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What is a
well-calibrated
model?

A model’s predicted probabilities for
accuracy should be well-correlated
with ground truth probabilities of
correctness

=N

Input | Candidate Answers Original
cell division. 0.00
Oxygen and sugar are the products of | . .

e i digestion. 0.00

(A) cell division. (B) digestion. (C) .
hotosynthesis. (D) respiration photosynthesis. 000
P ) ' respiration. 1.00

An example of a not-very-well calibrated model
How Can We Know When Language Models Know? On the Calibration of Language Models for Question Answering:
https://arxiv.ora/pdf/2012.00955.pdf
2

it UNIVERSITYsf VIRGINIA



Common methods of assigning confidence

Probability argmax P(y;|x)
(LM) 3
Ls ' .
ij:1 P(yflx,yl 7=1)
Average Log-Likelihood arg Inax 7.
(Avg) i t

Contextu?clzg)alibration arg max WP(yZ‘X) +b

Surface Form Competition: Why the Highest Probability Isn’t Always Right https://arxiv.org/pdf/2104.08315.pdf
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Form vs Meaning

“Different” sentences may be
semantically equivalent to humans but
models may be uncertain between two
forms of the same meaning

France’s capital is Paris.
Paris is the capital of France.

ik UNIVERSITYsf VIRGINIA



Why should you care?

W &

Life Or Death Decision Making Al Alignment Hallucinations

Image Source: https://www.flaticon.com/free-icon/mistake_4249097 ?term=mistake&page=1&position=4&origin=search&related_id=4249097
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How Can We Know When Language Models Know?
On the Calibration of Language Models for Question Answering

Zhengbao Jiang', Jun Araki*, Haibo Ding*, Graham Neubig'
"Languages Technologies Institute, Carnegie Mellon University
tBosch Research
{zhengbaj, gneubig}@cs.cmu.edu
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Overview

Research Question

e How can we know with confidence the answer to a particular query?

Results

e Determine that “strong” generative models are not well calibrated
e Methods to calibrate models are effective

£
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m-th bucket containing samples
B, whose prediction confldence falls

into interval (2%, %

average accuracy of m-th
aCC(Bm) bucket

average confidence of
Conf(B )| m-th bucket
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|acc m) — conf(By,)|

Expected
Calibration Error

weighted average of the
discrepancy between each
bucket’'s accuracy and
confidence



Calibration Methods

Fine-tuning: directly tune PN(Y\X) to be a good probability estimate of actual
answers Y

Post-hoc Calibration: manipulate information derived from the model

Language Model-Specific Methods
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Fine-tuning

Softmax-based

Maximize the probability corresponding to the
correct candidate

XY — — log —R(()

ZY’GI(X) exp(s(Y”))

Y ground truth

s(Y) =log PLm(Y|X) logit of the output Y

=N
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Margin-based

Maximize the confidence margin between
ground truth and incorrect results

L(X,Y) =

2.

Y'eL(X)\Y

max (0,7 + s(Y’) — s(Y))
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Post-hoc Calibration

Temperature-based Scaling

Temperature hyperparameter 1 alters probability
distribution of final classification layer

e T — 0:largest logit receives most of the
probability mass — less diverse outputs

e T — : uniform distribution — more
diverse outputs

)
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Feature-based Scaling

Model Uncertainty use entropy of the
distribution over the candidate set z(x)to
determine how uncertain the model is

Input Uncertainty high uncertainty indicates the
input is “out-of-distribution”

Input statistics longer text may provide more
information than shorter text

Notated as XGB

1



LM-Specific Methods

Candidate Output Paraphrasing
Round-trip translation model

1. Translate candidate output Y/ € Z(X)
into German

2. Generate a set of paraphrases by
back-generating the German into English

3. Sum up the probability of all paraphrases
to re-calculate the probability of all
paraphrases

il UNIVERSITY/VIRGINIA

Input

How would you describe Addison?
(A) excited (B) careless (C) devoted.
Addison had been practicing for the
driver’s exam for months. He finally
felt he was ready, so he signed up and
took the test.

