
February 26, 2024
CS 6501: Natural Language Processing

Kunsh Singh, Yi Zhou

Chat-Style Instruction Tuning

Kunsh Singh, Yi Zhou

Agenda

• Self-Instruct: Aligning Language Models with Self-Generated Instructions (Wang et al.)

• Self-Alignment with Instruction Backtranslation (Li et al.)

• LIMA: Less Is More for Alignment (Zhou et al.)

• AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback
(Dubois et al.)

Motivation

LLMs depend on

• 1. large pretrained LM
• 2. human-written instruction

• Costly
• Limited diversity
• Lack creativity (for novel task) and expertise (for

writing solutions)

“Instruction-tuned” LLMs have great ability
to generalize zero-shot to new tasks
• Increase instruction size and diversity, increase

model generalizability
• à Problem: limited human-written instruction data

(quantity, diversity, creativity)

How to improve model quality and
coverage?

Solution - SELF-INSTRUCT
• Semi-automated

process for instruction-
tuning a pretrained LM
using instructions
generated by the
model itself

• Only need
minimal human-
labeled data

 Good!

• Task agnostic

• Iterative bootstrapping
algorithm/ Pipeline

Definition

• Instruction data set {𝐼𝑡 }, each of
which defines a task 𝑡 in natural
language.

• Task 𝑡 has 𝑛𝑡 ≥ 1 input-output
instances {(𝑋𝑡,𝑖, 𝑌𝑡,𝑖)}𝑛t 𝑖=1

• 𝑀(𝐼𝑡 , 𝑋𝑡,𝑖) = 𝑌𝑡,𝑖, for 𝑖 ∈ {1,…, 𝑛𝑡 }

• Diversity in data format (i.e..
X/input is empty)

Pipeline – Automatic Instruction Data
Generation
1. Generate new instruction

1. Start from small seed (175 human-written tasks: 1 instruction and 1
instance each)

2. 8 task in-context examples (6 human-written, 2 model-generated)

2. Classification vs non-classification task

1. Few-shot prompt (12 classification and 19 non-classification instruction)

3. Generate instances

1. Input-first approach

1. Biased for classification task

2. Output-first approach

4. Filter out low-quality data

Pipeline – Automatic
Instruction Data Generation

3. Generate instances

1. Input-first approach

1. Biased for classification task

2. Output-first approach

4. Filter out low-quality data

1. new instruction ROUGE-L < 0.7 with existing

2. Specific keyword (ie. Image, picture, graph)

3. Repetition, too long/short

GPT3SELF-INST: finetuning GPT3 on its own
instruction data

Prompt = instruction +
instance input

Diverse formats

Supervised training = generate instance output

OpenAI finetuning API
2 epochs

Default hyperparameters, prompt loss
weight = 0

SELF-INSTRUCT Generated Data

• Quantity

• Generated 52k instructions, 82k instances

• Quality

• Sampled 200 instruction with 1 instance each

• Meaningful instruction

• Noise in instance, format reasonably correct

SELF-INSTRUCT Generated Data
• Diversity

• Verb-noun structure (Berkeley Neural Parser)

• 27k/52k

• Other instruction structures:

complex clause, questions

• Differ from seed

Baseline

• Off-the-shelf LM (T5-LM, GPT3)

• Instruction-tuned LM (T0, Tk-INSTRUCT)

• Instruction-tuned GPT3 (InstructGPT)

• Further finetuned on PROMPTSOURCE (T0 training) and SUPERNI

• Dataset used to train T0, Tk-INSTRUCT

• 50K instances covering all the instructions

Results 1:
SELF-INSTRUCT Increase
GPT3 Performance by 33%
• Zero-shot generalization

on SUPERNI benchmark

• 119 tasks with 100
instances each

Results 2: Generalize to User-
oriented Novel Instruction/Task
• SUPERNI – research focus and skewed for classification task

• Author create new set of user-oriented application instructions

• Email writing, entertainment, social media etc.

