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Background

● Code generation/editing is a popular use of LLMs

● Github Copilot has over 1 million paid users

● Every major AI developer has released a language model for code
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InCoder: A Generative Model for Code Infilling and 
Synthesis (ICLR 2023)
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Background

● Many LLMs generate responses left-to-right

● This approach is less applicable to code development
○ Mismatched tasks: debugging, commenting, refactoring

● Current strategies
○ Encoder-only masked LMs (e.g. BERT)

○ Encoder-decoder models (BART, T5)

○ Decoder-only (GPT, InCoder)
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Objectives

● Train an LLM that can:
○ Synthesize code from scratch

○ Edit the user’s code

○ Infill blocks of code with context on either side
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InCoder Overview

● Causal Masking

● Infilling, docstring generation, code generation
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Causal Masking

9

InCoder: A Generative Model for Code Infilling and Synthesis

● Causal modeling:

○ Only conditions on context to the left of the generated tokens

○ Good for generating large amounts of tokens autoregressively

● Masked modeling:

○ Condition on both left and right-side context

○ Generally only synthesize up to 15% of a document

● InCoder adopts both to combine their strengths



Causal Masking
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Causal Masking
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“Sentinel Tokens”

● InCoder will mask sequences 
of code by marking them with a 
Sentinel Token and moving 
them to the end.

● It marks masked sequences 
with <Mask> and marks the 
end-of-sequence insertions 
with <EOM>



Causal-Masked Infilling
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● To leverage causal masking while also using right-side context during 
inference, InCoder will temporarily fill in lines by inserting sentinel 
tokens

● InCoder will go back after a round of generation and populate the 
previously masked regions

● Useful for applications like docstrings, where both the function 
signature (left-side context) and function implementation (right-side 
context) are necessary



Maximum Likelihood Estimation
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● To train, InCoder generates tokens with the objective of maximizing the 
log-probability of the masked document:



Training Data
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● GitHub and GitLab open-source repositories

● Stack Overflow questions, answers, and comments

● Dataset is focused on Python code



Training Data
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● 159 GB Dataset

○ 52 GB in Python

○ 57 GB from 

Stack Overflow

● Chart determined by 

file extension



InCoder Models

● 1.3B and 6.7B 

Transformers

● 6.7B used for 

most evaluation 

purposes
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Training

● Trained on 248 V100 GPUs for 24 days

● One epoch on the training data, one pass over every document

● Implemented in PyTorch, uses its Adam optimizer

● GPU batch size of 8 and a maximum token sequence length of 2048
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Training
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Inference
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1. Left-to-right single: completely masks right context

2. Left-to-right reranking: masks the right context during generation, but 

not during selection

3. Causal-masked infilling

Inference done with nucleus sampling



Evaluation: Infilling Lines of Code
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● Assessed on the HumanEval dataset
○ Includes comment descriptions of functions paired with 

canonical implementations
○ Includes sample function input-output pairs

● Evaluation metrics
○ Pass rate: the rate at which the function’s output matches the 

given input 
○ Exact match: the percentage of lines identical to the canonical 

solution



Evaluation: Infilling Lines of Code
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Evaluation: Infilling Lines of Code
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Evaluation: Infilling Lines of Code

● Compared to OpenAI’s code-davinci-002 proprietary API (August 2021)
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Evaluation: Docstring Generation
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● CodeXGLUE code-to-text docstring generation task
○ Uses the CodeSearchNet database, consisting of docstrings 

paired with corresponding code from public GitHub repositories
● Evaluation metric

○ BLEU score: how similar the LLM-generated docstring is to a 
set of high-quality references
■ Higher is better

● Compared against LLMs finetuned for docstring generation



Evaluation: Docstring Generation
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Evaluation: Return Type Prediction
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● Using CodeXGLUE again, this time isolating the return types of 
each function