Paraphrases &
Probabilities

devoted (0.04), dedicated (0.94),
commitment (0.11), dedication (0.39)

a candidate answer may not be worded in
such a way that it achieves high confidence



LM-Specific Methods

Input Augmentation

e Retrieve extra evidence to augment input

e Find most relevant Wikipedia article and append first 3 sentences of the first
paragraph

il UNIVERSITY/VIRGINIA
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Models Evaluated

[ “translate English to German: That is good."

"Das ist gut.”
"not acceptable"

"cola sentence: The
course is jumping well."

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."
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allenai/unifiedqga

UnifiedQA: Crossing Format Boundaries With a
Single QA System

Al

14



Multiple-Choice QA

Y = arg maxP v (Y'|X)
Y/eT(X)
X input

Z(X) setof multiple choice answers

'Y/ a potential multiple choice answer

The answer that is returned is the
highest-probability answer

ii UNIVERSITYs VIRGINIA

Extractive QA

e Question
X e Context passage containing
answer to be extracted

Instead of calculating every possible span,
determine the top K spans as candidates

and use candidates to calculate the
T(X) probability (see MC QA)
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Datasets Used to
Train and Evaluate

it UNIVERSITYs VIRGINIA

Format

Datasets and Domains

Multi-choice

Extractive

ARC |(science (Clark et al., 2018)),
AI2 Science Questions (§cience (Clark
et al., 2018)),) Ogenbooks 2A|(science
(Mihaylov et al., 2018)),l Winogrande
(commonsense (Sakaguchi et al.,
2020)), [CommonsenseQA [common-

sense (Talmor et al., 2019b))] MCTestl
(fictional stories (Richardson et al.,

2013)), [PIQA](physical (Bisk et al.,
2020)), [SIQA| (social (Sap et al.,
2019)), (English compre-

hension (Lai et al., 2017)), |QASC

(science (Khot et al., 2020)),| MT-test
(mixed (Hendrycks et al., 2020))

[SQUAD T.1] (wikipedia (Rajpurkar
et al., 2016)),|]SQuAD 2 |(Wikipedia
(Rajpurkar et al., 2018)), [NewsQA

(news (Trischler et al., 2017))} Quoref

(wikipedia (Dasigi et al., 2019)),
ROPES |(situation understanding (Lin
et al., 2019))
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State-of-the-art models are not well-calibrated

Method MC-test MT-test Ext-test
ACC ECE | ACC ECE | ACC ECE

TS5 0.313 0.231 | 0.268 0.248 | 0.191 0.166

UnifiedQA 0.769 0.095 | 0.437 0.222 | 0.401 0.114
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Calibration can be achieved without sacrificing

accuracy.

Method MC-test MT-test Ext-test Method MC-test MT-test Ext-test
ACC ECE | ACC ECE | ACC ECE ACC ECE | ACC ECE | ACC ECE
T5 0313 0231 | 0.268 0248 | 0.191 0.166 Baseline  0.769 0.057 | 0.431 0.144 | 0.401 0.114
UnifiedQA  0.769 0.095 | 0.437 0.222 | 0.401 0.114  +Temp. 0.769 0.049 | 0.431 0.075 | 0.401 0.107
+ softmax 0.767 0.065 | 0.433 0.161 | 0.394 0.110 +XGB  0.771 0.055 | 0.431 0.088 | 0.402 0.103
+ margin 0.769 0.057 | 0.431 0.144 | 0.391 0.112  +Para.  0.767 0.051 | 0.429 0.122 | 0.393 0.114
+Aug.  0.744 0.051 | 0.432 0.130 | 0.408 0.110

Table 4: Performance of different fine-tuning methods.

i UNIVERSITYs VIRGINIA

+ Combo 0.748 0.044 ‘ 0.431 0.079 ‘ 0.398 0.104

Table 5: Performance of different post-hoc methods
using the UnifiedQA model after margin-based fine-
tuning or the original UnifiedQA model as the base-
line model. “+Combo” denotes the method using both

Temp., Para., and Aug.
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Misplaced
Confidence?

