Language Models for Code

March 13, 2024
CS 6501: Natural Language Processing

Ganesh Nanduru Nate Kimball Alex Fetea
Department of Computer Science Department of Computer Science Department of Computer Science
University of Virginia University of Virginia University of Virginia
Charlottesville, VA Charlottesville, VA Charlottesville, VA
bae9wk@virginia.edu tmaSgv@virginia.edu pvnSnv@yvirginia.edu

2= [INIVERSITY | SCHOOL of ENGINEERING
glie IRGINIA & APPLIED SCIENCE

Background

e Code generation/editing is a popular use of LLMs

e Github Copilot has over 1 million paid users

e Every major Al developer has released a language model for code

Ir

Ghostwriter

[]
G lt H u b Write better code, faster, with

e Replit’s web-based coding AL
Copilot

{n}

code llama

OpenAl Codex replit

U IVERSITY | SCHOOL of ENGINEERING
IRGINIA | &APPLIED SCIENCE

,,,,,,,

Papers

— InCoder: A Generative Model for Code Infilling and Synthesis
— Code Llama: Open Foundation Models for Code
— Teaching Large Language Models to Self-Debug

— LEVER: Learning to Verify Language-to-Code Generation with Execution

2= [INIVERSITY | SCHOOL of ENGINEERING
AL IRGINIA | & APPLIED SCIENCE

Papers

— InCoder: A Generative Model for Code Infilling and Synthesis
— Code Llama: Open Foundation Models for Code
— Teaching Large Language Models to Self-Debug

— LEVER: Learning to Verify Language-to-Code Generation with Execution

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE

InCoder: A Generative Model for Code Infilling and
Synthesis (ICLR 2023)

Daniel Fried*”'® Armen Aghajanyan*o Jessy Lin*
Sida Wang” Eric Wallace* Freda Shi® Ruiqi Zhong®*
Wen-tau Yih® Luke ZettlemoyervT Mike Lewis'

Facebook Al Research” University of WashingtonJr
UC Berkeley‘ TTI-Chicago® Carnegie Mellon University<>
dfried@cs.cmu.edu, {armenag,mikelewis}@fb.com

https://arxiv.orq/pdf/2204.05999.pdf

2= U IVERSITY | SCHOOL of ENGINEERING
”“ IRGINIA | &APPLIED SCIENCE

https://arxiv.org/pdf/2204.05999.pdf

InCoder: A Generative Model for Code Infilling and Synthesis

Background

e Many LLMs generate responses left-to-right

e This approach is less applicable to code development
o Mismatched tasks: debugging, commenting, refactoring
e Current strategies

o Encoder-only masked LMs (e.g. BERT)
o Encoder-decoder models (BART, T5)
o Decoder-only (GPT, InCoder)

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA | & APPLIED SCIENCE

InCoder: A Generative Model for Code Infilling and Synthesis

Obijectives

e T[rain an LLM that can:

o Synthesize code from scratch
o Edit the user’s code

o Infill blocks of code with context on either side

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA | & APPLIED SCIENCE

InCoder: A Generative Model for Code Infilling and Synthesis

InCoder Overview

e (Causal Masking

e Infilling, docstring generation, code generation

2= [INIVERSITY | SCHOOL of ENGINEERING
gl IRGINIA | & APPLIED SCIENCE

InCoder: A Generative Model for Code Infilling and Synthesis

Causal Masking

e Causal modeling:
o Only conditions on context to the left of the generated tokens
o Good for generating large amounts of tokens autoregressively
e Masked modeling:
o Condition on both left and right-side context
o Generally only synthesize up to 15% of a document

e InCoder adopts both to combine their strengths

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA | & APPLIED SCIENCE

Causal Masking

Original Document

InCoder: A Generative Model for Code Infilling and Synthesis

Masked Document

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
<MASK:8> in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts
<MASK:8> word_counts = {}
for line in f:
for word in line.split():
if word <EOM>

2= [INIVERSITY
I “VTRGINIA

SCHOOL ¢f ENGINEERING
& APPLIED SCIENCE

10

Causal Masking

InCoder: A Generative Model for Code Infilling and Synthesis

Masked Document

e InCoder will mask sequences
of code by marking them with a
Sentinel Token and moving
them to the end.

e It marks masked sequences
with <Mask> and marks the
end-of-sequence insertions

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
<MASK:8> in word_counts:

word_counts[word] += 1

lse:

word_counts[word] = 1
return word_couts

<MASK:9> word_counts\= {}

for line in 1\
for word iN line.split():
1T word \cEOM>

with <EOM>
2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA | & APPLIED SCIENCE

“Sentinel Tokens”

1

InCoder: A Generative Model for Code Infilling and Synthesis

Causal-Masked Infilling

e To leverage causal masking while also using right-side context during
inference, InCoder will temporarily fill in lines by inserting sentinel
tokens

e InCoder will go back after a round of generation and populate the
previously masked regions

e Useful for applications like docstrings, where both the function
signature (left-side context) and function implementation (right-side
context) are necessary

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE -,

InCoder: A Generative Model for Code Infilling and Synthesis

Maximum Likelihood Estimation

e To train, InCoder generates tokens with the objective of maximizing the
log-probability of the masked document:

log P([Left; <Mask:0>; Right; <Mask:0>; Span; <EOM>])

= U% RSITY | SCHOOL of ENGINEERING
IR

gl GINIA | &APPLIED SCIENCE 13

InCoder: A Generative Model for Code Infilling and Synthesis

Training Data

e GitHub and GitLab open-source repositories
e Stack Overflow questions, answers, and comments

e Dataset is focused on Python code

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE Y

InCoder: A Generative Model for Code Infilling and Synthesis

Training Data

A.5 CORPUS STATISTICS

e 159 GB Dataset
o 52 GB in Python

50
@40
v
= 30
o 57 GB from w
=20
Stack Overflow o
10
e Chart determined by 0 II"IIIII-. ______
_ _ SEEVIS¥884238235355 28
file extension A T

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

InCoder: A Generative Model for Code Infilling and Synthesis

InCoder Models

e 1.3Band6.7B Parameter INCODER-1.3B INCODER-6.7B
—decoder-embed-dim 2048 4096
Transformers —decoder-output-dim 2048 4096
—decoder-input-dim 2048 4096
e 6./B used for —decoder-ffn-embed-dim 8192 16384
_ —decoder-layers 24 32
most evaluation —decoder-normalize-before True True
—decoder-attention-heads 32 32
purposes —share-decoder-input-output-embed True True
—decoder-learned-pos False False
Table 6: Fairseq architecture hyperparameters for our INCODER models.

