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Agenda

• Self-Instruct: Aligning Language Models with Self-Generated Instructions (Wang et al.)

• Self-Alignment with Instruction Backtranslation (Li et al.)

• LIMA: Less Is More for Alignment (Zhou et al.)

• AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback 
(Dubois et al.)





Motivation

LLMs depend on

• 1. large pretrained LM
• 2. human-written instruction

• Costly
• Limited diversity
• Lack creativity (for novel task) and expertise (for 

writing solutions)

“Instruction-tuned” LLMs have great ability 
to generalize zero-shot to new tasks 
• Increase instruction size and diversity, increase 

model generalizability
• à Problem: limited human-written instruction data 

(quantity, diversity, creativity)

How to improve model quality and 
coverage?



Solution - SELF-INSTRUCT
• Semi-automated 

process for instruction-
tuning a pretrained LM 
using instructions 
generated by the 
model itself

• Only need 
minimal human-
labeled data   

        Good!

• Task agnostic

• Iterative bootstrapping 
algorithm/ Pipeline



Definition

• Instruction data set {𝐼𝑡 }, each of 
which defines a task 𝑡 in natural 
language. 

• Task 𝑡 has 𝑛𝑡 ≥ 1 input-output 
instances {(𝑋𝑡,𝑖, 𝑌𝑡,𝑖)}𝑛t 𝑖=1

• 𝑀(𝐼𝑡 , 𝑋𝑡,𝑖) = 𝑌𝑡,𝑖, for 𝑖 ∈ {1,…, 𝑛𝑡 }

• Diversity in data format (i.e.. 
X/input is empty)



Pipeline – Automatic Instruction Data 
Generation
1. Generate new instruction

1. Start from small seed (175 human-written tasks: 1 instruction and 1 
instance each)

2. 8 task in-context examples (6 human-written, 2 model-generated)

2. Classification vs non-classification task

1. Few-shot prompt (12 classification and 19 non-classification instruction)

3. Generate instances

1. Input-first approach

1. Biased for classification task

2. Output-first approach

4. Filter out low-quality data



Pipeline – Automatic 
Instruction Data Generation

3. Generate instances

1. Input-first approach

1. Biased for classification task

2. Output-first approach

4. Filter out low-quality data

1. new instruction ROUGE-L < 0.7 with existing

2. Specific keyword (ie. Image, picture, graph)

3. Repetition, too long/short



GPT3SELF-INST: finetuning GPT3 on its own 
instruction data

Prompt = instruction + 
instance input

Diverse formats

Supervised training = generate instance output

OpenAI finetuning API 
2 epochs

Default hyperparameters, prompt loss 
weight = 0



SELF-INSTRUCT Generated Data

• Quantity

• Generated 52k instructions, 82k instances

• Quality 

• Sampled 200 instruction with 1 instance each

• Meaningful instruction

• Noise in instance, format reasonably correct





SELF-INSTRUCT Generated Data
• Diversity

• Verb-noun structure (Berkeley Neural Parser)

• 27k/52k 

• Other instruction structures: 

complex clause, questions

• Differ from seed



Baseline

• Off-the-shelf LM (T5-LM, GPT3)

• Instruction-tuned LM (T0, Tk-INSTRUCT)

• Instruction-tuned GPT3 (InstructGPT)

• Further finetuned on PROMPTSOURCE (T0 training) and SUPERNI 

• Dataset used to train T0, Tk-INSTRUCT

• 50K instances covering all the instructions



Results 1:
SELF-INSTRUCT Increase
GPT3 Performance by 33%
• Zero-shot generalization 

on SUPERNI benchmark

• 119 tasks with 100 
instances each



Results 2: Generalize to User-
oriented Novel Instruction/Task
• SUPERNI – research focus and skewed for classification task

• Author create new set of user-oriented application instructions

• Email writing, entertainment, social media etc.

