

Introduction to Word Embedding

Yu Meng University of Virginia <u>yumeng5@virginia.edu</u>

Sep 16, 2024

Announcement

- Assignment 1 grades posted; reference answer released
- Contact Wenqian (pvc7hs@virginia.edu) if you have questions about your grade

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Transformers
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Word Semantics & Senses

- Understanding word semantics & senses help us build better language models!
- Word semantics is complex
 - Polysemy: a single word having multiple meanings
 - Multi-faceted: word meanings entail various aspects (e.g., valence, arousal, dominance)
- Many types of word relations: synonyms, antonyms, hyponyms & hypernyms...
- Word relations are usually not binarized (e.g., perfect synonyms are rare); word similarity is usually a more flexible measure

(Recap) Classic Word Representations

- Large-scale lexical databases (WordNet) were constructed in early NLP developments
- WordNet consists of manually curated synsets linked by relation edges
- WordNet can be used as a database for word sense disambiguation
- WordNet has significant limitations:
 - Require significant efforts to construct and maintain/update
 - Limited coverage of domain-specific terms & low-resource language
 - Only support individual words and their meanings

Join at slido.com #2998 538

(Recap) Document Similarity

• Document vector representation with word frequencies:

$oldsymbol{v}_{d_1}$	= [1, 114, 36, 20]	$m{v}_{d_2} = [0, 80, 58, 15]$	$m{v}_{d_3} = [7, 62, 1, 2]$	$m{v}_{d_4} = [13, 89, 4, 3]$
----------------------	--------------------	--------------------------------	------------------------------	-------------------------------

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- "fool" and "wit" occur much more frequently in d_1 and d_2 than d_3 and d_4
- d_1 and d_2 are comedies $\cos(v_{d_1}, v_{d_2}) = 0.95$ $\cos(v_{d_2}, v_{d_3}) = 0.81$
- Word frequencies in documents do reflect the semantic similarity between documents!

Join at **slido.com** #2998 538

(Recap) Words Represented with Documents

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3
$egin{aligned} m{v}_{ ext{battle}} \ m{v}_{ ext{good}} \ m{v}_{ ext{fool}} \ m{v}_{ ext{fool}} \ m{v}_{ ext{wit}} \end{aligned}$	= [1, 0, 7, 13] = [114, 80, 62, 89] = [36, 58, 1, 4] = [20, 15, 2, 3]	Ρ	$m{v}_{ ext{battle}}$ reviously: $m{v}_{ ext{fool}}$ $m{v}_{ ext{fool}}$	= [1, 0, 0, 0] $= [0, 1, 0, 0]$ $= [0, 0, 1, 0]$ $= [0, 0, 0, 1]$
$\cos(oldsymbol{v}_{ m fo}) \ \cos(oldsymbol{v}_{ m fool})$	$egin{aligned} & egin{aligned} & egin\\ & egin{aligned} & egin{aligned} & egin{aligne$		$\cos(a) \cos(oldsymbol{v})$	$oldsymbol{v}_{ ext{fool}},oldsymbol{v}_{ ext{wit}})=0$

Document co-occurrence statistics provide coarse-grained contexts

Join at slido.com #2998 538

(Recap) Word Co-occurrence

• Word-word matrix with ±4 word window

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	•••
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	•••

- "digital" and "information" both co-occur with "computer" and "data" frequently
- "cherry" and "strawberry" both co-occur with "pie" and "sugar" frequently
- Word co-occurrence statistics reflect word semantic similarity!
- Issues? Sparsity!

(Recap) Raw Frequency Is Biased

- On the one hand, high frequency can imply semantic similarity
- On the other hand, there are words with universally high frequencies

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

• Can we reweight the raw frequencies so that distinctively high frequency terms are highlighted?

(Recap) TF-IDF Weighting

Join at slido.com #2998 538

The TF-IDF weighted value characterizes the "salience" of a term in a document

 $\operatorname{TF-IDF}(w, d) = \operatorname{TF}(w, d) \times \operatorname{IDF}(w)$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.246	0	0.454	0.520
good	0	0	0	0
fool	0.030	0.033	0.0012	0.0019
wit	0.085	0.081	0.048	0.054

 $\cos(m{v}_{d_2},m{v}_{d_3}) = 0.10 \quad \cos(m{v}_{d_3},m{v}_{d_4}) = 0.99$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

 $\cos(v_{d_2}, v_{d_3}) = 0.81$ $\cos(v_{d_3}, v_{d_4}) = 0.99$

TF-IDF weighted

(Recap) How to Define Documents?

