
Advanced Reasoning

CS 6501: Natural Language Processing
Cheryl Bai, Dylan Crotty, Eric Xie

Advanced Reasoning

CS 6501: Natural Language Processing
Cheryl Bai, Dylan Crotty, Eric Xie

Agenda
● Introduction to Advanced Reasoning
● Papers

○ Solving Quantitative Reasoning Problems with Language Models
○ PAL: Program-aided Language Models
○ Tree of Thoughts: Deliberate Problem Solving with Large Language Models
○ Let’s Verify Step by Step

● Overall Conclusions

Quantitative Reasoning: https://arxiv.org/abs/2206.14858
PAL: https://arxiv.org/abs/2211.10435
ToT: https://arxiv.org/abs/2305.10601
Verification: https://arxiv.org/abs/2305.20050

https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.20050

Current Reasoning
● Limitations of current LLMs

○ Inconsistent performance with basic calculations
○ Linear, token-level thinking: Cannot plan ahead or backtrack

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Advanced Strategies
● Strategies to enable “higher-level” reasoning at each stage of learning

○ Training Dataset
■ Solving Quantitative Reasoning Problems with Language Models

○ Reasoning Framework (and corresponding prompting methods)
■ PAL: Program-aided Language Models
■ Tree of Thoughts: Deliberate Problem Solving with Large Language

Models
○ Feedback/Reward Models

■ Let’s Verify Step by Step

Quantitative Reasoning: https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Overview
● Goal: solve quantitative reasoning problems by processing and learning from

more complex information without relying on external tools
● Previous state: models struggled with solving more technical problems,

especially those in engineering, math, science, etc.
● General strategy: use a training dataset with general language capabilities and

technical content

https://blog.research.google/2022/06/minerva-solving-quantitative-reasoning.html

https://blog.research.google/2022/06/minerva-solving-quantitative-reasoning.html

Models
● Based on the PaLM general language models
● Used 8B, 62B, and 540B parameter pretrained models
● Trained on technical content datasets

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Training Data
● Dataset of 38.5B tokens
● Taken from webpages and papers submitted to arXiv preprint server filtered for

mathematical content
● Same general language dataset used for training PaLM

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Evaluation Data
● MATH: dataset of 12k middle school and high school math problems (4-shot

prompt)
● GSM8K: middle school math word problems

○ Previous models used an external calculator, Minerva doesn’t use any external tools

● OCWCourses: STEM problems with automatically verifiable solutions from
publicly available course materials offered by MIT

● MMLU-STEM: subset of the MMLU dataset focused on STEM (5-shot prompt)

MATH Dataset

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Results

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Results
● maj1@k: majority voting

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Impact of Scaling
● Identified samples that Minerva 62B got right, but 8B got wrong

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

False Positives
● No automatic way to verify whether a false positive occurs
● Taking 100 samples (20 per difficulty) of pairs of questions and the model’s

corresponding CoT and answer
● Find how often incorrect model reasoning still resulted in the correct answer

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Memorization
● Performance reflects genuine analytic capability instead of memorization
● Little evidence of memorization

○ No Training and Evaluation Dataset Overlap
○ Correlation of accuracy between original and modified MATH problems
○ Low effect of BLEU score on accuracy -> Performance not attributed to

similarity to ground truth

https://arxiv.org/abs/2206.14858

https://arxiv.org/abs/2206.14858

Conclusions
● Training on a high quality mathematical dataset leads to strong performance

on tasks involving logical reasoning, numerical calculation, and symbolic
manipulation

Limitations:

● No automatic way of verifying correctness of model’s answers
● No access to external tools (calculator, python interpreter, etc.)
● Approach to reasoning is not mathematically-informed (no underlying

mathematical structure to its learning), only the dataset is manipulated

PAL: https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Overview
● Goal: improve LLMs computing ability by

turning thoughts into Python lines
● Previous state: LLMs are bad at basic

math, but good at decomposing problems
● General strategy: use contemporary

state-of-the-art LLMs that are pre-trained
on both natural language and programming
languages, but prompt it using PAL

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

CoT vs PAL
● Chain of Thought Prompt

○ Input, NL steps, output

● Program-aided Language Prompt
○ Input, NL and PL steps

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Prompting Methods
● Compare 3 prompting methods across 13 arithmetic and symbolic reasoning

tasks
○ Direct question to answer (input-output)
○ Chain of Thought (CoT)
○ PAL

Types of Questions
● 8 math word problem datasets
● GSM8K

○ 50% of numbers are integers between 0 and 8
● GSM-HARD

○ Replaced numbers in questions of GSM8K with larger numbers

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Types of Questions
● 3 symbolic reasoning tasks