● Second experiment done against TypeWriter, a supervised model 
specialized to determine input and return types for Python functions
○ Results evaluated using the Open-Source Software (OSS) 

dataset 



Evaluation: Return Type Prediction
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Evaluation: Return Type Prediction
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Conclusion
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● Training a model to infill does not harm its ability to generate code 

left-to-right

● Causal masking is a useful tool for zero-shot performance on 

infilling and editing code

● Code LLMs that edit and annotate well can iteratively generate 

better code



Potential Improvements and Critiques
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● InCoder’s results are fairly weak
○ Did not compare well to SOTA language models for code

○ Could train for multiple passes over the data

○ Can increase dataset size and time spent training, as well as hardware

● Needs better benchmarking
○ Model was frequently compared to older versions of LLMs



Related Work

● XL-Editor (2019)
○ Trains a language model to infill and edit natural language

○ https://arxiv.org/abs/1910.10479 

● CM3 (2022)
○ Uses causal masking for left-to-right generation, but with bidirectional context

○ Strong results in zero-shot summarization and entity disambiguation

○ https://arxiv.org/abs/2201.07520 
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Code Llama: Open Foundation Models for Code
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https://arxiv.org/pdf/2308.12950.pdf
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Introduction to Code Llama

● Collection of models built upon Llama 2, specifically trained to solve 

programming problems

● Key features:
○ Generating code from brief descriptions

○ Filling gaps in existing code

○ Handling large inputs

● Foundational, Python, and Instruct variants
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Foundation of Code Llama: From Llama 2

● Code Llama fine-tuned from Llama 2

● Building on Llama 2 ensures understanding of natural and technical language

● Initializing the model with Llama 2 outperforms the same architecture trained 

on code only for a given budget
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Infilling

● Improves code completion, type inference, and doc generation

● Employes causal masking, where parts of input are reordered and predicted 

autoregressively

● Training documents split into a prefix, a middle part and a suffix

● Formats include prefix-suffix-middle (PSM) and suffix-prefix-middle (SPM)
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Long Context Fine-Tuning

● Sequence handling improved to 16,384 tokens from the initial 4,096

● Processing long sequences limited to a fine-tuning stage

● Modifies the rotation frequencies of rotary position embeddings (RoPE)

● Elevated base period from 10,000 to 1M allowing for larger sequences and 

ensuring model stability up to 100,000 tokens
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Code Llama - Foundation Models

● Designed for IDEs to auto-complete and generate code

● Four size variants: 7B, 13B, 34B, and 70B parameters

● Infilling incorporated in 7B, 13B, and 70B models, with 34B focussed on code 

generation

● Trained on 500B tokens from a code-heavy dataset

● Long Context Fine-Tuning across all sizes
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Code Llama - Python

● Fine-tuned for Python to study the performance of models tailored to a single 

language

● Variants include 7B, 13B, 34B, and 70B parameters

● Trained on 500B tokens from the Code Llama dataset, and further specialized 

on 100B tokens from a Python-heavy dataset 

● Optimized without infilling for the 7B to 34B models
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Code Llama - Instruct

● Designed for showing programming instructions via natural language, 

providing clear explanations for developers

● Available in 7B, 13B, and 34B sizes

● Models are based on Code Llama and fine-tuned with an additional about 5B 

tokens to better follow human instructions
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Training Data and Strategy

● Trained on a near-deduplicated dataset 
of publicly available code

● 8% of samples data from natural 
language datasets related to code

● Adding natural language dataset 
improves the performance on Mostly 
Basic Programming Problems (MBPP)
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Instruction Fine Tuning

● Proprietary Dataset: Uses rich instruction data from Llama 2, enhancing model safety 

and instruction-following

● Self-Instruct Dataset: 
○ Generated from 62,000 interview-style questions using Llama 2 70B

○ Deduplicated to 52,000 unique questions for variety

○ Code Llama 7B used for generating unit tests and ten Python solutions per question

○ First passing solution of each question included, resulting in ~14,000 problem-solution pairs

● Rehearsal: Training includes code dataset (6%) and natural language dataset (2%)
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HumanEval and MBPP Benchmark Results

● Widely used description-to-code 

generation benchmarks

● Computed with temperature 0.8

● Zero-shot on HumanEval, 3-shot 

on MBPP 
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Performance on Multi-Language Benchmarks

● Pass@1 scores

● Computed in zero-shot
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Infilling Training Evaluation