)
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i-b

1.007 1.00

>0.75 >0.75
(9] 19)
o o
5 0.50 5 0.50
(9] |}
(&) (@]
©0.25 ©0.25
0.08% 0.5 10 993% 0.5 1.0
confidence confidence
(a) TS (b) UnifiedQA
1.00 1.00
>0.75 >0.75
(9) Q
o e
5 0.50 5 0.50
(9] &)

v O
©0.25 00,25

00870 0.5 10 %% 0.5 1.0
confidence confidence

(c) UnifiedQA w/ Combo (d) UnifiedQA w/ Combo and
oracle temperature

Figure 1: Reliability diagram of the TS5 model
(top-left), the original UnifiedQA model (top-right),
the UnifiedQA model after calibration with Combo
(bottom-left), and Combo with oracle temperature
(bottom-right) on the MC-test datasets.
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Ablation Study

il UNIVERSITYs VIRGINIA
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Calibrating Different Language Models

Method MC-test MT-test Method BART GPT-2 large
ACC ECE | ACC ECE ACC ECE | ACC ECE

E e
UnifiedQA 0816 0.067 | 0.479 0.175 softmax  0.658 0.097 | 0.434 0.177
+softmax  0.823 0.041 | 0.488 0.129 + margin 0.632 0.090 | 0.450 0.123

+ margin 0.819 0.034 | 0.485 0.107 + Temp. 0632 0.064 | 0.450 0.067

+ Temp.  0.819 0.036 | 0.485 0.098 + XGB 0.624 0.090 | 0.440 0.080

+ XGB 0.818 0.065 | 0.486 0.108 + Para. 0.624 0.084 | 0.436 0.104
+Para.  0.820 0.035 | 0.484 0.092 g QIGROICY | Wit 00

+ Aug. 0.812 0.031 | 0.493 0.090 + Combo 0.591 0.065 ‘ 0.429 0.069

+Combo  0.807 0.032 ‘ 0.494 0.085 Table 6: Performance of different LMs on the MC-

test dataset. “Original” indicates the original language
model, and “+ UnifiedQA” indicates fine-tuning fol-
lowing the recipe of UnifiedQA.

Table 7: Performance of the 11B LMs.

Larger LMs achieve higher accuracy

better calibration results Methods are applicable to LMs with

- different architectures
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Optimal number of paraphrases: 5-10

0.06

0.05 M

0.04
1 3 5§ % 9 11 13 16 LI 19

Figure 3: ECE of the UnifiedQA model using different
numbers of paraphrases on the MC-test datasets.
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ECE can generalize
to out-of-domain
datasets

=N
WD

UNIVERSITYs VIRGINIA

Method MC-train MC-test
ACC ECE | ACC ECE
TS 0.334 0.228 | 0.313 0.231
UnifiedQA 0.727 0.133 | 0.769 0.095
+ softmax 0.735 0.084 | 0.767 0.065
+ margin 0.737 0.069 | 0.769 0.057
+ Temp.  0.737 0.051 | 0.769 0.049
+ XGB 0.737 0.074 | 0.771 0.055
+ Para. 0.742 0.053 | 0.767 0.051
+ Aug. 0.721 0.059 | 0.744 0.051
+ Combo 0.722 0.042 | 0.748 0.044

Table 8: Performance comparison between training and

evaluation datasets.



Develop calibration
methods on a more
fine grained model
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How does knowing
the confidence affect
users?
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Surface Form Competition:
Why the Highest Probability Answer Isn’t Always Right

=Ari Holtzman! =Peter West'?
Vered Shwartz'* Yejin Choi'?* Luke Zettlemoyer'
'Paul G. Allen School of Computer Science & Engineering, University of Washington
?Allen Institute for Artificial Intelligence
{ahai, pawest}l@cs.washington.edu

L5
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Overview

Issue

e Zero-shot capabilities of models are underestimated
e Ranking by string probability can be problematic, due to surface form
competition

Solution

e [ntroduce Domain Conditional Pointwise Mutual Information

il UNIVERSITY/VIRGINIA
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What is Surface Form Competition?

A human wants to submerge himself in water,
what should he use?

