
Language Models for Code
March 13, 2024

CS 6501: Natural Language Processing

1

Ganesh Nanduru
Department of Computer Science

University of Virginia
Charlottesville, VA

bae9wk@virginia.edu

Nate Kimball
Department of Computer Science

University of Virginia
Charlottesville, VA

tma5gv@virginia.edu

Alex Fetea
Department of Computer Science

University of Virginia
Charlottesville, VA

pvn5nv@virginia.edu

Background

● Code generation/editing is a popular use of LLMs

● Github Copilot has over 1 million paid users

● Every major AI developer has released a language model for code

2

Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

3

Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

4

InCoder: A Generative Model for Code Infilling and
Synthesis (ICLR 2023)

5

https://arxiv.org/pdf/2204.05999.pdf

https://arxiv.org/pdf/2204.05999.pdf

Background

● Many LLMs generate responses left-to-right

● This approach is less applicable to code development
○ Mismatched tasks: debugging, commenting, refactoring

● Current strategies
○ Encoder-only masked LMs (e.g. BERT)

○ Encoder-decoder models (BART, T5)

○ Decoder-only (GPT, InCoder)

6

InCoder: A Generative Model for Code Infilling and Synthesis

Objectives

● Train an LLM that can:
○ Synthesize code from scratch

○ Edit the user’s code

○ Infill blocks of code with context on either side

7

InCoder: A Generative Model for Code Infilling and Synthesis

InCoder Overview

● Causal Masking

● Infilling, docstring generation, code generation

8

InCoder: A Generative Model for Code Infilling and Synthesis

Causal Masking

9

InCoder: A Generative Model for Code Infilling and Synthesis

● Causal modeling:

○ Only conditions on context to the left of the generated tokens

○ Good for generating large amounts of tokens autoregressively

● Masked modeling:

○ Condition on both left and right-side context

○ Generally only synthesize up to 15% of a document

● InCoder adopts both to combine their strengths

Causal Masking

10

InCoder: A Generative Model for Code Infilling and Synthesis

Causal Masking

11

InCoder: A Generative Model for Code Infilling and Synthesis

“Sentinel Tokens”

● InCoder will mask sequences
of code by marking them with a
Sentinel Token and moving
them to the end.

● It marks masked sequences
with <Mask> and marks the
end-of-sequence insertions
with <EOM>

Causal-Masked Infilling

12

InCoder: A Generative Model for Code Infilling and Synthesis

● To leverage causal masking while also using right-side context during
inference, InCoder will temporarily fill in lines by inserting sentinel
tokens

● InCoder will go back after a round of generation and populate the
previously masked regions

● Useful for applications like docstrings, where both the function
signature (left-side context) and function implementation (right-side
context) are necessary

Maximum Likelihood Estimation

13

InCoder: A Generative Model for Code Infilling and Synthesis

● To train, InCoder generates tokens with the objective of maximizing the
log-probability of the masked document:

Training Data

14

InCoder: A Generative Model for Code Infilling and Synthesis

● GitHub and GitLab open-source repositories

● Stack Overflow questions, answers, and comments

● Dataset is focused on Python code

Training Data

15

InCoder: A Generative Model for Code Infilling and Synthesis

● 159 GB Dataset

○ 52 GB in Python

○ 57 GB from

Stack Overflow

● Chart determined by

file extension

InCoder Models

● 1.3B and 6.7B

Transformers

● 6.7B used for

most evaluation

purposes

16

InCoder: A Generative Model for Code Infilling and Synthesis

Training

● Trained on 248 V100 GPUs for 24 days

● One epoch on the training data, one pass over every document

● Implemented in PyTorch, uses its Adam optimizer

● GPU batch size of 8 and a maximum token sequence length of 2048

17

InCoder: A Generative Model for Code Infilling and Synthesis

Training

18

InCoder: A Generative Model for Code Infilling and Synthesis

Inference

19

InCoder: A Generative Model for Code Infilling and Synthesis

1. Left-to-right single: completely masks right context

2. Left-to-right reranking: masks the right context during generation, but

not during selection

3. Causal-masked infilling

Inference done with nucleus sampling

Evaluation: Infilling Lines of Code

20

InCoder: A Generative Model for Code Infilling and Synthesis

● Assessed on the HumanEval dataset
○ Includes comment descriptions of functions paired with