glie & APPLIED SCIENCE i

2= [INIVERSITY | SCHOOL of ENGINEERING
‘R/’IRGINIA

InCoder: A Generative Model for Code Infilling and Synthesis

Training

e Trained on 248 V100 GPUs for 24 days
e One epoch on the training data, one pass over every document
e Implemented in PyTorch, uses its Adam optimizer

e GPU batch size of 8 and a maximum token sequence length of 2048

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE

17

InCoder: A Generative Model for Code Infilling and Synthesis

8_
—— InCoder-6B A8
> — InCoder-1B o |
Q "
o & 14
& 6 ©
> 19
.5 uCJ 12
b= ©
E 5 € 10+
— >
2 T
4_
1 I I I 1 I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fraction of Training Data Seen Fraction of Training Data Seen

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

InCoder: A Generative Model for Code Infilling and Synthesis

Inference

1. Left-to-right single: completely masks right context
2. Left-to-right reranking: masks the right context during generation, but
not during selection

3. Causal-masked infilling

Inference done with nucleus sampling

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE "

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Infilling Lines of Code

e Assessed on the HumanEval dataset
o Includes comment descriptions of functions paired with
canonical implementations
o Includes sample function input-output pairs

e Evaluation metrics
o Pass rate: the rate at which the function’s output matches the

given input
o Exact match: the percentage of lines identical to the canonical
solution

2= [INIVERSITY | SCHOOL of ENGINEERING
LI IRGINIA | & APPLIED SCIENCE .

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Infilling Lines of Code

Method Pass Rate Exact Match Method Pass Rate Exact Match
L-R single 48.2 38.7 L-R single 24.9 15.8
L-R reranking 54.9 44.1 L-R reranking 28.2 17.6
CM infilling 69.0 56.3 CM infilling 38.6 20.6
PLBART 41.6 — PLBART 13.1 —
code-cushman-001 53.1 42.0 code-cushman-001 30.8 17.4
code-davinci-001 63.0 56.0 code-davinci-001 37.8 19.8

LR,
[

gli

(a) Single-line infilling.

Uqfl\{}VERSITY
IRGINIA

SCHOOL ¢f ENGINEERING
& APPLIED SCIENCE

(b) Multi-line infilling.

21

L]

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Infilling Lines of Code

Single-Line Infilling

0.8 1
0.7 /
o 0.6
& 0.5
w0
© 0.4-
o
0.349 —— CM Infilling
0.24 — L-RSingle
—— L-R Reranking
0'1_ 1 1 I 1 I
0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context
U VERSITY | SCHOOL of ENGINEERING
IRGINIA & APPLIED SCIENCE

Multi-Line Infilling

1 —— CMInfilling

—— L-R Single
—— L-R Reranking

1 1 1 1 I

0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context

22

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Infilling Lines of Code

e Compared to OpenAl’s code-davinci-002 proprietary API (August 2021)

Model Inference Pass Rate Exact Match
INCODER-6.7B Left-to-right single 48.2 38.7
INCODER-6.7B Left-to-right reranking 54.9 44.1
INCODER-6.7B Infilling 69.0 56.3
code-davinci-002 Left-to-right single 63.7 48.4
code-davinci-002 Left-to-right reranking 71.8 52.0
code-davinci-002 Infilling 87.4 69.6

2= [JNIVERSITY | SCHOOL of ENGINEERING
glie IR GINIA & APPLIED SCIENCE

23

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Docstring Generation

e CodeXGLUE code-to-text docstring generation task
o Uses the CodeSearchNet database, consisting of docstrings
paired with corresponding code from public GitHub repositories
e Evaluation metric
o BLEU score: how similar the LLM-generated docstring is to a
set of high-quality references
m Higher is better
e Compared against LLMs finetuned for docstring generation

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE 5

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Docstring Generation

Method BLEU
Ours: L-R single 16.05
Ours: L-R reranking 17.14
Ours: Causal-masked infilling 18.27
RoBERTa (Finetuned) 18.14
CodeBERT (Finetuned) 19.06
PLBART (Finetuned) 19.30
CodeT5 (Finetuned) 20.36

2= [JNIVERSITY | SCHOOL sf ENGINEERING

glie IRGINIA & APPLIED SCIENCE .

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Return Type Prediction

e Using CodeXGLUE again, this time isolating the return types of
each function
e Second experiment done against TypeWriter, a supervised model
specialized to determine input and return types for Python functions
o Results evaluated using the Open-Source Software (OSS)
dataset

2= [INIVERSITY | SCHOOL of ENGINEERING
LI IRGINIA | & APPLIED SCIENCE s

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Return Type Prediction

Method Accuracy
Left-to-right single 12.0
Left-to-right reranking 12.4

Causal-masked infilling 58.1

e Uqfl%/ RSITY SCHOOL ¢f ENGINEERING
IRG

glie GINIA & APPLIED SCIENCE 27

InCoder: A Generative Model for Code Infilling and Synthesis

Evaluation: Return Type Prediction

Method Precision Recall F1

Ours: Left-to-right single 30.8 30.8 30.8
Ours: Left-to-right reranking 353 33.3 333
Ours: Causal-masked infilling 59.2 59.2 59.2

TypeWriter (Supervised) 54.9 432 483

e Uqfl%/ RSITY SCHOOL ¢f ENGINEERING
IRG

glie GINIA & APPLIED SCIENCE 28

InCoder: A Generative Model for Code Infilling and Synthesis

Conclusion

e Training a model to infill does not harm its ability to generate code
left-to-right

e Causal masking is a useful tool for zero-shot performance on
infilling and editing code

e Code LLMs that edit and annotate well can iteratively generate

better code

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE »

InCoder: A Generative Model for Code Infilling and Synthesis

Potential Improvements and Critiques

e InCoder’s results are fairly weak

o Did not compare well to SOTA language models for code
o Could train for multiple passes over the data

o Can increase dataset size and time spent training, as well as hardware
e Needs better benchmarking

o Model was frequently compared to older versions of LLMs

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE “

Related Work

R
'Aﬁ
alile

e XL-Editor (2019)

o Trains a language model to infill and edit natural language
o https://arxiv.org/abs/1910.10479

e CM3 (2022)

o Uses causal masking for left-to-right generation, but with bidirectional context

o Strong results in zero-shot summarization and entity disambiguation

o https://arxiv.org/abs/2201.07520

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

31

https://arxiv.org/abs/1910.10479
https://arxiv.org/abs/2201.07520

Papers

s

L,
- v

— InCoder: A Generative Model for Code Infilling and Synthesis
— Code Llama: Open Foundation Models for Code
— Teaching Large Language Models to Self-Debug

— LEVER: Learning to Verify Language-to-Code Generation with Execution

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

32

Code Llama: Open Foundation Models for Code

Baptiste Roziéref, Jonas Gehring’, Fabian Gloeckle™*, Sten Sootla’, Itai Gat, Xiaoqing
Ellen Tan, Yossi Adi°, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve

Meta Al

https://arxiv.orq/pdf/2308.12950.pdf

2= [NIVERSITY | SCHOOL of ENGINEERING
WS 9VIRGINIA | &APPLIED SCIENCE

https://arxiv.org/pdf/2308.12950.pdf

Code Llama: Open Foundation Models for Code

Introduction to Code Llama

e Collection of models built upon Llama 2, specifically trained to solve

programming problems

e Key features:
o Generating code from brief descriptions
o Filling gaps in existing code

o Handling large inputs

e Foundational, Python, and Instruct variants

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

Code Llama: Open Foundation Models for Code

Foundation of Code Llama: From Llama 2

e Code Llama fine-tuned from Llama 2
e Building on Llama 2 ensures understanding of natural and technical language

e |Initializing the model with Llama 2 outperforms the same architecture trained

on code only for a given budget

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .,

Code Llama: Open Foundation Models for Code

Infilling

e Improves code completion, type inference, and doc generation

e Employes causal masking, where parts of input are reordered and predicted

autoregressively
e Training documents split into a prefix, a middle part and a suffix

e Formats include prefix-suffix-middle (PSM) and suffix-prefix-middle (SPM)

2= [INIVERSITY | SCHOOL of ENGINEERING
AL IRGINIA | & APPLIED SCIENCE .

Code Llama: Open Foundation Models for Code

Long Context Fine-Tuning

e Sequence handling improved to 16,384 tokens from the initial 4,096
e Processing long sequences limited to a fine-tuning stage
e Modifies the rotation frequencies of rotary position embeddings (RoPE)

e Elevated base period from 10,000 to 1M allowing for larger sequences and

ensuring model stability up to 100,000 tokens

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE -

Code Llama: Open Foundation Models for Code

Code Llama - Foundation Models

e Designed for IDEs to auto-complete and generate code
e Four size variants: 7B, 13B, 34B, and 70B parameters

e Infilling incorporated in 7B, 13B, and 70B models, with 34B focussed on code

generation
e Trained on 500B tokens from a code-heavy dataset

e Long Context Fine-Tuning across all sizes

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE ”

Code Llama: Open Foundation Models for Code

Code Llama - Python

e Fine-tuned for Python to study the performance of models tailored to a single
language

e \Variants include 7B, 13B, 34B, and 70B parameters

e Trained on 500B tokens from the Code Llama dataset, and further specialized

on 100B tokens from a Python-heavy dataset

e Optimized without infilling for the 7B to 34B models

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE »

Code Llama: Open Foundation Models for Code

Code Llama - Instruct

e Designed for showing programming instructions via natural language,
providing clear explanations for developers

e Available in 7B, 13B, and 34B sizes

e Models are based on Code Llama and fine-tuned with an additional about 5B

tokens to better follow human instructions

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE 10

Code Llama: Open Foundation Models for Code

Training Data and Strategy

e Trained on a near-deduplicated dataseDataset bampling prop. Bpoehs Disksize
. . Code Llama (500B tokens)

of publicly available code Code 85% 903 859 GB

Natural language related to code 8% 1.39 78 GB

e 8% of samples data from natural Natural language 7% 001 35TB
Code Llama - Python (additional 100B tokens)

language datasets related to code Python 5% 260 79 GB

Code 10% 0.05 859 GB

° Addmg natural |anguage dataset Natural language related to code 10% 0.35 78 GB

Natural language 5% 0.00 3.5 TB

improves the performance on Mostly
Basic Programming Problems (MBPP)

UL & APPLIED SCIENCE

- aAnen, s

41

= U%VERSITY SCHOOL of ENGINEERING
IRGINIA

Code Llama: Open Foundation Models for Code

Instruction Fine Tuning

e Proprietary Dataset: Uses rich instruction data from Llama 2, enhancing model safety

and instruction-following

e Self-Instruct Dataset:
o Generated from 62,000 interview-style questions using Llama 2 70B
o Deduplicated to 52,000 unique questions for variety
o Code Llama 7B used for generating unit tests and ten Python solutions per question

o First passing solution of each question included, resulting in ~14,000 problem-solution pairs

e Rehearsal: Training includes code dataset (6%) and natural language dataset (2%)

iT‘lTlT‘l'U IVERSITY | SCHOOL of ENGINEERING

IRGINIA & APPLIED SCIENCE 4

Code Llama: Open Foundation Models for Code

HumanEval and MBPP Benchmark Results

Model Size HumanEval MBPP
. . . |pass@1 pass@10 pass@lOO‘pass@l pass@10 pass@100
e \Videly used description-to-code e B[335% - T % - :
GPT-3.5 (ChatGPT) -| 48.1% - - 52.2% - -
. GPT-4 -1 67.0% - - - - -
generation benchmarks PaLM 540B| 26.2% - SR -
PaLLM-Coder 540B | 35.9% - 88.4% 47.0% - -
PaLM 2-S -1 37.6% - 88.4% | 50.0% - -
StarCoder Base 15.5B| 30.4% - - 49.0% - -
1 StarCoder Python 15.5B | 33.6% - - 52.7% - -
i Com pUted Wlth te m peratu re O - 8 StarCoder Prompted 15.5B | 40.8% - - 49.5% - -

TB| 122% 25.2% 44.4% | 20.8% 41.8% 65.5%
13B| 20.1% 34.8% 61.2% | 27.6% 48.1% 69.5%

LLAMA 2
_ _ 34B| 22.6% 47.0% 79.5% | 338% 56.9% = 77.6%
® ZerO ShOt on HumanEval’ 3 ShOt 70B| 30.5% 59.4% 87.0% | 454% 66.2% 83.1%
7B| 33.5% 59.6% 85.9% | 41.4% 66.7% = 82.5%
on MBPP I, 13B| 36.0% 69.4% 89.8% |47.0% 71.7% = 87.1%

34B| 48.8% 76.8% 93.0% | 55.0% 76.2% 86.6%
70B| 53.0% 84.6% 96.2% | 62.4% 81.1% = 91.9%

7B| 34.8% 64.3% 88.1% | 44.4% 65.4% 76.8%
13B| 42.7% 71.6% 91.6% 49.4% 71.2% 84.1%
34B| 41.5% 77.2% 93.5% 57.0% 74.6% 85.4%
70B| 67.8% 90.3% 97.3% 62.2% 79.6% 89.2%
UNNATURAL CODE LLamMA 34B| 62.2% 85.2% 95.4% | 61.2% 76.6% 86.7%

7B 384% 70.3% 90.6% |47.6% 70.3% 84.8%
13B| 43.3% 77.4% 94.1% | 49.0% T74.0% = 87.6%

i‘A‘U IVERSITY SCHOOL Of ENGINEERING Cope LLaMA - PYTHON gypl po'vor g0'sr 047% | 562% 76.4% 88.2%
IRGINIA