Humans select options

a) Coffee cup

X (

‘Q v/ (b) Whirlpool bath
x (c) Cup

X

d) Puddle

Surface Form Competition: Why the Highest Probability Isn’t Always Right
https://arxiv.org/pdf/2104.08315.pdf
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Language Models assign probability to
every possible string

° 0O (e) Water

D " Abathtub

(9) 1 don't know
(h) A birdbath
(

@ i) Bathtub

@ = right concept, wrong surface form

27



argmax P(y;|x)
i

Picking the highest-probability option: LM

i UNIVERSITYs VIRGINIA
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Pointwise Mutual Information

P(yp) _,  Plxly)

PMI(x,y) = log Ply) Pix)

e How much more likely does the hypothesis y become given the premise x

e Limitation: estimates of P(y) vary wildly

ik UNIVERSITYsf VIRGINIA
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Domain Conditional Pointwise Mutual Information (PMI )

Reweighs scores by how much more likely a hypothesis (answer) becomes given
a premise (question) within the specific task domain

P(yi|x)
P(Yi |Xdomain)

Domain Conditional PMI arg 1max
(PMI_.) i

Surface Form Competition: Why the Highest Probability Isn’t Always Right https://arxiv.org/pdf/2104.08315.pdf
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Existing Scoring Functions

Probability (LM) argmax P(y;|x)
i

Average Ly Pyl eyt i)
Log-Likelihood (AVG) 2'&! 7

7

Unconditional o
(in-domain) estimate a1'g l1ax P(yi|Xdomain)
(UNC) i

=N
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Setup

Models Experiments
e GPT-2 (via the HuggingFace e Multiple Choice
Transformers library) o Zero-shot (main focus)
e GPT-3 (via OpenAl’s beta API) o Few-shot
Datasets o Removw.g Surface Form
Competition
e 13 datasets o Scoring-by-premise

=)
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Datasets

e Continuation: Choice of Plausible Alternatives (COPA), StoryCloze (SC),
HellaSwag (HS)

e Question Answering (QA): RACE-M & -H (R-M & R-H), ARC Easy &
Challenge (ARC-E & ARC-C), Open Book Question Answering (OBQA),
CommonsenseQA (CQA)

e Boolean QA: BoolQ (BQ)

e Entailment: Recognizing Textual Entailment (RTE), Commitment Bank (CB)

Text Classification: SST-2 & -5, AG’s News, TREC

it UNIVERSITYof VIRGINIA 3



Results of Multiple Choice Experiments - Zero-shot
Percent of Ties or Wins by Method

e Smallest margin: >40%,
between AVG and PMI .

e Greatest margin: >80%

e PMI,. performs
significantly better on new
datasets

Surface Form Competition: Why the Highest Probability
Isn’t Always Right https://arxiv.org/pdf/2104.08315.pdf

il UNIVERSITY/VIRGINIA

Method| Unc LM Avg PMIpc CC
125M |1250 625 1250 6875 -
350M | 625 1875 1250 6875 -
760M | 625 625 1250 7500 -
16B | 625 1250 1250 80.00 20.00
“27B | 625 625 625 8666 000
6.7B : :
13B 5 -

175B 6.25 12.50 18.75 62.50 6.25

34



Results of Multiple Choice Experiments - Few-shot

4-shot Inference Results

SST-2 CQA

¢ IDMIDC favored Method|Unc LM PMIpc |{Unc LM Avg  PMlIpc

e LM performs better for 125M |49.9¢ 63.674 71.751|15.50 29.9 16 32.7 14 38.317
two models on SST-2 350M 1499, 76.3 138 76.431(16.50 37.6,3 404,35 45.7 >4
dataset 760M [49.9, 85.97,, 87.130(16.1¢ 41.5,¢ 42.4,5 47.0 5

1.6B (499,854, 89.440/16.00 4625 47.7 19 52.35;

277B 14990 88.149 87.755(16.60 43.017 45.619 50.4 1,
6.7B 14990 92.9,;, 79.869(16.9¢ 52.3 14 53.419 56.56
Surface Form Competition: Why the Highest 13B 499, 85499 86.975(16.70 58.4,059.3,5 63.4,4

Probability Isn’t Always Right

https://arxiv.org/pdf/2104.08315.pdf 175B  [49.90 89955 95.507(16.50 69.1 19 69.405 72.009

)
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Removing Surface Form Competition Experiment

COPA "Flipped”

because
SO » because
Premise (X ): The bar closed because Premise 1 ()"(1): It was crowded so

Domain Premise (X {omain ): Pecause
Premise 2 ()’i2) :ltwas 3AM so
Hypothesis 1 (y'1): it was crowded.