canonical implementations
○ Includes sample function input-output pairs

● Evaluation metrics
○ Pass rate: the rate at which the function’s output matches the

given input
○ Exact match: the percentage of lines identical to the canonical

solution

Evaluation: Infilling Lines of Code

21

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Infilling Lines of Code

22

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Infilling Lines of Code

● Compared to OpenAI’s code-davinci-002 proprietary API (August 2021)

23

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Docstring Generation

24

InCoder: A Generative Model for Code Infilling and Synthesis

● CodeXGLUE code-to-text docstring generation task
○ Uses the CodeSearchNet database, consisting of docstrings

paired with corresponding code from public GitHub repositories
● Evaluation metric

○ BLEU score: how similar the LLM-generated docstring is to a
set of high-quality references
■ Higher is better

● Compared against LLMs finetuned for docstring generation

Evaluation: Docstring Generation

25

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Return Type Prediction

26

InCoder: A Generative Model for Code Infilling and Synthesis

● Using CodeXGLUE again, this time isolating the return types of
each function

● Second experiment done against TypeWriter, a supervised model
specialized to determine input and return types for Python functions
○ Results evaluated using the Open-Source Software (OSS)

dataset

Evaluation: Return Type Prediction

27

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Return Type Prediction

28

InCoder: A Generative Model for Code Infilling and Synthesis

Conclusion

29

InCoder: A Generative Model for Code Infilling and Synthesis

● Training a model to infill does not harm its ability to generate code

left-to-right

● Causal masking is a useful tool for zero-shot performance on

infilling and editing code

● Code LLMs that edit and annotate well can iteratively generate

better code

Potential Improvements and Critiques

30

InCoder: A Generative Model for Code Infilling and Synthesis

● InCoder’s results are fairly weak
○ Did not compare well to SOTA language models for code

○ Could train for multiple passes over the data

○ Can increase dataset size and time spent training, as well as hardware

● Needs better benchmarking
○ Model was frequently compared to older versions of LLMs

Related Work

● XL-Editor (2019)
○ Trains a language model to infill and edit natural language

○ https://arxiv.org/abs/1910.10479

● CM3 (2022)
○ Uses causal masking for left-to-right generation, but with bidirectional context

○ Strong results in zero-shot summarization and entity disambiguation

○ https://arxiv.org/abs/2201.07520

31

https://arxiv.org/abs/1910.10479
https://arxiv.org/abs/2201.07520

Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

32

Code Llama: Open Foundation Models for Code

33

https://arxiv.org/pdf/2308.12950.pdf

https://arxiv.org/pdf/2308.12950.pdf

Introduction to Code Llama

● Collection of models built upon Llama 2, specifically trained to solve

programming problems

● Key features:
○ Generating code from brief descriptions

○ Filling gaps in existing code

○ Handling large inputs

● Foundational, Python, and Instruct variants

34

Code Llama: Open Foundation Models for Code

Foundation of Code Llama: From Llama 2

● Code Llama fine-tuned from Llama 2

● Building on Llama 2 ensures understanding of natural and technical language

● Initializing the model with Llama 2 outperforms the same architecture trained

on code only for a given budget

35

Code Llama: Open Foundation Models for Code

Infilling

● Improves code completion, type inference, and doc generation

● Employes causal masking, where parts of input are reordered and predicted

autoregressively

● Training documents split into a prefix, a middle part and a suffix

● Formats include prefix-suffix-middle (PSM) and suffix-prefix-middle (SPM)

36

Code Llama: Open Foundation Models for Code

Long Context Fine-Tuning

● Sequence handling improved to 16,384 tokens from the initial 4,096

● Processing long sequences limited to a fine-tuning stage

● Modifies the rotation frequencies of rotary position embeddings (RoPE)