Multilingual HumanEval 

single line infilling
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Trained with and 

without infilling and 

temperature of 0.1

Code Llama: Open Foundation Models for Code



Long Context Fine Tuning Evaluations
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Single Line Completion Performance

● Exact Match vs Bilingual Evaluation Understudy

● With and without LCFT
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 Impact of Self-Instruct Data
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Code Llama Performance Across Different Temperatures
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Conclusion

● Achieved top performance in single-line code infilling

● Significant performance gains with larger models

● Strong ability in managing large code contexts
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Limitations

● Limited context performance

● Unclear decision when choosing which model to use

● Performance on a variety of coding tasks

51



Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

52



https://arxiv.org/pdf/2304.05128.pdf
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Background

● Language models for code

● Autoregressive nature of LLMs does not mesh with how humans code

● Prompting techniques like chain-of-thought significantly improve programming

● Recent work shows language models have potential for generating feedback 

messages to critique and refine their outputs
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Introduction

● Zero-shot coding is very challenging

● Instead of discarding incorrect code, investigate results, then make changes 

to resolve the implementation error
○ Prior methods train separate model for code repairing

● SELF-DEBUGGING teaches an LLM to debug its program via few shot 

demonstrations; no additional training needed

● Analogous to rubber-duck debugging, debugging without external feedback
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SELF-DEBUGGING Framework

1. Generation step: problem description -> 

candidates

2. Feedback step: message concerning 

correctness of code determined by unit 

tests or by asking the model

3. Explanation step: model processes its 

own prediction, either by explaining it or 

creating an execution trace
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Prompting for Code Generation

● They use few shot prompting for initial code attempt

● They decode multiple samples, using majority voting on execution results to 

select predicted code

● When unit tests are present, they filter out programs that do not pass unit 

tests
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In practice, not all forms of feedback are available

● Simple feedback: sentence indicating code correctness, no explanation step

● Unit test feedback (UT): message containing execution results

● Code Explanation feedback (Expl): rubber duck debugging; the model 

describes the code and compares it to the problem description

● Execution trace feedback (Trace): the model explains the execution steps 

line-by-line

Feedback
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Applications

● Text-to-SQL
○ Spider dataset
○ Unit tests are not available

● Code translation
○ TransCoder dataset (C++-to-Python)
○ Abundance of unit tests

● Text-to-Python
○ MBPP dataset
○ Only a subset of unit tests are 

presented in problem description
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Experiments

They evaluate SELF-DEBUGGING 

against two types of code reranking 

baselines

● Models fine-tuned on Spider 
○ T5-3B, LEVER

● Prompting-based approaches
○ MBR-Exec, Coder-Reviewer
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SELF-DEBUGGING with different feedback formats

62



Ablation Studies
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SELF-DEBUGGING without unit test-execution
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Breakdown of error types
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Conclusion

● Achieves state-of-the-art performance across several code generation 

domains and notably improves sample efficiency

● Shows the importance of iteratively debugging output

● They hypothesize better code explanation ability leads to better debugging 

performance
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Limitations

● Depends on the code explanation ability of the model

● It is possible for the model to think the code is correct when it is not

● It is possible for the code to pass all unit tests and still be incorrect

● Results are not uniform across problem difficulties (more improvement on 

harder problems than easier ones)

● In practice, unit tests are not always present, and SELF-DEBUGGING brings 

minimal improvement when unit tests are absent
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LEVER: Learning to Verify Language-to-Code Generation 
with Execution (ICML 2023)
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Background

● LLMs produce the correct output more often when more samples are drawn

● By sampling at scale, the effectiveness of training a verifier to rank solutions 

increases
○ Verifiers assess model outputs for accuracy and consistency, providing language models with 

feedback to improve responses

● Verifiers have proved to be useful in helping language models choose the 

correct output to math problems

● Can they be expanded to solving coding problems?
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Objectives

‒ Train a verifier to distinguish and reject incorrect code outputs

‒ Use the verifier to produce more correct code
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LEVER Overview

‒ Learning to Verify language-to-code generation

‒ Three step approach
○ Generation: create code samples from a task and few-shot exemplars