Hypothesis 2 (Y 9): it was 3 AM. Hypothesis (y ): the bar closed.

Hypothesis 2'(yl2) : it was 3:30AM. Premise 2'( )’\(’2) : It was 3:30AM so

Surface Form Competition: Why the Highest Probability Isn’t Always Right https://arxiv.org/pdf/2104.08315.pdf
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Scoring-by-Premise

P(x|y)

Probability of the premise given the hypothesis

Eliminates competition from surface form by calculating the same surface form

across different options

P( It was 3 AM

It was
P( crowded

The bar
closed

The bar
closed

Only one answer is selected

I—b

it UNIVERSITYo VIRGINIA

P(

The bar
closed

The bar
closed

It was 3 AM )

It was
crowded

Multiple answers could be selected

37



Removing Surface Form Competition Results

e UNC produces the

Removing Surface Form Competition

COPA COPA Flipped

exact same results Method | Unc LM Avg PMIpc|Unc LM Avg PMIpc

e On COPA Flipped, 125M |56.4 61.0 63.2 62.8 [50.0 632 63.2 63.2

LM/AVG perform 350M |55.8 67.0 66.0 70.0 [50.0 66.4 664 66.4

similarly to PMI__on the 760M |55.6 69.8 67.6 69.4 |50.0 70.8 70.8 70.8

. . be 1.6B  [56.0 69.0 684 71.6 [50.0 73.0 73.0 73.0
unflipped version

27B |54.8 68.4 68.4 74.4 |50.0 68.4 68.4 68.4

6.7B |56.4 75.8 73.6 77.0 |50.0 76.8 76.8 76.8

Surface Form Competion: Why the Highest  13B 56.6 79.2 77.8 84.2 |50.0 79.0 79.0 79.0

e 175B  [56.0 85.2 82.8 89.2 [50.0 83.6 83.6 83.6

il UNIVERSITY/VIRGINIA
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Why Does Scoring-By-Premise Work?

COPA P(yi|x) > P(y2|x)

It was The bar
P( crowded closed > P( It was 3 AM
COPA P(y|x2) > P(y|x1)

Flipped  P(y2|x) . P(y1|x)
P(Y2|Xdomain) P(Y1|Xdomain)

The bar

Thebar | i as3am) > P( ioseq

closed

ik UNIVERSITYsf VIRGINIA

The bar
closed

It was
crowded

) @

) @
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Stability over Multiple Answers

log P(yg |X) ~ —16 P(it was 3 AM | the bar closed because)
log P(y’Q |X) ~ —20 P(it was 3:30 AM | the bar closed because)

Because the conditional probability for y,’ is lower than y , the score for y, = it
was 3 AM will be different from y,’ = it was 3:30 AM

il UNIVERSITY/VIRGINIA
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Stability over Multiple Answers: Scoring-by-Premise

log P(y|x2) =~ —12

log P(y|x5) ~ —12
The bar It was 3 AM so ) P The bar | |+ \yas 3:30 AM so)
closed closed

Stabilizes the conditional probability of S’

il UNIVERSITY/VIRGINIA
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Conclusions, Limitations, & Future Work

e PMI,. outperforms previous scoring functions on multiple choice datasets

o Prove that this is due to surface form competition by showing how other scoring methods have
improved accuracy when surface form competition is removed

e Limited by ability to understand answer concepts

o In multiple choice, would not understand multiple answers that interact with each either, such
as “all of the above”

e Should explore how surface form competition affects answer
generation—may cause generic outputs when models are highly uncertain

ik UNIVERSITYsf VIRGINIA

42



Teaching models to express their uncertainty in words

Stephanie Lin
University of Oxford

Jacob Hilton
OpenAl

Owain Evans
University of Oxford
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sylin07@gmail.com

jhilton@openai.com

owaine@gmail.com
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Overview

Significance

e GPT-3 model can learn to express uncertainty about its own answers in
natural language