● Elevated base period from 10,000 to 1M allowing for larger sequences and

ensuring model stability up to 100,000 tokens

37

Code Llama: Open Foundation Models for Code

Code Llama - Foundation Models

● Designed for IDEs to auto-complete and generate code

● Four size variants: 7B, 13B, 34B, and 70B parameters

● Infilling incorporated in 7B, 13B, and 70B models, with 34B focussed on code

generation

● Trained on 500B tokens from a code-heavy dataset

● Long Context Fine-Tuning across all sizes

38

Code Llama: Open Foundation Models for Code

Code Llama - Python

● Fine-tuned for Python to study the performance of models tailored to a single

language

● Variants include 7B, 13B, 34B, and 70B parameters

● Trained on 500B tokens from the Code Llama dataset, and further specialized

on 100B tokens from a Python-heavy dataset

● Optimized without infilling for the 7B to 34B models

39

Code Llama: Open Foundation Models for Code

Code Llama - Instruct

● Designed for showing programming instructions via natural language,

providing clear explanations for developers

● Available in 7B, 13B, and 34B sizes

● Models are based on Code Llama and fine-tuned with an additional about 5B

tokens to better follow human instructions

40

Code Llama: Open Foundation Models for Code

Training Data and Strategy

● Trained on a near-deduplicated dataset
of publicly available code

● 8% of samples data from natural
language datasets related to code

● Adding natural language dataset
improves the performance on Mostly
Basic Programming Problems (MBPP)

41

Code Llama: Open Foundation Models for Code

Instruction Fine Tuning

● Proprietary Dataset: Uses rich instruction data from Llama 2, enhancing model safety

and instruction-following

● Self-Instruct Dataset:
○ Generated from 62,000 interview-style questions using Llama 2 70B

○ Deduplicated to 52,000 unique questions for variety

○ Code Llama 7B used for generating unit tests and ten Python solutions per question

○ First passing solution of each question included, resulting in ~14,000 problem-solution pairs

● Rehearsal: Training includes code dataset (6%) and natural language dataset (2%)

42

Code Llama: Open Foundation Models for Code

HumanEval and MBPP Benchmark Results

● Widely used description-to-code

generation benchmarks

● Computed with temperature 0.8

● Zero-shot on HumanEval, 3-shot

on MBPP

43

Code Llama: Open Foundation Models for Code

Performance on Multi-Language Benchmarks

● Pass@1 scores

● Computed in zero-shot

44

Code Llama: Open Foundation Models for Code

Infilling Training Evaluation

Multilingual HumanEval

single line infilling

45

Trained with and

without infilling and

temperature of 0.1

Code Llama: Open Foundation Models for Code

Long Context Fine Tuning Evaluations

46

Code Llama: Open Foundation Models for Code

Single Line Completion Performance

● Exact Match vs Bilingual Evaluation Understudy

● With and without LCFT

47

Code Llama: Open Foundation Models for Code

 Impact of Self-Instruct Data

48

Code Llama: Open Foundation Models for Code

Code Llama Performance Across Different Temperatures

49

Code Llama: Open Foundation Models for Code

Conclusion

● Achieved top performance in single-line code infilling

● Significant performance gains with larger models

● Strong ability in managing large code contexts

50

Code Llama: Open Foundation Models for Code

Limitations

● Limited context performance

● Unclear decision when choosing which model to use

● Performance on a variety of coding tasks

51

Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

52

https://arxiv.org/pdf/2304.05128.pdf

53

https://arxiv.org/pdf/2304.05128.pdf

Background

● Language models for code

● Autoregressive nature of LLMs does not mesh with how humans code

● Prompting techniques like chain-of-thought significantly improve programming

● Recent work shows language models have potential for generating feedback

messages to critique and refine their outputs

54

Introduction

● Zero-shot coding is very challenging

● Instead of discarding incorrect code, investigate results, then make changes

to resolve the implementation error
○ Prior methods train separate model for code repairing