CODE LLAMA - INSTRUCT

L & APPLIED SCIENCE 70B| 57.3% 89.3% 98.4% | 65.6% 81.5% 91.9%

43

Code Llama: Open Foundation Models for Code

Performance on Multi-Language Benchmarks

Model Size

Multi-lingual Human-Eval

C++ Java PHP TS C# Bash |Average

e Pass@1 scores

CodeGen-Multi
CodeGeeX
code-cushman-001

16B
13B
12B

21.0%
16.9%
30.6%

22.2%
19.1%
31.9%

8.4%
13.5%
28.9%

20.1%
10.1%
31.3%

8.2%
8.5%
22.1%

0.6%
2.8%
11.7%

13.4%
11.8%
26.1%

25.0%
25.3%

8.3%
11.4%
18.0%
24.4%

26.3%
30.6%
36.4%
45.3%

25.8%

11.0%
10.5%

3.2%
3.2%
3.8%
8.9%

12.0%

20.6%
21.0%

6.3%
9.5%
17.1%
25.9%

25.3%

32.2%
32.3%

12.6%
13.2%
21.4%
15.1%

33.3%

26.8%
26.1%

9.9%
13.1%
19.9%
34.2%

24.2%
34.2% 29.6% 27.3% 15.2%
44.1% 33.3% 30.4% 17.1%
50.9% 49.1% 38.0% 29.1%

28.6% 32.7% 21.6% 10.1%
13B 42.2% 40.5% 32.3% 39.0% 24.0% 13.9% | 32.0%
34B 45.3% 43.7% 36.6% 40.3% 31.0% 19.6% | 36.1%
70B 53.4% 58.2% 58.4% 39.0% 36.7% 29.7% | 45.9%

7B 323% 354% 32.3% 23.9% 24.7% 16.5% | 27.5%
13B 39.1% 37.3% 33.5% 352% 29.8% 13.9% | 31.5%
34B 42.2% 44.9% 42.9% 34.3% 31.7% 14.6% | 35.1%
70B 54.7% 57.6% 53.4% 44.0% 34.8% 25.3% | 45.0%

28.5%
30.2%

10.8%
15.8%
22.2%
31.7%

34.2%
38.0%
45.6%
51.9%

30.4%

15.5B 30.6%
15.5B 31.6%

B 6.8%
13B 13.7%
34B 23.6%
70B 30.4%

7B 28.6%
13B 39.1%
34B 47.8%
70B 52.8%

7B 31.1%

StarCoder Base
StarCoder Python

e Computed in zero-shot

LLAMA-v2

CoODE LLAMA

CODE LLAMA - INSTRUCT

CODE LLAMA - PYTHON

#= [INIVERSITY | SCHOOL of ENGINEERING

glie IRGINIA & APPLIED SCIENCE »

Infilling Training Evaluation

Code Llama: Open Foundation Models for Code

Model FIM Size HumanEval MBPP Test loss . .
pass@l pass@l0 pass@l00 pass@l pass@l0 pass@100 Tra|ned W|th and
7B 33.2% 43.3% 49.9% 44.8% 52.5% 57.1% 0.408
Cope Liama (w/o LCFT) X 1o aoew 49.2% 57.9% 48.2% 574% 61.6% 0.372 without infilling and
7B 33.6% 44.0% 48.8% 442% 51.4% 555% 0.407
CopE LrLAaMA (w/o LCFT) v
13B 36.2% 48.3% 54.6% 48.0% 56.8% 60.8% 0.373
- - - - - - temperature of 0.1
P x.y 1B —04% —0.1% 11% 0.6% 1.1% 1.6% 0.001
&8P 13B 0.7% 0.9% 33% 02% 0.6% 0.8% —0.001
Model Size Python Java JavaScript
PSM SPM PSM SPM PSM SPM
Multilingual HumanEval InCoder 6B 31.0% 49.0% 51.0%
SantaCoder 1.1B 44.0% 62.0% 60.0%
single line infilling StarCoder ~ 15.5B 62.0% 73.0% 74.0%
7B 67.6% T72.7% 74.3% 77.6% 80.2% 82.6%

CODE LrLAMA

13B 68.3% 74.5% 77.6% 80.0% 80.7% 85.0%

SCHOOL ¢f ENGINEERING
& APPLIED SCIENCE 45

- anen s

LN
i U

Code Llama: Open Foundation Models for Code

Long Context Fine Tuning Evaluations

Large Source Files

1.55

1.50

1.45

é 1.40
1.35
1.30 :
° 20 0 Conte)(?é)ldengthgflO3 100 120
(a)

&= [UNIVERSITY | SCHOOL of ENGINEERING
L %/IRGINIA & APPLIED SCIENCE

Accuracy

100

80

[<2]
(=)

40

20

Key Retrieval Accuracy (~16K tokens)

—— 7B
—— 13B
—— 34B
-4-- gpt-3.5-turbo-16k-0613

0.0 0.2 0.4 0.6 0.8 1.0
Relative Position of Key Function

(b)

46

Code Llama: Open Foundation Models for Code

Single Line Completion Performance

e Exact Match vs Bilingual Evaluation Understudy

e With and without LCFT

Model
EM BLEU EM BLEU EM BLEU

36.86 60.16 47.82 69.20 46.29 67.75
39.23 61.84 51.94 71.89 50.20 70.22

3796 61.33 5049 69.99 49.22 69.87
41.06 62.76 52.67 72.29 52.15 71.00

42.52 63.74 54.13 7238 5234 71.36
44.89 65.99 56.80 73.79 53.71 72.69

CoDpE LLamMAa 7B
CobpE LLama 7B

CobpE LLamaA 13B
CobpE LLama 13B

CoDE LLAMA 34B
CobpE LramaA 34B

N X [N\ x|\ X%

2= [INIVERSITY | SCHOOL of ENGINEERING

gliie IRGINIA & APPLIED SCIENCE 47

Code Llama: Open Foundation Models for Code

Impact of Self-Instruct Data

Size SI HumanEval MBPP
3-shot zero-shot

"B X 30.5% 43.4% 37.6%
v 34.8% 44.4% 37.4%
13B X 40.9% 46.2% 20.4%
v 42.7% 49.4% 40.2%

2= [JNIVERSITY | SCHOOL sf ENGINEERING

glie IRGINIA & APPLIED SCIENCE 46

Code Llama Performance Across Different Temperatures

1.0 HumanEval Code Llama 7B
0.9 —4&— Pass@]

—4— Pass@10 /‘
83 —4— Pass@100
® 06 //////
505
0.4
03H—T—T—+————
0.2

0161 02 03 04 05 06 07 08

Temperature

10 MBPP Code Llama 7B

0.9

0.8
0.7 r////////*””’*~ﬂi—::
© o6 e
/

£0.5
04 @l T | T

03 Pass@10
0.2 —— Pass@100

0161 02 03 04 05 06 07 08
Temperature

- aAnen, s

10 HumanEval Code Llama 13B
0:9 —4— Pass@]

0g — Pass@lo0 —F—T 1

—&— Pass@100

0.7 A—————
© 06 /
505

0.4

0'10.] 02 03 04 05 06 07 08

Temperature
10 MBPP Code Llama 13B
0.9

0.8
0.7 //'/‘
© 06 r///////t,’r’+____ﬂ
A—E‘\‘_\‘

7]