• Diverse style and format

• Short/long, bullet point, table, equation

• 252 instruction with 1 instance each

• 4 level human rating (A, B, C, D)



Results 2: Generalize to User-oriented Novel 
Instruction/Task



Does increasing number of 
training instructions improve 
model performance? 

Does increasing training data 
quality improve model 
performance?



Limitations

Tail 
phenomena

Large model 
dependence

Amplify 
social bias



Conclusion

• SELF-INSTRUCT, a method to improve the instruction-following ability 
of LMs via their own generation of instruction data

• Perform closely with InstructGPT001

• Bring more transparency to what happens “behind the scenes” of 
widely-used instruction-tuned models in industry

• importance of diverse instruction data





Motivation

Costly to scale Needs advanced 
model

Fine-tuning needs lots of human-annotated instructions 



















• Humpback outperforms 
LLaMA65B when both are 0-shot 
on average, but falls short of 
LLaMA65 5-shot on average 
except for humanities

• Open-ended generation 
win-rate comparisons



• Win-rates shown over text-davinci-
003 model 

• Table shows base model and after 
1 iteration of data augmentation

• Used a development set of 250 
examples that were labelled by 
author









Conclusion

Humpback has a high win-rate over other non-distilled models, 
making it leading choice for applications without needing data 
from other models or any reasoning (only trained on raw data)

Although Humpback better bias detection than LLaMA, that does 
not mean it had less biased responses

Using seed data tends to lead to “safer” responses, but did not 
have a “red team” or a group of individuals test their model for 
safety





Motivation

LLMs trained in 2 stages

Learn general purpose representation- 
Unsupervised pretraining from raw text 

Align with end task - Instruction tuning and 
reinforcement learning from human 

feedback (RLHF)

Current alignment methods 
need enormous amounts of 

Specialized data (human annotators)

Compute 



Superficial 
Alignment 
Hypothesis

Can sufficiently tune a pretrained language model 
with a rather small set of examples

Alignment = learning style

a simple process where the model learns the style or format for 
interacting with users, to expose the knowledge and capabilities 

that were already acquired during pretraining

A model’s knowledge and capabilities are learnt 
almost entirely during pretraining, while alignment 
teaches it which subdistribution of formats should 

be used when interacting with users.



Remarkably strong performance can be achieved by 
simply fine-tuning on 1,000 carefully curated training 
examples given a strong pretrained model

• A pretrained 65B-parameter LLaMa model fine-tuned on 1000 
demonstrations

LIMA
 



Collecting 1000 Alignment Data
• 750 top Q&A from community forums

• Stack Exchange
• Diversity control

• 75 STEM exchange/community + 99 other (English, cooking, travel)

• Prompt = title or description

• Quality control

• Sample 200 Q&A in each set -> select highest score Q -> select top A

• Filter

• wikiHow

• online wiki-style publication featuring over 240,000 how-to articles

• Highly moderated -> quality

• Sample 200 articles, at least 1 article in each of 19 categories

• Prompt = title, response = article body

• Pushshift Reddit
• Manually select most upvoted post 

• r/AskReddit (70 self-contained prompts = test set)

•  r/WritingPrompts (150 prompt + response)

• 250 author-written prompts and 
response

• Uniform tone: acknowledge question + 
answer

• 13 toxic/violent prompt + rejecting 
response

• 50 curated from SuperNI

• Additional 230 prompt = test set

• Diverse input/prompts, stylistically 
aligned output/response





LIMA Training

• LLaMa 65B

• Speaker differentiation (user vs model)

• End-of-token 

• Fine tune 15 epochs with AdamW

• B1 = 0.9, B2 = 0.95, and weight decay of 0.1

• initial learning rate = 1e − 5, linearly decaying to 1e − 6

• batch size is set to 32 examples (64 for smaller models)