- The concrete definition of documents is usually open to different design choices
 - Wikipedia article/page
 - Shakespeare play
 - Book chapter/section
 - Paragraph/sentence
 - ...
- Larger documents provide broader context; smaller ones provide focused insights
- Depends on the analysis need: interested in global trends across documents (e.g., news articles) vs. more local patterns (e.g., specific sections of a legal document)?

Join at slido.com #2998 538

Probability-Based Weighting

- TF-IDF weighting scheme is based on heuristics
- Can we weigh the raw counts with probabilistic approaches?
- Intuition: the association between two words can be reflected by how much they cooccur more than by chance

			summed counts				
		computer	data	result	pie	sugar	count(w)
	cherry	2	8	9	442	25	486
center word	strawberry	0	0	1	60	19	80
	digital	1670	1683	85	5	4	3447
	information	3325 <	3982	> 378	5	13	7703
summed counts	count(context)	4997	5673	473	512	61	11716

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

Word Association Based on Probability

- In probability theory, when two random variables A & B are independent, we have Joint probability p(A,B) = p(A)p(B)
- When two words co-occur by chance, we expect their probabilities to satisfy the independence assumption: $p(w_1,w_2) = p(w_1)p(w_2)$
- When $p(w_1, w_2) > p(w_1)p(w_2)$, two words co-occur more often than would be expected by chance
- How to develop a probabilistic metric to characterize this association?

Pointwise Mutual Information (PMI)

• PMI compares the probability of two words co-occurring with the probabilities of the words occurring independently

$$PMI = \log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)} = \log_2 \frac{\#(w_1, w_2)}{\#(w_1)\#(w_2)}$$

- PMI = 0: Two words co-occur as expected by chance => no particular association
- PMI > 0: Two words co-occur more often than by chance => the higher the PMI, the stronger the association between the words
- PMI < 0: Two words co-occur less often than expected by chance => negative associations; not much actionable insight
- Positive PMI (PPMI): replaces all negative PMI values with zero

$$\text{PPMI} = \max\left(\log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}, 0\right)$$

|--|

Join at slido.com #2998 538

		computer	data	result	pie	sugar
	cherry	2	8	9	442	25
Raw counts	strawberry	0	0	1	60	19
	digital	1670	1683	85	5	4
	information	3325	3982	378	5	13

		computer	data	result	pie	sugar
DDMI_woightod	cherry	0	0	0	4.38	3.30
r ivi-weighteu	strawberry	0	0	0	4.10	5.51
matrix	digital	0.18	0.01	0	0	0
	information	0.02	0.09	0.28	0	0

Issue: biased toward infrequent events (rare words tend to have very high PMI values)

PPMI with Power Smoothing

Join at slido.com #2998 538

 $x^{0.75}$

х

Power smoothing: Manually boost low probabilities by raising to a power α

$$PPMI = \max\left(\log_{2} \frac{p(w_{1}, w_{2})}{p(w_{1})p(w_{2})}, 0\right) \qquad \alpha = 0.75$$

$$Original: \quad p(w) = \frac{\#(w)}{\sum_{w' \in \mathcal{V}} \#(w')}$$

$$Power smoothed: \qquad (\alpha < 1) \qquad p_{\alpha}(w) = \frac{\#(w)^{\alpha}}{\sum_{w' \in \mathcal{V}} \#(w')^{\alpha}}$$

Join at **slido.com** #2998 538

PPMI with Add-*k* Smoothing

• Another way of increasing the counts of rare occurrences is to apply add-*k* smoothing

	computer	data	result	pie	sugar
cherry	2	8	9	442	25
strawberry	0	0	1	60	19
digital	1670	1683	85	5	4
information	3325	3982	378	5	13

Add a constant *k* to all counts

• The larger the k (k can be larger than 1), the more we boost the probability of rare occurrences

Join at slido.com #2998 538

TF-IDF vs. PMI Weighting

- TF-IDF
 - Measures the importance of a word in a document relative to other documents (corpus)
 - Context granularity: document level
 - Based on heuristics
 - High TF-IDF = frequent in a document but infrequent across the corpus
- PMI:
 - Measures the strength of association between two words
 - Context granularity: word pair level (usually based on local context windows)
 - Based on probability assumptions
 - High PMI = words co-occur more often than expected by chance, a strong association

Agenda

- Sparse vs. Dense Vectors
- Word Embeddings: Overview
- Word2Vec

Count-based Vector Limitations

Join at slido.com #2998 538

- Count-based vectors are **sparse** (lots of zeros)
 - Zero values in the vectors do not carry any semantics
- Count-based vectors are long (many dimensions)
 - Vector dimension = vocabulary size (usually > 10K)
 - "Curse of dimensionality": metrics (e.g. cosine) become less meaningful in high dimensions

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Many more words!