‘f 0.5
0.4 —&— Pass@]
03 Pass@10
0.2 —— Pass@100

0161 02 03 04 05 06 07 08

Temperature

2= [INIVERSITY | SCHOOL of ENGINEERING
IRGINIA | & APPLIED SCIENCE

Code Llama: Open Foundation Models for Code

1.0 HumanEval Code Llama 34B

0.9
0.8 e
0.7 T
%06 —
ch 0.5
04 e T T
03 == Pass@10
0.2 —— Pass@100

0'10.1 02 03 04 05 0.6 0.7 0.8
Temperature

10 MBPP Code Llama 34B

0.9

0.4

—&— Pass@1]
03+ Pass@10
0.2 —— Pass@100

0161 02 03 04 05 06 07 08

Temperature

49

Code Llama: Open Foundation Models for Code

Conclusion

e Achieved top performance in single-line code infilling
e Significant performance gains with larger models

e Strong ability in managing large code contexts

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE -

Limitations

e Limited context performance
e Unclear decision when choosing which model to use

e Performance on a variety of coding tasks

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA | & APPLIED SCIENCE

51

Papers

s

L,
- v

— InCoder: A Generative Model for Code Infilling and Synthesis
— Code Llama: Open Foundation Models for Code
— Teaching Large Language Models to Self-Debug

— LEVER: Learning to Verify Language-to-Code Generation with Execution

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

52

s

L,
- v

9 Google DeepMind

TEACHING LARGE LANGUAGE MODELS TO SELF-
DEBUG

Xinyun Chen' Maxwell Lin® Nathanael Schiirli' Denny Zhou'
! Google DeepMind * UC Berkeley
{xinyunchen,schaerli,dennyzhou}@google.com, mxlin@berkeley.edu

https://arxiv.orq/pdf/2304.05128.pdf

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

53

https://arxiv.org/pdf/2304.05128.pdf

Background

e |anguage models for code

e Autoregressive nature of LLMs does not mesh with how humans code

e Prompting techniques like chain-of-thought significantly improve programming
e Recent work shows language models have potential for generating feedback

messages to critique and refine their outputs

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA | & APPLIED SCIENCE

54

Introduction

e Zero-shot coding is very challenging
e Instead of discarding incorrect code, investigate results, then make changes

to resolve the implementation error

o Prior methods train separate model for code repairing

e SELF-DEBUGGING teaches an LLM to debug its program via few shot
demonstrations; no additional training needed

e Analogous to rubber-duck debugging, debugging without external feedback

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE

55

SELF-DEBUGGING Framework

1. Generation step: problem description ->

Step 2: Code execution

l=K

—

candidates

generation

Feedback

. Unit tests Execuior %'
2. Feedback step: message concerning Step §: Code I % .

correctness of code determined by unit Problem

Code Explanation

1

Step 3: Code explanation ~—
—

Model

tests or by asking the model

3. Explanation step: model processes its Figure 1: SELF-DEBUGGING for iterative debugging using a large language model. At each debug-

ging step, the model first generates new code, then the code is executed and the model explains the

.. code. The code explanation along with the execution results constitute the feedback message, based

own pred |Ct|on , e|ther by eXp|a|n | ng |t or on which the model infers the code correctness and then adds this message to the feedback. The

feedback message is then sent back to the model to perform more debugging steps. When unit tests
are not available, the feedback can be purely based on code explanation.

creating an execution trace

UL & APPLIED SCIENCE

- aAnen, s

56

= U%VERSITY SCHOOL of ENGINEERING
IRGINIA

Prompting for Code Generation

e They use few shot prompting for initial code attempt

e They decode multiple samples, using majority voting on execution results to
select predicted code

e \When unit tests are present, they filter out programs that do not pass unit

tests

2= [INIVERSITY | SCHOOL of ENGINEERING
gl IRGINIA | & APPLIED SCIENCE

57

Feedback

In practice, not all forms of feedback are available

s

L,
- v

e Simple feedback: sentence indicating code correctness, no explanation step

e Unit test feedback (UT): message containing execution results

e Code Explanation feedback (Expl): rubber duck debugging; the model
describes the code and compares it to the problem description

e Execution trace feedback (Trace): the model explains the execution steps

line-by-line

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

58

Feedback

ol

Simple Feedback
Below are C++ programs with incorrect
Pythos trasslations. Comrect the
wasslanons using the provaded
feedhack

Unit Test (UT) Feedback
Below are C++ programs with incoerect
Pythos seslations. Correct the

translatoes using the provaded
feedhack
[UT Feedback]

Unit Test + Explanation
(+Expl)
Below are C++ programs with incoerect
Pythos sasshations. Expilain ohe oviging!
code, then explain the rawsketions lne
by line and corsect them wsisg the
peovided feadback.

fe++]

- SR
T —

———
T —

[Revised Python 2]
{Python Explination]

Unit Test + Trace (+Trace)
Below are C++ programes with
incorrect Pythos trsslations. Using the
provided feedhack, rrace through the
execwsion of the rransiations 1o
detersine whar sends 1o be fived, and

correct the translatioes] _
ic=+1|

(Oniginal Pyshoa]
(UT Feodback]
[UT Feodback]

UNIVERSITY
TRGINIA

Figure 5: Examples of SELF-DEBUGGING prompts for code translation. Left-aligned blocks are
model predictions, and right-aligned blocks contain the input C++ code and feedback messages based
on code execution. The full prompts are in Appendix F.

& APPLIED

SCHOOL ¢f ENGINEERING

SCIENCE

Applications

e Text-to-SQL
o Spider dataset
o Unit tests are not available
e Code translation
o TransCoder dataset (C++-to-Python)
o Abundance of unit tests
e Text-to-Python
o MBPP dataset

o Only a subset of unit tests are
presented in problem description

2= | INIVERSITY

- SCHOOL of ENGINEERING
aling IRGINIA

& APPLIED SCIENCE

Step 1: Question explanation
Infer the return type of the question.

Which customers have both "On Road* and "Shipped" as order status? List the customer names.

[Question Explanation]

"List the customer names" returns | column. The question retums the customer names who have both "On Road" and "Shipped® as
order status. So the question retums | column.

Step 2: Code explanation
Summarize the return type of the execution.

SELECT ustomers customer_name FROM customers JOIN orders ON
WHERE orders.order_status = "On Road" OR orders.order_status = *Shipped”

Execution:

| George |

[SQL Explanation]

The execution of the SQL query above would retum a table with | column

The first column, "customers.customer_name" would contain the customer names.