○ Execution: run the generated code

○ Verification: assess the generated code, natural language input, and execution summary and 

output probabilities of each code sample being correct 
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LEVER Process
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Reranking
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● Objective is to rank the code outputs by correctness and suitability to the task
● Reranking probability: Joint probability of generation and passing the 

verification step

PR = reranking probability

PLM(ŷ) =  likelihood of ŷ   
    being generated

Pθ(ŷ) = likelihood of ŷ 
 producing the correct 
 output

x = inputs (task, exemplars)

ŷ = program being assessed

Ɛ(y) = execution results of y



Reranking
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● Once all samples are generated and reranking probabilities are calculated, a final 
reranking score is given to each sample

● Final reranking score: aggregate probability of the other generated programs to have 
the same execution output as the program being assessed

R = final reranking score

S = all generated programs

PR = reranking probability

x = inputs (task, exemplars)

ŷ = program being assessed

Ɛ(y) = execution results of y



Training Data

● Generally for language-to-code datasets, each training data point is a triplet of 

natural language input, canonical code solution, and the code solution’s 

output

● This requires supervision, since you have to annotate the programs for 

correctness / input-output pairs

● LEVER expands this idea by including self-generated candidate programs as 

canonical code solution, if their execution results match the code solution’s 

output
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Training Data
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● Spider (2018): NL to SQL 
queries

● WikiTQ (2015): Wiki Table 
Questions, table question 
answering dataset

● GSM8K (2021): Grade school 
math problems and solutions

● MBPP (2021): Python 
programs and test cases



Evaluation: Models

● LEVER just wants to train the verifier, not its own code generator.

● Researchers used three different code LLMs:
○ Codex (2021): A set of OpenAI code LLMs. Researchers used the code-davinci-002 model.

○ InCoder (2022): The first paper presented today, developed largely by Meta AI.

○ CodeGen (2022): A code LLM developed by Salesforce
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Evaluation: Baselines

● Greedy: pick the most likely token each decoding step

● Maximum Likelihood (ML): of the code samples generated, select the one 

with the highest generation log-probability

● Error Pruning + ML: add a preliminary step to remove code samples with 

execution errors

● Error Pruning + Voting: remove code with execution errors, then majority-vote 

on the remaining samples
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Evaluation

● Metrics
○ Execution accuracy: Percentage of examples that pass all test cases

● Fine-tuned on T5-Base model
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Evaluation: Results
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● Spider dataset

● Small increase from EP + ML 

baseline



Evaluation: Results
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● GSM8K

● Much more notable increase in 

eval accuracy

● The dataset is not a code base!



Evaluation: Results
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Evaluation: Results
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● All baselines included

● Oracle: ideal performance 

obtained by selecting the 

correct program if it appears in 

the sample set



Evaluation: Results
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● Ablation testing on sample size 

at inference time



When Does LEVER Fail?
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Conclusion

● Using a verifier can improve the execution accuracy of code LLMs, and will 

almost never decrease their correctness.

● However, developing a verifier is an extra step in training.

● Verifiers can also impact inference time.
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Related Work

● AlphaCode (2022)
○ Uses majority voting based on execution results of samples

○ https://arxiv.org/abs/2203.07814 

● DIVERSE (2022)
○ Meant to solve math problems with LLMs (GSM8K)

○ Trains a verifier to verify each step of an LLM’s problem-solving output.

○ https://arxiv.org/abs/2206.02336 
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Improvements / Critiques

● More details on the time and computation costs for training and inference with 

verifiers

● Generalize a verifier to work with less context

● More metrics than just the execution accuracy during evaluation

● Justify why the resources and effort put into verification is worth it
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Takeaways

● Language models are effective at generating functional code from task inputs
○ Even more effective when given in-context exemplar code

● Bidirectional context is helpful, even for left-to-right generation

● Long context can increase understanding of large code bases

● LLM code output can be improved by reranking the generated samples using 

a separate verifier

● LLMs can edit code, so they can also iteratively improve their own responses

● There is a need for annotated data for “gold examples” of code generation
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Questions / Comments?
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