● SELF-DEBUGGING teaches an LLM to debug its program via few shot

demonstrations; no additional training needed

● Analogous to rubber-duck debugging, debugging without external feedback

55

SELF-DEBUGGING Framework

1. Generation step: problem description ->

candidates

2. Feedback step: message concerning

correctness of code determined by unit

tests or by asking the model

3. Explanation step: model processes its

own prediction, either by explaining it or

creating an execution trace

56

Prompting for Code Generation

● They use few shot prompting for initial code attempt

● They decode multiple samples, using majority voting on execution results to

select predicted code

● When unit tests are present, they filter out programs that do not pass unit

tests

57

In practice, not all forms of feedback are available

● Simple feedback: sentence indicating code correctness, no explanation step

● Unit test feedback (UT): message containing execution results

● Code Explanation feedback (Expl): rubber duck debugging; the model

describes the code and compares it to the problem description

● Execution trace feedback (Trace): the model explains the execution steps

line-by-line

Feedback

58

59

Feedback

Applications

● Text-to-SQL
○ Spider dataset
○ Unit tests are not available

● Code translation
○ TransCoder dataset (C++-to-Python)
○ Abundance of unit tests

● Text-to-Python
○ MBPP dataset
○ Only a subset of unit tests are

presented in problem description

60

Experiments

They evaluate SELF-DEBUGGING

against two types of code reranking

baselines

● Models fine-tuned on Spider
○ T5-3B, LEVER

● Prompting-based approaches
○ MBR-Exec, Coder-Reviewer

61

SELF-DEBUGGING with different feedback formats

62

Ablation Studies

63

SELF-DEBUGGING without unit test-execution

64

Breakdown of error types

65

Conclusion

● Achieves state-of-the-art performance across several code generation

domains and notably improves sample efficiency

● Shows the importance of iteratively debugging output

● They hypothesize better code explanation ability leads to better debugging

performance

66

Limitations

● Depends on the code explanation ability of the model

● It is possible for the model to think the code is correct when it is not

● It is possible for the code to pass all unit tests and still be incorrect

● Results are not uniform across problem difficulties (more improvement on

harder problems than easier ones)

● In practice, unit tests are not always present, and SELF-DEBUGGING brings

minimal improvement when unit tests are absent

67

Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

68

LEVER: Learning to Verify Language-to-Code Generation
with Execution (ICML 2023)

69

https://arxiv.org/pdf/2302.08468.pdf

https://arxiv.org/pdf/2302.08468.pdf

Background

● LLMs produce the correct output more often when more samples are drawn

● By sampling at scale, the effectiveness of training a verifier to rank solutions

increases
○ Verifiers assess model outputs for accuracy and consistency, providing language models with

feedback to improve responses

● Verifiers have proved to be useful in helping language models choose the

correct output to math problems

● Can they be expanded to solving coding problems?

70

LEVER: Learning to Verify Language-to-Code Generation with Execution

Objectives

‒ Train a verifier to distinguish and reject incorrect code outputs

‒ Use the verifier to produce more correct code

71

LEVER: Learning to Verify Language-to-Code Generation with Execution

LEVER Overview

‒ Learning to Verify language-to-code generation

‒ Three step approach
○ Generation: create code samples from a task and few-shot exemplars

○ Execution: run the generated code

○ Verification: assess the generated code, natural language input, and execution summary and

output probabilities of each code sample being correct

72

LEVER: Learning to Verify Language-to-Code Generation with Execution

LEVER Process

73

LEVER: Learning to Verify Language-to-Code Generation with Execution

Reranking

74

LEVER: Learning to Verify Language-to-Code Generation with Execution

● Objective is to rank the code outputs by correctness and suitability to the task
● Reranking probability: Joint probability of generation and passing the

verification step

PR = reranking probability

PLM(ŷ) = likelihood of ŷ
 being generated

Pθ(ŷ) = likelihood of ŷ
 producing the correct
 output

x = inputs (task, exemplars)

ŷ = program being assessed

Ɛ(y) = execution results of y

Reranking

75

LEVER: Learning to Verify Language-to-Code Generation with Execution

● Once all samples are generated and reranking probabilities are calculated, a final
reranking score is given to each sample

● Final reranking score: aggregate probability of the other generated programs to have
the same execution output as the program being assessed

R = final reranking score

S = all generated programs

PR = reranking probability

x = inputs (task, exemplars)