○ Colored objects: keep track of colored objects on a surface
○ Penguins: questions about attributes of penguins
○ Date: date understanding task

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Types of Questions
● 2 algorithmic tasks
● Object counting: counting objects of a certain type
● Repeat copy: generating sequence of words according to instructions

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Results

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

GSM vs. GSM-HARD
● CoT generates nearly the same thoughts for 16 out of 25 cases analyzed
● Primary failure is the inability to perform arithmetic correctly

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Results

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Results
● PAL is not sensitive to problem complexity

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Analysis
Does PAL perform well with smaller
models?

● Original model based on
code-davinci-002

● PAL still improves the model
compared to CoT

● Fairly consistent relative
improvement

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Analysis
Does PAL need to be used on models based on code?

● PAL used on text-davinci models
● CoT outperformed on the smallest text-based model (text-davinci-001)
● PAL outperformed CoT once the code modeling ability improved

Is PAL better because of the Python prompt or interpreter?

● Required the model to “execute” code generated without interpreter
● Performance on GSM8K dropped to 23.2 (originally 72)
● Reinforces hypothesis that the main benefit of PAL is synergy with interpreter

Analysis
Do variable names and comments matter?

● Removing intermediate comments slightly reduces performance
● Using random variable names further decreases accuracy

https://arxiv.org/abs/2211.10435

https://arxiv.org/abs/2211.10435

Conclusions
● PAL performed significantly better than CoT and input-output, achieving SOTA

on all tasks
○ Performance remains stable with increasing problem complexity
○ Performance improves in both smaller and language-based models, as

long as the code modeling ability was sufficiently high
● PAL improves interpretability
● Limitations on the types of problems that can be solved

○ Tasks may be difficult to represent using code
○ No ability to determine when PAL should be used

ToT: https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Overview
● Goal: create a new framework that

improves upon CoT to handle more
complex problems

● Previous state: CoT is a token-level,
left-to-right decision-making process

● General strategy: generate thoughts
in a tree-like structure to allow for
diverse alternative choices

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

ToT Outline
1. Thought Decomposition: How should thoughts be formatted for the given

problem?
2. Thought Generation: How to form new thoughts from an existing tree?
3. State Evaluation: How to create a good heuristic for the distance from the

correct solution from each state?
4. Search algorithm: What traversal method is best to cover the important

thoughts?

● In general, thoughts should be:
○ Small enough that the model can generate promising and diverse

samples
○ Large enough that the LLM can properly evaluate it

Thought Decomposition

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Thought Generation
● Given an existing tree state, 2 strategies for coming up with the next thought

○ Sample thoughts
■ Obtain many different possible answers for the current state and

choose the best one
○ Propose thoughts

■ Prompt the model to generate different thoughts within the same
context

Sample Thoughts
● Sample thoughts using a CoT prompt
● Works better when the thought space is rich
● Samples lead to diversity

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Propose Thoughts
● Propose thoughts sequentially using “propose” prompt
● Works better when the thought space is constrained
● Avoids duplication

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

State Evaluation
● Evaluates the progress the model makes towards achieving the goal given the

current state
○ Serves as a heuristic for the search algorithm

● Heuristics are fairly standard for search problems, but they have typically been
either programmed or learned
○ Instead, the LLM deliberately reasons its evaluation

● 2 strategies for state evaluation
○ Value each state individually
○ Vote across states

Value Each State
● Prompt generation of scalar value or classification that could heuristically be

turned into a value
○ Ex. sure, likely, impossible

○ Focus on good states, eliminate bad states

● Evaluations can be approximated and still be helpful for decision making

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Vote Across States
● Look at the available states and choose the most promising one
● Generally used when problem success is harder to value

Search Algorithm
● Breadth-first search (BFS) maintains set of most promising states per step
● Depth-first search (DFS) explores the most promising state first until the goal

is reached or the LLM deems it impossible
● More advanced search mechanisms are left for future work

