
 - |V| is the vocabulary size; usually > 10K
 - Sparse vector representations will have $|V|^2$ parameters!

Word2Vec Training Data Example

Join at slido.com #2580 145

- Input sentence: "there is a cat on the mat"
- Suppose context window size = 2
- Word-context pairs as training data:
 - (there, is), (there, a)
 - (is, there), (is, a), (is, cat)
 - (a, there), (a, is), (a, cat), (a, on)
 - (cat, is), (cat, a), (cat, on), (cat, the)
 - (on, a), (on, cat), (on, the), (on, mat)
 - (the, cat), (the, on), (the, mat)
 - (mat, on), (mat, the)

there is a cat on the mat there is a cat on the mat

- "Skip-gram": skipping over some context words to predict the others!
- Training data completely derived from the raw corpus (no human labels!)

Join at slido.com #2580 145

Word2Vec Objective (Skip-gram)

- Intuition: predict the contexts words using the center word (semantically similar center words will predict similar contexts words)
- Objective: using the parameters $\theta = \{v_w, v_c\}$ to maximize the probability of predicting the context word c using the center word w

$$\max_{\boldsymbol{\theta}} \prod_{(w,c)\in\mathcal{D}} p_{\boldsymbol{\theta}}(c|w)$$

Probability expressed as a function of the model parameters

• How to parametrize the probability?

Word2Vec Probability Parametrization

Word2Vec objective:

 $\max_{\boldsymbol{\theta}} \prod_{(w,c)\in\mathcal{D}} p_{\boldsymbol{\theta}}(c|w)$

- Assume the log probability (i.e., logit) is proportional to vector dot product $\log p_{\theta}(c|w) \propto v_c \cdot v_w$
- Rationale: a larger vector dot product *can* indicate a higher vector similarity
- Why not use cosine similarity?
 - Cosine similarity is a non-linear function; more complicated to optimize than dot product
 - With advanced optimization techniques, optimizing cosine similarity is more beneficial (<u>Meng et al.</u>)

Join at

slido.com

#2580 145

Word2Vec Parameterized Objective

Word2Vec objective:

$$\max_{\boldsymbol{\theta}} \prod_{(w,c)\in\mathcal{D}} p_{\boldsymbol{\theta}}(c|w)$$

- Assume the log probability (i.e., logit) is proportional to vector dot product $\log p_{\pmb{\theta}}(c|w) \propto \pmb{v}_c \cdot \pmb{v}_w$
- The final probability distribution is given by the softmax function:

$$p_{\boldsymbol{\theta}}(c|w) = \frac{\exp(\boldsymbol{v}_c \cdot \boldsymbol{v}_w)}{\sum_{c' \in |\mathcal{V}|} \exp(\boldsymbol{v}_{c'} \cdot \boldsymbol{v}_w)} \qquad \qquad \sum_{c' \in |\mathcal{V}|} p_{\boldsymbol{\theta}}(c'|w) = 1$$

• Word2Vec objective (log-scale):

$$\max_{\boldsymbol{\theta}} \sum_{(w,c)\in\mathcal{D}} \log p_{\boldsymbol{\theta}}(c|w) = \sum_{(w,c)\in\mathcal{D}} \left(\boldsymbol{v}_c \cdot \boldsymbol{v}_w - \log \sum_{c'\in|\mathcal{V}|} \exp(\boldsymbol{v}_{c'} \cdot \boldsymbol{v}_w) \right)$$

Word2Vec Negative Sampling

• Challenges with the original objective: Sum over the entire vocabulary – expensive!

$$\max_{\boldsymbol{\theta}} \sum_{(w,c) \in \mathcal{D}} \log p_{\boldsymbol{\theta}}(c|w) = \sum_{(w,c) \in \mathcal{D}} \left(\boldsymbol{v}_c \cdot \boldsymbol{v}_w - \log \sum_{c' \in |\mathcal{V}|} \exp(\boldsymbol{v}_{c'} \cdot \boldsymbol{v}_w) \right)$$

- Randomly sample a few negative terms from the vocabulary to form a negative set N
- How to sample negatives? Based on the (power-smoothed) unigram distribution

$$p_{\text{neg}}(w) \propto \left(\frac{\#(w)}{\sum_{w' \in \mathcal{V}} \#(w')}\right)^{0.75}$$

Rare words get a bit boost in sampling probability

Word2Vec Negative Sampling

Join at slido.com #2580 145

• Formulate a binary classification task; predict whether (w, c) is a real context pair:

• Maximize the binary classification probability for real context pairs, and minimize for negative (random) pairs

$$\max_{\boldsymbol{\theta}} \log \sigma(\boldsymbol{v}_c \cdot \boldsymbol{v}_w) - \sum_{c' \in \mathcal{N}} \log \sigma(\boldsymbol{v}_{c'} \cdot \boldsymbol{v}_w)$$
Real context pair Negative context pair

Join at slido.com #2580 145

Α

Word2Vec Optimization

• How to optimize the following objective?

$$\max_{oldsymbol{ heta}} \log \sigma(oldsymbol{v}_c \cdot oldsymbol{v}_w) - \sum_{c' \in \mathcal{N}} \log \sigma(oldsymbol{v}_{c'} \cdot oldsymbol{v}_w)$$

- Stochastic gradient descent (SGD)!
- First, initialize parameters $\boldsymbol{\theta} = \{\boldsymbol{v}_{w}, \boldsymbol{v}_{c}\}$ with random d-dimensional vectors
- In each step: update parameters in the direction of the gradient of the objective (weighted by the learning rate)

Figure source: <u>https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs2.pdf</u>

Word2Vec Hyperparameters

Join at slido.com #2580 145

- Word embedding dimension *d* (usually 100-300)
 - Larger d provides richer vector semantics
 - Extremely large *d* suffers from inefficiency and curse of dimensionality
- Local context window size *l* (usually 5-10)
 - Smaller *l* learns from immediately nearby words more syntactic information
 - Bigger *l* learns from longer-ranged contexts more semantic/topical information
- Number of negative samples k (usually 5-10)
 - Larger k usually makes training more stable but also more costly
- Learning rate η (usually 0.02-0.05)

Thank You!

Yu Meng University of Virginia yumeng5@virginia.edu