With "customers JOIN orders”, the table would contain the data about customers with orders.

With "WHERE orders.order_status = 'On Road' OR orders.order_status = "Shipped™, the table filters the records to only include
customers who have order status "On Road" or "Shipped”.

So the SQL guery retums a table with 1 column, the customer names who have the order status *On Road" or "Shipped”.

_id = orders. id

Step 3: Self-Debugging with explanation

[Explnnnﬁon summary]

As in your explanation, the SQL query retums a table with | column, the customer names who have the order status "On Road” or
"Shipped”. The question returns | column, the customer names who have both "On Road” and "Shipped" as order status.
[Feedback]

So the ﬁL irediclim above 1s wrong. Please fix the SQL.

SELECT customers.customer_name FROM customers JOIN oeders ON
WHERE orders.order status = "On Road" AND orders.order_status = “Shipped"

[Explanation summary #1]

As in your explanation, the SQL query returns an empty table, because the "WHERE" clause Iy exclusive conditi
The question retums | column, the customer rames who have order status of both "On Road™ and "Shipped”

[Feedback #1]

So the SQL prediction above 1s wrong. Please fix the SQL.

_jd = prders. id

SELECT customers.customer_name FROM customers JOIN orders ON customers customer_id = orders customer_id WHERE
orders.order_status = "On Road® INTERSECT SELECT _name FROM JOIN orders ON

_id = oeders. _id WHERE orders.order_status = "Shipped*
[Explanation summary #2]
As in your explanation, the SQL query retums a table with | column, the customer names who have the order status "On Road” and
"Shipped”. The question returns | column, the customer names who have order status of both "On Road” and "Shipped". So the
question retumns 1 column.
[Feedback #2]
So the SQL prediction above is correct!

Figure 3: An example of SELF-DEBUGGING prompting for text-to-SQL generation. The SQL query,
explanation and feedback are all predicted by the model. When the returned table has more than 2
rows, only the first 2 rows are included in the prompt. Database information is omitted in the figure
for clarity, and we present the full prompts in Appendix E.

60

Experiments

They evaluate SELF-DEBUGGING
against two types of code reranking

baselines

e Models fine-tuned on Spider
o T5-3B, LEVER
e Prompting-based approaches

o MBR-Exec, Coder-Reviewer

2= [INIVERSITY | SCHOOL of ENGINEERING
AL IRGINIA | & APPLIED SCIENCE

Table 1: Comparing SELF-DEBUGGING to prior ranking techniques.

(a) Results on the Spider development set. (b) Results on MBPP dataset.
Spider (Dev) n samples
DB, o mimmemmimmm: 8 e
T5-3B + N-best Reranking 80.6 MBR-Exec 63.0(n = 25)
LEVER (Ni et al., 2023) 819 Reviewer 66.9 (n = 25)
_ Prompting only w/o debugging LEVER 68.9 (n = 100)
~ " Coder-Reviewer 745 . SELF-DEBUGGING (this work) _
MBR-Exec 75.2 Codex 722 (n = 10)
_SELF-DEBUGGING (s work)_____ Simple 736
Codex 813 utT 75.2
+ Expl 84.1 UT + Expl. 75.6

61

SELF-DEBUGGING with different feedback formats

Table 2: Results of SELF-DEBUGGING with different feedback formats.

(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder TransCoder Codex GPT-3.5 GPT-4 StarCoder
Bascline 81.3 zi:1 732 64.7 Baseline 0.4 891 773 70.0
Simple 81.3 72.2 734 64.9 Simple 89.3 91.6 80.9 729
+Expl. 841 722 736 64.9 uT 916 927 888 76.4
+ Expl. 92.5 92.7 2.4 76.6
+ Trace. 879 923 895 73.6
(c) Results on MBPP.
MBPP Codex GPT-3.5 GPT4 StarCoder

Bascline 614 67.6 728 472

Simple 63.2 70.8 788 50.6

uT 69.4 722 80.6 522

+Expl. 698 742 80.4 522

+Trace. 708 728 80.2 532

#= [JNIVERSITY | SCHOOL of ENGINEERING
il IRGINIA & APPLIED SCIENCE

Ablation Studies

* - w/o detugging
- Self-debugging WA selfdebugging
- ~@- Codex 80 :
Pl
>
g 24 & 60
! 2
< a2 ®
g S 40
a% 2
%]
78 20
75
1 . 12 0

Easy Madium

B Sa’:nples
(a) (b)

Figure 6: Ablation studies on the Spider development set with Codex. (a) Accuracies with different
numbers of initial samples. (b) Breakdown accuracies on problems with different hardness levels.

2= [INIVERSITY | SCHOOL of ENGINEERING
QIS "IVIRGINIA | & APPLIED SCIENCE

63

SELF-DEBUGGING without unit test-execution

Table 3: Results of SELF-DEBUGGING without unit test execution.

(a) Results on Transcoder. (b) Results on MBPP
TransCoder Codex GPT-3.5 GPT4 MBPP Codex GPT-3.5 GPT4
Baseline 804 89.1 773 Baseline 61.4 67.6 728
Simple 834 89.1 78.2 Simple 57.6 68.2 76.0
+ Expl. 839 89.1 78.0 + Expl. 64.4 68.2 76.0
+ Trace. 83.9 89.1 784 + Trace. 66.2 69.2 76.4

2= [INIVERSITY | SCHOOL of ENGINEERING
L IRGINIA | & APPLIED SCIENCE

64

Breakdown of error types

Table 4: Breakdown on percentages of error types fixed by SELF-DEBUGGING.

(a) Breakdown on Spider with code~davinci-002. (b) Breakdown on Transcoder with gpt~3.5~turbo,
and MBPP with gpt-4.

Error type %

Wrong WHERE conditions 25.7 Error type Transcoder MBPP
Missing the DISTINCT keyword 17.1 Output mismatch 61.9 69.2
Wrong JOIN clauses 14.3 Runtime errors 38.1 308
Wrong number of SELECT columns 11.4

Wrong INTERSECT/UNION clauses 8.6

Wrong aggregate functions and keywords 5.8

Wrong COUNT columns 5.7

Wrong column selection 5.7

Missing nested conditions 5.7

2= [INIVERSITY | SCHOOL of ENGINEERING
AL IRGINIA | & APPLIED SCIENCE

Conclusion

e Achieves state-of-the-art performance across several code generation
domains and notably improves sample efficiency
e Shows the importance of iteratively debugging output

e They hypothesize better code explanation ability leads to better debugging

performance

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE

66

Limitations

e Depends on the code explanation ability of the model

e Itis possible for the model to think the code is correct when it is not

e Itis possible for the code to pass all unit tests and still be incorrect

e Results are not uniform across problem difficulties (more improvement on
harder problems than easier ones)

e In practice, unit tests are not always present, and SELF-DEBUGGING brings

minimal improvement when unit tests are absent

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

Papers

s

L,
- v

— InCoder: A Generative Model for Code Infilling and Synthesis
— Code Llama: Open Foundation Models for Code
— Teaching Large Language Models to Self-Debug