• Diverse style and format

• Short/long, bullet point, table, equation

• 252 instruction with 1 instance each

• 4 level human rating (A, B, C, D)

Results 2: Generalize to User-oriented Novel
Instruction/Task

Does increasing number of
training instructions improve
model performance?

Does increasing training data
quality improve model
performance?

Limitations

Tail
phenomena

Large model
dependence

Amplify
social bias

Conclusion

• SELF-INSTRUCT, a method to improve the instruction-following ability
of LMs via their own generation of instruction data

• Perform closely with InstructGPT001

• Bring more transparency to what happens “behind the scenes” of
widely-used instruction-tuned models in industry

• importance of diverse instruction data

Motivation

Costly to scale Needs advanced
model

Fine-tuning needs lots of human-annotated instructions

• Humpback outperforms
LLaMA65B when both are 0-shot
on average, but falls short of
LLaMA65 5-shot on average
except for humanities

• Open-ended generation
win-rate comparisons

• Win-rates shown over text-davinci-
003 model

• Table shows base model and after
1 iteration of data augmentation

• Used a development set of 250
examples that were labelled by
author

Conclusion

Humpback has a high win-rate over other non-distilled models,
making it leading choice for applications without needing data
from other models or any reasoning (only trained on raw data)

Although Humpback better bias detection than LLaMA, that does
not mean it had less biased responses

Using seed data tends to lead to “safer” responses, but did not
have a “red team” or a group of individuals test their model for
safety

Motivation

LLMs trained in 2 stages

Learn general purpose representation-
Unsupervised pretraining from raw text

Align with end task - Instruction tuning and
reinforcement learning from human

feedback (RLHF)

Current alignment methods
need enormous amounts of

Specialized data (human annotators)

Compute

Superficial
Alignment
Hypothesis

Can sufficiently tune a pretrained language model
with a rather small set of examples

Alignment = learning style

a simple process where the model learns the style or format for
interacting with users, to expose the knowledge and capabilities

that were already acquired during pretraining

A model’s knowledge and capabilities are learnt
almost entirely during pretraining, while alignment
teaches it which subdistribution of formats should

be used when interacting with users.

Remarkably strong performance can be achieved by
simply fine-tuning on 1,000 carefully curated training
examples given a strong pretrained model

• A pretrained 65B-parameter LLaMa model fine-tuned on 1000
demonstrations

LIMA

Collecting 1000 Alignment Data
• 750 top Q&A from community forums

• Stack Exchange
• Diversity control

• 75 STEM exchange/community + 99 other (English, cooking, travel)

• Prompt = title or description

• Quality control

• Sample 200 Q&A in each set -> select highest score Q -> select top A

• Filter

• wikiHow

• online wiki-style publication featuring over 240,000 how-to articles

• Highly moderated -> quality

• Sample 200 articles, at least 1 article in each of 19 categories

• Prompt = title, response = article body

• Pushshift Reddit
• Manually select most upvoted post

• r/AskReddit (70 self-contained prompts = test set)

• r/WritingPrompts (150 prompt + response)

• 250 author-written prompts and
response

• Uniform tone: acknowledge question +
answer

• 13 toxic/violent prompt + rejecting
response

• 50 curated from SuperNI

• Additional 230 prompt = test set

• Diverse input/prompts, stylistically
aligned output/response

LIMA Training

• LLaMa 65B

• Speaker differentiation (user vs model)

• End-of-token

• Fine tune 15 epochs with AdamW

• B1 = 0.9, B2 = 0.95, and weight decay of 0.1

• initial learning rate = 1e − 5, linearly decaying to 1e − 6

• batch size is set to 32 examples (64 for smaller models)