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Example - Crosswords

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Results - Game of 24

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Results - Creative Writing

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Results - Crosswords
● ToT success rate was much higher than IO

and CoT
● Outputting the actual best DFS state

instead of the heuristically determined best
state led to higher performance
○ Simple output heuristics can be

improved
● Removing pruning heuristic led to

decreased performance
● Removing backtracking also decreased

performance

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Conclusions
● ToT improves interpretability of a model’s thought process while increasing

success rate in all tasks
● Limitations

○ Requires more resources
○ Deliberate search with ToT might not be necessary for tasks that LLMs

already excel at

https://arxiv.org/abs/2305.10601

https://arxiv.org/abs/2305.10601

Verification: https://arxiv.org/abs/2305.20050

https://arxiv.org/abs/2305.20050

Overview
● Goal: identify the best way to give feedback to a LLM between outcome and

process supervision
● Previous state: studies have compared outcome and process supervision, but

results have been inconclusive
● General strategy: Compare the accuracy of a model using an Outcome Reward

Model (ORM) vs Process Reward Model (PRM)
○ Large-scale
○ Small-scale

● Large-scale
○ Full scale models based on GPT-4

● Small-scale
○ Similar in design to GPT-4, but pretrained with roughly 200x less compute
○ Large-scale model supervises small-scale training

● Models are fine tuned with a dataset of 1.5B math-relevant tokens, called
MathMix, found to improve model’s mathematical reasoning capabilities

Model Architectures

Data Collection
● Outcome supervision is automated - MATH has numerical or symbolic answers
● Process supervision requires human labelers

https://arxiv.org/abs/2305.20050

https://arxiv.org/abs/2305.20050

Data Collection
● For process supervision, convincingly wrong-answer solutions are shown to the

human data-labelers
○ Convincingly - The current best PRM rates the process for the given

solution highly
○ Doesn’t show obvious wrong answers to save on resources

● The PRM is iteratively retrained using the latest data
○ Each iteration, N solutions to problems are generated, and the best K

answers are shown to the labelers

ORMs
● Outcome-supervised Reward Models (ORMs) are fed solutions to problems
● Trained to predict whether the final solution is correct or not
● Automatic grading used to determine ORM correctness is not perfectly reliable

in terms of solution quality
○ False positive solutions misgraded

PRMs
● Process-supervised Reward Models (PRMs) are fed the process of a model

solving a problem up until the first incorrect step
○ Models are given “equivalent” information, limiting the amount of extra

information that the PRM gets
○ For samples with the correct solution, everything shown is correct
○ For incorrect solutions, both models are shown the existence of at least

one mistake, and the PRM is also shown the location of the mistake
● PRM scores the final solutions by the probability that every step in the solution

is correct
○ The probability of every individual step being correct is multiplied

Results - Large Scale

https://arxiv.org/abs/2305.20050

https://arxiv.org/abs/2305.20050

Issues with Large-scale
● Training sets for each model aren’t directly comparable

○ The data used to train the PRM is constructed using active learning,
biased towards answer-incorrect solutions, and an order of magnitude
smaller than the ORM’s data

● The ORM’s automated final answer grading method generates false positive
labels which can damage the ORM’s performance
○ Arguable whether this may or may not be attributed to ORM’s generally

Small Scale Supervision

https://arxiv.org/abs/2305.20050

https://arxiv.org/abs/2305.20050

Active Learning
● Small scale model PRMselector is trained to select N samples per problem such

that:
○ 20% of the samples are the most convincing answers
○ 80% are the most convincing wrong answers

● Estimated to be approximately 2.6x more data efficient
● Attempted to retrain PRMselector between iterations, but this caused instability

Generalizations

https://arxiv.org/abs/2305.20050

https://arxiv.org/abs/2305.20050

Conclusions
● Process supervision provides more feedback

○ Models trained with outcome supervision have a difficult
credit-assignment task or determining where a solution went wrong

● Process supervision is more likely to produce interpretable reasoning
○ Encourages models to follow processes endorsed by humans

● Limitations
○ No discussion on when exactly PRM vs ORM should be used
○ Diminishing returns on feedback

Overall Strategies
● Shaping the dataset to match specific types of problems

○ Solving Quantitative Reasoning Problems with Language Models
○ PAL: Program-aided Language Models

● Reframing the model’s thoughts
○ PAL: Program-aided Language Models
○ Tree of Thoughts: Deliberate Problem Solving with Large Language Models

● Creating an effective feedback system
○ Let’s Verify Step by Step

Questions?