• Trimmed texts longer than 2048 tokens 

• Residual dropout



Experiment Setup

• Baseline

• Alpaca 65B 

• finetune LLaMa 65B on the 52,000 
examples in the Alpaca training set 

• OpenAI’s DaVinci003

• RLHF

• Google’s Bard, based on PaLM 

• Anthropic’s Claude

• 52B parameter, trained with 
reinforcement learning from AI

• GPT4

• RLHF

• Each model: generate 1 response for each test 
prompt

• Nucleus sampling, repetition penalty, max token 
length = 2048

• human/GPT4 compare LIMA output vs baseline 
output

• Chose better of the 2 responses

• Inter-annotator agreement

• crowd-crowd 82%, crowd-author 81%, and author-
author 78%

• crowd-GPT 78% and author-GPT 79%



Results: LIMA compare with Baseline

• LIMA performs on par with baselines, which were trained on significantly 
more data



Results: LIMA Absolute 
Assessment
• Manually analyze 50 random examples

• No trend in failures

• Out of distribution

• 13 Training samples not related in format

• Similar excellent performance – good 
generalizability

• Safety

• 30 sensitive test prompts

• Respond safely to 80%

• Implicit malicious intent - unsafe



Ablations

• Experiment setup

• Fine-tune LLaMa on different datasets, same hyperparameters

• 5 response per test prompt, GPT3.5 evaluate response quality on 
1-6 Likert scale

• Diversity

• Stack Exchange (heterogenous prompts) vs wikiHow 
(homogenous prompts)

• 2000 training examples each

• Quality 

• Quality/stylistic filter vs unfiltered Stack Exchange 

• Quantity

• No effect



Multi-Turn Dialogue
• Zero-shot

• Only fined-tuned on 
1000 single turn

• Can converse = 
capability learned 
during pretraining

• Further fined-tuned on 
30 multi-turn dialogue

• 10 author-written

• 20 Stack Exchange 
comment chain

• Test: 10 live 
conversations



Q specifying A 
structure
• LIMA cannot consistently respond to 

questions that specify the structures of 
the answer 

• e.g. summarizing an article into bullet 
points or writing an article consisting 
of several key elements

• Add 6 training examples  with 
formatting constraints-> improve



Limitation

• Small test set created by authors

• Significant mental effort – difficult to scale up

• Less robust as commercial models

• 1 bad sample -> weak response



Conclusion
Fine-tuning a strong pretrained 
language model on 1,000 carefully 
curated examples can produce 
remarkable, competitive results on a 
wide range of prompts





Motivation

HUMAN DATA COLLECTION IS 
COSTLY 

LACK OF 
CONSISTENCY/TRUSTWORTHINESS 

OF EVALUATION

LACK OF PUBLICLY AVAILABLE 
EVALUATIONS









Proximal Policy Optimization (PPO) – Reinforcement 
learning algorithms that learns very closely to the current 
state of the model



Learning from 
Pairwise 
Feedback(LPF): 









Alpaca 7B (42k/52k data)

Supervised 
Fine-Tuning 

Split

Pairwise 
Preference 

Split

Unlabeled 
Split

Validation 
Split

10k to 
finetune the 
base model

10k on 
pairwise 
feedback

20k 
unlabeled 
instruction
s
2k for 
developme
nt and 
tuning



















Conclusion

Simulated human feedback can significantly reduce costs of human feedback and can provide 
comparable results

Assumes that the model can near-perfectly predict human feedback

Simulated human feedback has high agreement with human annotators, and share a bias to prefer longer 
outputs

However, simulated feedback tends to have a bias and prefer first outputs (controlled by random ordering 
in paper)

Similar variance among human annotators, and simulated annotators pool used for evaluation and 
training

AlpacaFarm sets up as a pioneering study for more simulated feedback studies to come



Overall Takeaways

• Instruction tuning of LLMs is very important in the training paradigm for 
open-ended generation

• Self-generated instructions significantly improve language model 
alignment accuracy

• Backtranslation shows promise for improving self-alignment processes

• Simplifying alignment methods enhances efficiency without sacrificing 
performance

• Simulation frameworks offer valuable tools for evaluating alignment 
techniques

• Future exploration can lead to more robust and adaptable language 
models



Thanks for Listening!
Questions?