Dense Vectors

- More efficient & effective vector representations?
- **Dense** vectors!
 - Most/all dimensions in the vectors are non-zero
 - Usually floating-point numbers; each dimension could be either positive or negative
 - Dimension much smaller than sparse vectors (i.e., << 10K)
- Also called "distributed representations"
 - The information is **distributed** across multiple units/dimensions
 - Each unit/dimension participates in representing multiple pieces of information
 - Analogous to human brains: the brain stores and processes information in a distributed manner: instead of having a single neuron/region represent a concept, information is represented across a network of neurons

Dense Vector Example

Join at slido.com #2998 538

- One dimension might (partly) contribute to distinguishing animals ("cat" "dog") from vehicles ("car" "truck")
- One dimension might (partly) capture some aspect of size
- Another might (partly) represent formality or emotional tone
- ...
- Each of these dimensions is not exclusively responsible for any single concept, but together, they combine to form a rich and nuanced representation of words!

$$m{v}_{ ext{good}} = [-1.34, 2.58, 0.37, 4.32, -3.21, \dots] \ m{v}_{ ext{nice}} = [-0.58, 1.97, 0.20, 3.13, -2.58, \dots]$$

Only showing two decimal places (typically they are floating point numbers!)

Join at slido.com #2998 538

Dense Vectors Pros & Cons

- (+) Compactness: Represent a large number of concepts using fewer resources (richer semantic information per dimension); easier to use as features to neural networks
- (+) Robustness: Information is spread across many dimensions => more robust to the randomness/noise in individual units
- (+) Scalability & Generalization: Efficiently handle large-scale data and generalize to various applications
- (-) Lack of Interpretability: (Unlike sparse vectors) difficult to assign a clear meaning to individual dimensions, making model interpretation challenging

Agenda

- Sparse vs. Dense Vectors
- Word Embeddings: Overview
- Word2Vec

Distributional Hypothesis

- Words that occur in similar contexts tend to have similar meanings
- A word's meaning is largely defined by the company it keeps (its context)
- Example: suppose we don't know the meaning of "Ong choy" but see the following:
 - Ong choy is delicious sautéed with garlic
 - Ong choy is superb over rice
 - ... ong choy leaves with salty sauces
- And we've seen the following contexts:
 - ... spinach sautéed with garlic over rice
 - ... chard stems and leaves are delicious
 - ... collard greens and other **salty** leafy greens
- Ong choy = water spinach!

Join at **slido.com** #2998 538

Word Embeddings: General Idea

- Learn dense vector representations of words based on distributional hypothesis
- Semantically similar words (based on context similarity) will have similar vector representations
- **Embedding**: a mapping that takes elements from one space and represents them in a different space

$$m{v}_{
m to} = [1, 0, 0, 0, 0, 0, ...] \ m{v}_{
m by} = [0, 1, 0, 0, 0, 0, ...] \ m{v}_{
m that} = [0, 0, 1, 0, 0, 0, ...] \ m{v}_{
m good} = [0, 0, 0, 1, 0, 0, ...] \ m{v}_{
m nice} = [0, 0, 0, 0, 1, 0, ...] \ m{v}_{
m bad} = [0, 0, 0, 0, 0, 1, ...]$$

2D visualization of a word embedding space

Join at slido.com #2998 538

Learning Word Embeddings

• Assume a large text collection (e.g., Wikipedia)

...

- Hope to learn similar word embeddings for words occurring in similar contexts
- Construct a prediction task: use a center word's embedding to predict its contexts!
- Intuition: If two words have similar embeddings, they will predict similar contexts, thus being semantically similar!

Word Embedding Is Self-Supervised Learning

• **Self-supervised learning**: a model learns to predict parts of its input from other parts of the same input

Input: Ong choy is superb over rice

UNIVERSITY of VIRGINIA

- Self-supervised learning vs. supervised learning:
 - Self-supervised learning: no human-labeled data the model learns from unlabeled data by generating supervision through the structure of the data itself
 - Supervised learning: use human-labeled data the model learns from human annotated input-label pairs

Thank You!

Yu Meng University of Virginia yumeng5@virginia.edu