Results

e Remains moderately well-calibrated under a distribution shift
e |[s sensitive to uncertainty in its own answers, rather than using human
examples

Potential Explanation

e GPT-3 uses latent (pre-existing) representations to generalize calibration

it UNIVERSITYo VIRGINIA 44
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Why do models need to be truthful?

e Curbing hallucinations

e Previous research on using logits to represent uncertainty

o Limited by calculation of uncertainty over tokens, not semantic meaning

e Self-awareness of misinformation or doubt in a model leads to better
communication with users

il UNIVERSITY/VIRGINIA
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Zero-Shot Setup

I—b

Model: 175B parameter GPT-3 via OpenAl API

Metrics:

o Mean squared error (MSE) ]Eq[(pM — ]I(CLM))2]

o Mean absolute deviation calibration error (MAD) K Z |ace(bi) — conf(b;))]

Experiment: Test calibration of language models for uncertainty over their
own answers to questions with 3 different kinds of probability

ii UNIVERSITYs VIRGINIA
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Dataset: CalibratedMath

Evaluation:

Training: Add-Subtract Multi-Answer

Q: What is 952 - 55?
A: 897
Confidence: 61%

Q: Name any number
smaller than 621

A: 518
Confidence:

il UNIVERSITY/VIRGINIA

Evaluation:
Multiply-Divide

Q: Whatis 1111 X 1111
A: 123456789
Confidence:

47



Three Kinds of Probability

Kind of Definition Example Sup.erv35ed Desnrab'le
probability objective properties
S Expzﬁslsasnﬁzrt:mty Q: What is 952 - 557 b l\tdatch. " Handle multiplcf

(nun::;e: /l zv:ord) (‘61%’ org‘mfdium A: 897 < Answer from GPT3 (greedy) acl:suzlc;ntl)il;c;h E?(g::stsa:(f:t/:z,
confidence’) Confidence: 61% / Medium « Confidence from GPT3 sibtaska e —
Answer logit NO:’)T;’I:II:;Z?:OL(ZgIE)STOb Q: What is 952 - 557 None Requires no
(zero-shot) answer A: 897 <« Normalized logprob for GPT3’s answer training
Logprob of ‘True’ Q: What is 952 - 55? Cross-entropy
Idiecogi | O ABOT o 1 sy kosogin, | Tl
£x _— True/false: True <« I.ogprob for “True” token §

Teaching models to express their uncertainty in words: https://arxiv.org/pdf/2205.14334.pdf

i UNIVERSITYsf VIRGINIA
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Implementing Verbalized Probability and Baselines

verbalized probability
supervised finetuning
indirect logit
answer logit zero-shot learning
constant baseline constant: best-scoring value in training set

i UNIVERSITYs VIRGINIA



Supervised Finetuning

verbalized probability

indirect logit

Features Label
. GPT_3 - A R
g 3
Question |, O 1100 * pr | | medium
. GPT-3
Question Answer True

i UNIVERSITYs VIRGINIA
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But, what if GPT-3 isn’t good at math?

10 X 10 = 100 @ GPT-3 finds two-digit multiplications hard — internal bias

pr = Eger[l(anr)]

For a | | s
align confidence score pr
task T to accuracy of the use pr as
sample 100 data Retrieve answer answer label
points using
greedy-based
decoding

=N
WD

i UNIVERSITYs VIRGINIA 51



MSE on evaluation sets

Results

40 B  Multi-answer
5 . Multiply-divide
o 30
Q
©
=2 20
©
(&)
%
] ) I l

0

Verbalized numbers Answer logit Indirect logit Constant baseline
(finetune) (zero-shot) (finetune)

=N
!'IlTl_Ti UNIVERSI | i qf VIRGINIA Teaching models to express their uncertainty in words: https://arxiv.org/pdf/2205.14334.pdf 52