• Trimmed texts longer than 2048 tokens

• Residual dropout

Experiment Setup

• Baseline

• Alpaca 65B

• finetune LLaMa 65B on the 52,000
examples in the Alpaca training set

• OpenAI’s DaVinci003

• RLHF

• Google’s Bard, based on PaLM

• Anthropic’s Claude

• 52B parameter, trained with
reinforcement learning from AI

• GPT4

• RLHF

• Each model: generate 1 response for each test
prompt

• Nucleus sampling, repetition penalty, max token
length = 2048

• human/GPT4 compare LIMA output vs baseline
output

• Chose better of the 2 responses

• Inter-annotator agreement

• crowd-crowd 82%, crowd-author 81%, and author-
author 78%

• crowd-GPT 78% and author-GPT 79%

Results: LIMA compare with Baseline

• LIMA performs on par with baselines, which were trained on significantly
more data

Results: LIMA Absolute
Assessment
• Manually analyze 50 random examples

• No trend in failures

• Out of distribution

• 13 Training samples not related in format

• Similar excellent performance – good
generalizability

• Safety

• 30 sensitive test prompts

• Respond safely to 80%

• Implicit malicious intent - unsafe

Ablations

• Experiment setup

• Fine-tune LLaMa on different datasets, same hyperparameters

• 5 response per test prompt, GPT3.5 evaluate response quality on
1-6 Likert scale

• Diversity

• Stack Exchange (heterogenous prompts) vs wikiHow
(homogenous prompts)

• 2000 training examples each

• Quality

• Quality/stylistic filter vs unfiltered Stack Exchange

• Quantity

• No effect

Multi-Turn Dialogue
• Zero-shot

• Only fined-tuned on
1000 single turn

• Can converse =
capability learned
during pretraining

• Further fined-tuned on
30 multi-turn dialogue

• 10 author-written

• 20 Stack Exchange
comment chain

• Test: 10 live
conversations

Q specifying A
structure
• LIMA cannot consistently respond to

questions that specify the structures of
the answer

• e.g. summarizing an article into bullet
points or writing an article consisting
of several key elements

• Add 6 training examples with
formatting constraints-> improve

Limitation

• Small test set created by authors

• Significant mental effort – difficult to scale up

• Less robust as commercial models

• 1 bad sample -> weak response

Conclusion
Fine-tuning a strong pretrained
language model on 1,000 carefully
curated examples can produce
remarkable, competitive results on a
wide range of prompts

Motivation

HUMAN DATA COLLECTION IS
COSTLY

LACK OF
CONSISTENCY/TRUSTWORTHINESS

OF EVALUATION

LACK OF PUBLICLY AVAILABLE
EVALUATIONS

Proximal Policy Optimization (PPO) – Reinforcement
learning algorithms that learns very closely to the current
state of the model

Learning from
Pairwise
Feedback(LPF):

Alpaca 7B (42k/52k data)

Supervised
Fine-Tuning

Split

Pairwise
Preference

Split

Unlabeled
Split

Validation
Split

10k to
finetune the
base model

10k on
pairwise
feedback

20k
unlabeled
instruction
s
2k for
developme
nt and
tuning

Conclusion

Simulated human feedback can significantly reduce costs of human feedback and can provide
comparable results

Assumes that the model can near-perfectly predict human feedback

Simulated human feedback has high agreement with human annotators, and share a bias to prefer longer
outputs

However, simulated feedback tends to have a bias and prefer first outputs (controlled by random ordering
in paper)

Similar variance among human annotators, and simulated annotators pool used for evaluation and
training

AlpacaFarm sets up as a pioneering study for more simulated feedback studies to come

Overall Takeaways

• Instruction tuning of LLMs is very important in the training paradigm for
open-ended generation

• Self-generated instructions significantly improve language model
alignment accuracy

• Backtranslation shows promise for improving self-alignment processes

• Simplifying alignment methods enhances efficiency without sacrificing
performance

• Simulation frameworks offer valuable tools for evaluating alignment
techniques

• Future exploration can lead to more robust and adaptable language
models

Thanks for Listening!
Questions?