ŷ = program being assessed

Ɛ(y) = execution results of y

Training Data

● Generally for language-to-code datasets, each training data point is a triplet of

natural language input, canonical code solution, and the code solution’s

output

● This requires supervision, since you have to annotate the programs for

correctness / input-output pairs

● LEVER expands this idea by including self-generated candidate programs as

canonical code solution, if their execution results match the code solution’s

output

76

LEVER: Learning to Verify Language-to-Code Generation with Execution

Training Data

77

LEVER: Learning to Verify Language-to-Code Generation with Execution

● Spider (2018): NL to SQL
queries

● WikiTQ (2015): Wiki Table
Questions, table question
answering dataset

● GSM8K (2021): Grade school
math problems and solutions

● MBPP (2021): Python
programs and test cases

Evaluation: Models

● LEVER just wants to train the verifier, not its own code generator.

● Researchers used three different code LLMs:
○ Codex (2021): A set of OpenAI code LLMs. Researchers used the code-davinci-002 model.

○ InCoder (2022): The first paper presented today, developed largely by Meta AI.

○ CodeGen (2022): A code LLM developed by Salesforce

78

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Baselines

● Greedy: pick the most likely token each decoding step

● Maximum Likelihood (ML): of the code samples generated, select the one

with the highest generation log-probability

● Error Pruning + ML: add a preliminary step to remove code samples with

execution errors

● Error Pruning + Voting: remove code with execution errors, then majority-vote

on the remaining samples

79

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation

● Metrics
○ Execution accuracy: Percentage of examples that pass all test cases

● Fine-tuned on T5-Base model

80

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

81

LEVER: Learning to Verify Language-to-Code Generation with Execution

● Spider dataset

● Small increase from EP + ML

baseline

Evaluation: Results

82

LEVER: Learning to Verify Language-to-Code Generation with Execution

● GSM8K

● Much more notable increase in

eval accuracy

● The dataset is not a code base!

Evaluation: Results

83

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

84

LEVER: Learning to Verify Language-to-Code Generation with Execution

● All baselines included

● Oracle: ideal performance

obtained by selecting the

correct program if it appears in

the sample set

Evaluation: Results

85

LEVER: Learning to Verify Language-to-Code Generation with Execution

● Ablation testing on sample size

at inference time

When Does LEVER Fail?

86

LEVER: Learning to Verify Language-to-Code Generation with Execution

Conclusion

● Using a verifier can improve the execution accuracy of code LLMs, and will

almost never decrease their correctness.

● However, developing a verifier is an extra step in training.

● Verifiers can also impact inference time.

87

LEVER: Learning to Verify Language-to-Code Generation with Execution

Related Work

● AlphaCode (2022)
○ Uses majority voting based on execution results of samples

○ https://arxiv.org/abs/2203.07814

● DIVERSE (2022)
○ Meant to solve math problems with LLMs (GSM8K)

○ Trains a verifier to verify each step of an LLM’s problem-solving output.

○ https://arxiv.org/abs/2206.02336

88

LEVER: Learning to Verify Language-to-Code Generation with Execution

https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2206.02336

Improvements / Critiques

● More details on the time and computation costs for training and inference with

verifiers

● Generalize a verifier to work with less context

● More metrics than just the execution accuracy during evaluation

● Justify why the resources and effort put into verification is worth it

89

LEVER: Learning to Verify Language-to-Code Generation with Execution

Papers

‒ InCoder: A Generative Model for Code Infilling and Synthesis

‒ Code Llama: Open Foundation Models for Code

‒ Teaching Large Language Models to Self-Debug

‒ LEVER: Learning to Verify Language-to-Code Generation with Execution

90

Takeaways

● Language models are effective at generating functional code from task inputs
○ Even more effective when given in-context exemplar code

● Bidirectional context is helpful, even for left-to-right generation

● Long context can increase understanding of large code bases

● LLM code output can be improved by reranking the generated samples using

a separate verifier

● LLMs can edit code, so they can also iteratively improve their own responses

● There is a need for annotated data for “gold examples” of code generation

91

Questions / Comments?

92