Training: Add-subtract Eval: Multi-answer Eval: Multiply-divide

Results >10 &= 10 == 1.0
3 o .
3 [ ] ° L]
Verbalized 8 e e
(finetune) ® 0.5 ‘/ o1 0.5 0.’, . 0.5
g &> ° . G e %
3 "‘o X ..’/, ‘..
= 0.0 #° 00 - - 0.0 EEE
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
1.0 - 1.0 e 1.0 -
(&) 3 e 7
E ‘,’/ ° y £
Answer logit 3 ol -
nswer logit 8 e oL -,
(ZerO-ShOt) E 0.5 /,’, .o 0.5 ° .. / 0.5 ,///c
2 27 ) o'.. L ' 2 25
200 e 0.0 .~ 0.0 .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
1.0 e 10 . - s . 10
O ° °
o ° e ’
Indirect logit 3 ]
ndirect logit 8 - o® T
(finetune) © 0.5 i 05 , 0.5 .
[} , ‘. L ',’
3 . e ° i °
200 & 00 = 00 ¥
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Model probability Model probability Model probability

.!T‘ﬁl‘_i UNIVERSI | i Qf VIRGINIA Teaching models to express their uncertainty in words: https://arxiv.org/pdf/2205.14334.pdf .,




Stochastic Few Shot

Purpose: how does verbalized probability generalize?

®

Add to
Sample k context
examples from the
training set

=N
WD
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Expected
value
decoding
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Model accuracy

Model accuracy
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How does verbalized probability work?

e \erbalized probability generalizes better, does not rely on logits
e \erbalized probability cannot be fully explained by heuristics

e Model expresses its own (pre-existing) uncertainty about answers and
exhibits honesty

o Latent representations

il UNIVERSITY/VIRGINIA
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Limitations & Future Work

Jiang et al (see 1st paper)’s calibration is more expensive

Paper focused only on a mathematical dataset—benefit from exploring other
subject areas

Expand to see if results are similar with other question formats
Test with other models—not just GPT-3

Explore other forms of learning, such as reinforcement learning (so that
fine-tuning does not have to be supervised, and can use less resources)
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SEMANTIC UNCERTAINTY: LINGUISTIC INVARIANCES
FOR UNCERTAINTY ESTIMATION IN NATURAL
[_LANGUAGE GENERATION

Lorenz Kuhn, Yarin Gal, Sebastian Farquhar
OATML Group, Department of Computer Science, University of Oxford
lorenz.kuhn@cs.ox.ac.uk
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Overview

Issue

Because of semantic equivalence, measuring uncertainty in natural language
is challenging

Solution

I—b

Developed an unsupervised single model method that calculates semantic

entropy
Semantic entropy is more predictive of model accuracy for question

answering

it UNIVERSITYo VIRGINIA

59



Formalizing Semantic Equivalence

Vs,s" € c: E(s,s)

For the space of semantic equivalence classes
C the sequences in the set ceC all share a
meaning under the semantic equivalence
relation E(-, *)

ik UNIVERSITYsf VIRGINIA
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Paris # Paris Is the
capital of France
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Datasets
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CoQA

Once upon a time, in a barn near a farm house, there lived a little white
kitten named Cotton. Cotton lived high up in a nice warm place above the barn
where all of the farmer's horses slept. But Cotton wasn't alone in her little
home above the barn, oh no. She shared her hay bed with her mommy and 5 other
sisters. All of her sisters were cute and fluffy, like Cotton. But she was the
only white one in the bunch. The rest of her sisters were all orange with
beautiful white tiger stripes like Cotton's mommy. Being different made Cotton
quite sad. She often wished she looked like the rest of her family. So one day,
when Cotton found a can of the old farmer's orange paint, she used it to paint
herself like them. When her mommy and sisters found her they started laughing.

Q: What color was Cotton?

A: white || a little white kitten named Cotton

il UNIVERSITY/VIRGINIA
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TriviaQA

What was the Elephant
Man's real name?