— LEVER: Learning to Verify Language-to-Code Generation with Execution

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

68

HII

LEVER: Learning to Verify Language-to-Code Generation
with Execution (ICML 2023)

2 Dragomir Radev! Ves Stoyanov? Wen-tau Yih? Sida I. Wang?" Xi Victoria Lin?"

Ansong Ni!T Srini Iyer
"Majority of the work done during an internship at Meta Al
“Equal contribution 'Yale University “Meta AI. Correspondence
to: Ansong Ni <ansong.ni@yale.edu>, Xi Victoria Lin <victori-
alin@meta.com>, Sida I. Wang <sida@meta.com>.

https://arxiv.orq/pdf/2302.08468.pdf

2= U IVERSITY | SCHOOL of ENGINEERING

IRGINIA & APPLIED SCIENCE 5

https://arxiv.org/pdf/2302.08468.pdf

LEVER: Learning to Verify Language-to-Code Generation with Execution

Background

e LLMs produce the correct output more often when more samples are drawn
e By sampling at scale, the effectiveness of training a verifier to rank solutions

increases

o \Verifiers assess model outputs for accuracy and consistency, providing language models with

feedback to improve responses

e \Verifiers have proved to be useful in helping language models choose the
correct output to math problems

e (Can they be expanded to solving coding problems?

IVERSITY SCHOOL ¢f ENGINEERING

& 17
aling IRGINIA & APPLIED SCIENCE -

LEVER: Learning to Verify Language-to-Code Generation with Execution

Obijectives

— Train a verifier to distinguish and reject incorrect code outputs

— Use the verifier to produce more correct code

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE 5

LEVER: Learning to Verify Language-to-Code Generation with Execution

LEVER Overview

— Learning to Verify language-to-code generation

— Three step approach
o Generation: create code samples from a task and few-shot exemplars
o Execution: run the generated code
o Verification: assess the generated code, natural language input, and execution summary and

output probabilities of each code sample being correct

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE .

LEVER: Learning to Verify Language-to-Code Generation with Execution

LEVER Process

Generation Prob.

F'""l""ﬁ
] e : M —
-- Translate natural | i = -
w0 | SELECT name FROM students i i S = o

3 o ' |
52 }anguage question £ o e age > 20 AND age < 30 :0 35 : £ =| John, .. g g
2 ®| into SQL Query | L = | ifi L
% E LMs — R .+ Executor —— Verifier ——
s .] - = ~
& 3 = :’L‘?mﬂ:t % | SELECT COUNT(name) FROM students|) ! =1 |5 . & 52
SELEC‘;' & where age > 20 AND age < 30 ' ! >_ K >x
.. | L______‘l L G
(1 e M T E (]
_—] — | = el o0
+ @ | SELECT COUNT(*) FROM students , ; 5 : Y
Generate | £ ™| ihere age < 30 AND age > 20 :9'13 i} Execute |g ™| ° Verify |$ 2
-- Example HrRERE — with b

45 A LN]
e l T T N[
ag |[2EHOSHES 2h R w | SELECT student_num FROM studentsi i 5 Err: No o :
E C s Ehs oail &.o' N where age_interval = “20-30” :0.11 i g~ column Code = £
r = = g] ! -5 L o
and 30 yealr‘s old? I b T
R ———

Final Score

L) & APPLIED SCIENCE

- anen s

73

2= [INIVERSITY | SCHOOL of ENGINEERING
‘R/’IRGINIA

LEVER: Learning to Verify Language-to-Code Generation with Execution

Reranking

e Objective is to rank the code outputs by correctness and suitability to the task
e Reranking probability: Joint probability of generation and passing the
verification step

Pr(9,v=1|z) = PLm(9|z) - Po(v=1|z,9,E(9))

P, = reranking probability
x = inputs (task, exemplars)
P,,,(V) = likelihood of y

74

being generated y = program being assessed
&= [UNIVERSITY SCHOOL of ENGINEERING P,(y) = likelihood of § &(y) = execution results of y
AL IRGINIA & APPLIED SCIENCE producing the correct

output

LEVER: Learning to Verify Language-to-Code Generation with Execution

Reranking

e Once all samples are generated and reranking probabilities are calculated, a final
reranking score is given to each sample

e Final reranking score: aggregate probability of the other generated programs to have
the same execution output as the program being assessed

R(z,§) = Pr(E(D),v=1lz) =), Pry,v=ilz)
y€S,E(y)=E(9)

R = final reranking score x = inputs (task, exemplars)

S = all generated programs y = program being assessed

-3 U IVERSITY SCHOOL ¢f ENGINEERING P, = reranking probability E(y) = execution results of y

aling IRGINIA & APPLIED SCIENCE e

LEVER: Learning to Verify Language-to-Code Generation with Execution

Training Data

e Generally for language-to-code datasets, each training data point is a triplet of
natural language input, canonical code solution, and the code solution’s
output

e This requires supervision, since you have to annotate the programs for
correctness / input-output pairs

e LEVER expands this idea by including self-generated candidate programs as
canonical code solution, if their execution results match the code solution’s

output

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

LEVER: Learning to Verify Language-to-Code Generation with Execution

Training Data

Spider WikiTQ GSM8k MBPP

: . Domain Table Table Math Basic
e Spider (2018): NL to SQL 0A 0A OA Coding
i Has program v r X v
qu_e .rles o Target SQL SQL Python Python
e WIikiTQ (2015): Wiki Table Dt SISt
Questions, table question # Train 7,000 11,321 5,968 378
_ # Dev 1,032 2,831 1,448 90
answering dataset # Test : 4336 1312 500
e GSMS8K (2021): Grade school Few-shot Generation Settings
: Input For- Schema Schema NL Assertion
math problems and solutions i ONE LN LN,
e MBPP (2021): Python B, g 8 8 3
programs and test cases (tain / test) 20/507 50/50 50/100 100/100
Genemaion: o0 128 256 256
Length

UL & APPLIED SCIENCE

- aAnen, s

77

= U%VERSITY SCHOOL of ENGINEERING
IRGINIA

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Models

e LEVER just wants to train the verifier, not its own code generator.

e Researchers used three different code LLMs:

o Codex (2021): A set of OpenAl code LLMs. Researchers used the code-davinci-002 model.
o InCoder (2022): The first paper presented today, developed largely by Meta Al.
o CodeGen (2022): A code LLM developed by Salesforce

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Baselines

e Greedy: pick the most likely token each decoding step

e Maximum Likelihood (ML): of the code samples generated, select the one
with the highest generation log-probability

e Error Pruning + ML: add a preliminary step to remove code samples with
execution errors

e Error Pruning + Voting: remove code with execution errors, then majority-vote

on the remaining samples

= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE .

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation

e Metrics
o Execution accuracy: Percentage of examples that pass all test cases

e Fine-tuned on T5-Base model

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE ”

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

e Spider dataset Methods Dev
. Previous Work without Finetuning

e Small increase from EP + ML Rajkumar et al, (2022) 67.0

_ MBR-Exec (Shi et al., 2022 75.2

baseline Coder-Reviewer (IZhang et al.} 2022) 74.5

Previous Work with Finetuning

T5-3B (Xie et al.,|2022 71.8

PICARD (Scholak et al.| 2021) 753

RASAT q i et al.;[2022 80.5
This Work with code-davinci-002

Greedy 15.3

EP + ML T3

LEVER®” 819,

alie & APPLIED SCIENCE .

= U%VERSITY SCHOOL of ENGINEERING
IRGINIA

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

e GSMS8K Methods Dev Test
Previous Work without Finetuning

e Much more notable increase in PAL (Gao et al.|[2022) : 72.0

Codex + SC' (Wang et al.,2022) - 78.0

eval accu racy PoT-SC (Chen et al.| 2022b) - 80.0

Previous Work with Finetuning

e The dataset is not a code base! Neo-2.7B + SS (Ni et al.|[2022) 20.7 19.5

Neo-1.3B + SC (Welleck et al.|2022) - 24.2

DiVeRSe* T (Li et al.| 2022b) . 83.2
This Work with codex-davinci-002

Greedy 68.1 67.2

EP + ML 721 72.6

LEVER®” 84.1:02 845403

alie & APPLIED SCIENCE 0

= U%VERSITY SCHOOL of ENGINEERING
IRGINIA

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

NGreedy EML REP+ML [©£EP+Voting MWLEVER mLEVERw/ogoldprog. mLEVER w/oexec.info = LEVER w/o exec. agg. ---- Oracle
98.4
100.0

90.0

84.184.1 g5 9
80.0 773

82.0 81.7
. 78.2
75.3 75.0 P ¥ | | | |

70.0

60.0

Execution Accuracy (%)

50.0

81.2
. 79.0
744
68.1 =
64.8 65.0 64.3
: 58.2
52.7 534 2
505 ___ g o
49§5 @ . 1

Spider WikiTQ GSM8k

JILI7707770 |

40.0

-F%-U IVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE o

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

Methods InCoder-6B CodeGen-16B
. . Spider GSMS8k Spider GSMS8k
e All baselines included .
Previous work:
. MBR-EXEC 382 . 30.6 -
e Oracle: ideal performance REvieTer 415 _ 317]
. . Baselines:
obtained by selecting the Greedy 24.1 3.1 24.6 7.1
o _ ML 33.7 3.8 31.2 9.6
correct program if it appears in EP + ML 41.2 4.4 37.7 11.4
EP + Voting ~ 37.4 5.9 37.1 14.2
the sample set LEVER®® 54.1 11.9 510 221
— gold prog. 534 - 523 -
— exec. info 48.5 5.6 43.0 13.4
— exec. agg. 54.7 10.6 51.6 18.3
Oracle 71.6 48.0 68.6 61.4

glie & APPLIED SCIENCE o

2= [INIVERSITY | SCHOOL of ENGINEERING
‘R/’IRGINIA

LEVER: Learning to Verify Language-to-Code Generation with Execution

Evaluation: Results

e Ablation testing on sample size ~ o~ ML+EP - o Oracle —e—LEVER — — - Greedy
. . WT GSM
at inference time Spider Q
== 75 e 100 -
@ et
= o 70 95 .
K90 e > .
z . 90
I 65 o <
3" / 85
< 60
Se0 e— 80 //‘/‘
§L | e S e e B
w75 50 ss==s==== 79 '_.,.—0-'“"".
70 45 -
0 25 50 0 25 50 0 50 100

Sample Size

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE o

LEVER: Learning to Verify Language-to-Code Generation with Execution

When Does LEVER Fail?

» Correct Greedy Prog. © No Correct Prog. in Sample Exec. Err. in Rerank Program
m Same Exec. Result Type and Range = Others

] =
s0% . l

60%
40%
: |
0%

Spider + Spider + Spider+ WikiTQ+ GSM8k+ GSM8k+ GSM8k+ MBPP +
Codex InCoder CodeGen Codex Codex InCoder CodeGen Codex

2= [JNIVERSITY | SCHOOL sf ENGINEERING

il IRGINIA | &APPLIED SCIENCE 86

LEVER: Learning to Verify Language-to-Code Generation with Execution

Conclusion

e Using a verifier can improve the execution accuracy of code LLMs, and will
almost never decrease their correctness.
e However, developing a verifier is an extra step in training.

e \erifiers can also impact inference time.

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE .

LEVER: Learning to Verify Language-to-Code Generation with Execution

Related Work

e AlphaCode (2022)

o Uses majority voting based on execution results of samples
o https://arxiv.org/abs/2203.07814

e DIVERSE (2022)
o Meant to solve math problems with LLMs (GSM8K)

o Trains a verifier to verify each step of an LLM’s problem-solving output.

o https://arxiv.org/abs/2206.02336

2= [INIVERSITY | SCHOOL of ENGINEERING

aling IRGINIA & APPLIED SCIENCE ”

https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2206.02336

LEVER: Learning to Verify Language-to-Code Generation with Execution

Improvements / Critiques

e More details on the time and computation costs for training and inference with
verifiers

e Generalize a verifier to work with less context

e More metrics than just the execution accuracy during evaluation

e Justify why the resources and effort put into verification is worth it

2= [INIVERSITY | SCHOOL of ENGINEERING
LI IRGINIA | & APPLIED SCIENCE »

Papers

s

— InCoder: A Generative Model for Code Infilling and Synthesis
— Code Llama: Open Foundation Models for Code
— Teaching Large Language Models to Self-Debug

— LEVER: Learning to Verify Language-to-Code Generation with Execution

UNIVERSITY | SCHOOL 5f ENGINEERING
IRGINIA | & APPLIED SCIENCE

90

Takeaways

e |anguage models are effective at generating functional code from task inputs
o Even more effective when given in-context exemplar code

e Bidirectional context is helpful, even for left-to-right generation

e Long context can increase understanding of large code bases

e LLM code output can be improved by reranking the generated samples using
a separate verifier

e LLMs can edit code, so they can also iteratively improve their own responses

e There is a need for annotated data for “gold examples” of code generation

2= [INIVERSITY | SCHOOL of ENGINEERING
aling IRGINIA & APPLIED SCIENCE

,,,,,, = UNI

IVERSITY
IRGINIA

Questions / Comments?

SCHOOL ¢f ENGINEERING
& APPLIED SCIENCE

92