Joseph Merrick

i UNIVERSITYs VIRGINIA
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Unsupervised Algorithm
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Generating a set of answers from
the model

e Sample M sequences {sV),...,sM}
according to the distribution p(s|x)

e Performed using a single model

il UNIVERSITY/VIRGINIA

Up Next

Clustering

Computing entropy
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Clustering by semantic equivalence

A sequence s means the same thing as a second sequence s’ if and only if they entail
each other.

context | s special context | s’ entailment
token *
equivalence
context | s’ special context | s entailment ‘T
token
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CoQA

95.5% accuracy

il UNIVERSITY/VIRGINIA

TriviaQA

92.7% accuracy
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Computing the semantic entropy

clusters of generated sequences that mean the same thing

'
— Zp(s [ )= Z HP(Si | 8<i, )

SEe secec 1

Determine the likelihood of each meaning rather than each
sequence

/

c|
SE(z) ~ —|C|™" ) logp(C; | z)

i=1

Compute the semantic entropy

=)
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Semantic Entropy addresses...

uncertainty
estimation

meaning
space

France’s capital is Paris.
Patris is the capital of France

il UNIVERSITYo VIRGINIA

semantic invariance of natural
language

unequal token importance
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Shortcomings of Semantic Entropy

Semantic entropy pays too much
attention to non-keyword
likelihoods

Potentially resolved by
supervised language models

il UNIVERSITY/VIRGINIA
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semantic
entropy

quantifies

>

uncertainty

a problem
of

i UNIVERSITYs VIRGINIA

trusting in a
model’s
generation
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Other Entropy Metrics
Normalised entropy: divides the joint log-probability of each sequence by the
length of the sequence

(Predictive) entropy: conditional entropy of the output random variable Y with
realization \ given X PE@=HY |=z)= —/p(y | 2)Inp(y | x)dy

Lexical similarity: average similarity of the answer set A: & Z'ﬁ'l Z —, sim (s;, 85)

p(True): “ask” the model if its answer is correct

ii UNIVERSITYs VIRGINIA
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GPT-Like OPT Models Evaluated

2.7B

6.7B

30B
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Area Under the Receiver Operator (AUROC)

e Equivalent to the probability a randomly chosen correct answer has a higher
uncertainty score than a randomly chosen incorrect answer

e Higher the score, the better

e AUROC doesn’t require probability mass — good metric for natural language
generation

il UNIVERSITY/VIRGINIA
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(b) TriviaQA

Semantic entropy improves over baselines in predicting
whether a model’s answer to a question is correct.

Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation: https://arxiv.org/pdf/2302.09664.pdf
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Semantic entropy makes
better use of additional
samples because it
handles duplication
better

Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in
Natural Language Generation: https://arxiv.org/pdf/2302.09664.pdf
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Temperature

used to control randomness and creativity of a language
model
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The best
uncertainty comes
from balancing
diversity and
accuracy

it UNIVERSITYs VIRGINIA
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Limitations & Future Work

e |Language models are capable of deception
o The paper’s method does not protect against this

o Has potential to be added on to, to mitigate deception

e Pave the way towards progress in other NLG settings

o  Summarization

o Reasoning
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So, what did we learn about model
calibration?
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Confronting Semantic Equivalence

Jiang et al. (see 1st paper) and Schwartz et al.(see 2nd paper) attempt to take into
account semantic equivalence

e Jiang et al's Combo method: round-trip translational model produces
synonyms
e Schwartz et al: use the input x to re-rank the outputs y

Lin et al. (see 3rd paper) does not even account for semantic equivalence

Kuhn et al. (see 4th paper) link semantic equivalence to calibration

semantic i
-—> . —» entropy —» uncertainty
equivalence
=N
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Well-Calibrated
models

If the answer is
correct, the model
should be highly
confident in its

answer Challenge: Form vs.

Meaning

Models can fail to
recognize when
sequences of tokens
mean the same thing,
affecting calibration
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Detecting meaning
instead of form

Entropy and
unsupervised learning
methods can detect
semantically equivalent
sequences. Entropy can
be a metric for the
model’s confidence

Moving towards better
calibration

Calibration methods such
as input-augmentation and
PMI . have proven
effective. Calibration as
natural language can make
this field of study more
accessible to non-technical
users
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Thank you!

Any Questions?
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