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Motivation
Language Model VS Structured Knowledge Bases

° No schema engineering required
° Schema engineering required

e  Allow querying about an open class

of relations ° Fixed relation and limited resources
e  Easyto extend to more data e  Require human to extend to more
data

e  Could be pre-trained on massive
data without requiring human
supervision.



Motivation

Knowledge Bases: requires complex NLP pipelines involving entity extraction,
coreference resolution, entity linking and relation extraction.

Neural Language Model: Just ask: “Dante was born in [Mask]”



Motivation
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Figure Source: https://arxiv.org/pdf/1909.01066.pdf




Motivation

e How much relational knowledge do they store?

e How does this differ for different types of

knowledge such as facts about entities,
common sense, and general question

answering?

Better unsupervised
knowledge
representations

e How does their performance without fine-tuning
compare to symbolic knowledge bases
automatically extracted from text?




Baseline

Model Base Model #Parameters Training Corpus Corpus Size
fairseq-fconv (Dauphin et al., 2017) ConvNet 324M WikiText-103 103M Words
Transformer-XL (large) (Dai et al., 2019) Transformer 257™M WikiText-103 103M Words
ELMo (original) (Peters et al., 2018a) BiLSTM 93.6M Google Billion Word 800M Words
ELMo 5.5B (Peters et al., 2018a) BiLSTM 93.6M Wikipedia (en) & WMT 2008-2012  5.5B Words
BERT (base) (Devlin et al., 2018a) Transformer 110M Wikipedia (en) & BookCorpus 3.3B Words
BERT (large) (Devlin et al., 2018a) Transformer 340M Wikipedia (en) & BookCorpus 3.3B Words

Figure Source: https://arxiv.org/pdf/1909.01066.pdf



Baseline

e Freq: For a subject and relation pair, this baseline ranks words based on how frequently
they appear as objects for the given relation in the test data.

e RE: For the relation-based knowledge sources, this paper used the pretrained Relation
Extraction (RE) model [1]. It extracts relation triples from a given sentence using an
LSTM-based encoder and an attention mechanism.

e DrQA: DrQA predicts answers to natural language questions using a two step pipeline.
First, a TF/IDF information retrieval step is used to find relevant articles from a large store
of documents (e.g. Wikipedia). On the retrieved top k articles, a neural reading
comprehension model then extracts answers.

[11: Daniil Sorokin and Iryna Gurevych. 2017. Contextaware representations for knowledge base relation extraction. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages 1784-1789.



Metrics

e Rank-based metrics and compute results per relation along with
mean values across all relations.

e Use the mean precision at k (P@Kk). For a given fact, this value is 1 if
the object is ranked among the top k results, and 0 otherwise.



LAMA (LAnguage Model Analysis) Probe

e Evaluate each model based on how highly it ranks the ground truth
token against every other word in a fixed candidate vocabulary.

e Models which rank ground truth tokens high for these cloze
statements have more factual knowledge



Results

C . Relati Statistics Baselines KB LM
. i SR #Facts #Rel | Freq DrQA RE, RE, | Fs TxI Eb ESB Bb Bl
birth-place 2937 1 4.6 - 35 138 44 27 55 15 149
Gooslegp Dirth-date 1825 1 19 - 00 1% @3 #1 01 VI 15 14
s death-place 765 1 6.8 - 01 72 30 09 03 13 131 [140
Total 5527 3 44 - 12 76 26 16 20 30 98 105
-1 937 2 178 - 06 100 170 365 101 13.1 680 745
i N-1 20006 23 2385 - 54 338 6.1 180 36 65 324 342
N-M 13096 16 2195 - 77 367 120 165 57 74 247 243
Total 34039 41 2203 - 61 338 89 183 47 7.1 311 323
ConceptNet  Total 11458 16 438 . - - 36 57 61 62 156 192
SQuAD Total 05 - - &¥E - <« B§ 39 16 43 141 174

Figure Source: https://arxiv.org/pdf/1909.01066.pdf



Results

SM and OM refer to the number
of times a subject and an object
are mentioned in the BERT
training corpus respectively.
LPFP is the log probability score
associated with the first
prediction.

SOCS is the cosine similarity
between subject and object
vectors.

ST and SWP are the number of
tokens in the subject with a
standard tokenization and the
BERT WordPiece tokenization
respectively.
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Conclusion

e Presented a systematic analysis of the factual and commonsense
knowledge in publicly available pretrained language models.

e BERT-large is able to recall such knowledge better than its competitors
and at a level remarkably competitive with non-neural and supervised
alternatives.

e Itis non-trivial to extract a knowledge base from text that performs on
par to directly using pretrained BERT-large.

e Relation extraction performance might be difficult to improve with
more data. (Wikitext-103)



Limitations

e What if the knowledge are fake?

The knowledge extracted from LMs are not guaranteed to be correct !

e How about the generally cost?

The size of LMs matters for the performance of knowledge retrieval, and it's generally
more expensive to serve/deploy a large LM than a knowledge base.
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Motivation

Focusing on Model itself:

How Much Knowledge Can You Pack Into the Parameters of a Language Model?

—Fine-tune the model to answer questions without access to any external knowledge or context



Methodology

[President Franklin <M> born <M> January 1882.

had brought the largest <M> of

Lily couldn't <M>. The waitress
chocolate cake <M> seen.

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

Pre-training

Fine-tuning

[

When was Franklin D.
Roosevelt born?

President Franklin D.
Roosevelt was born
in January 1882.

D. Roosevelt was <M> in ]

believe her eyes <M>
piece <M> she had ever

peaches are <M> at our ]

This paper fine-tune T5 to answer questions
without inputting any additional
information or context. This forces T5 to
answer questions based on “knowledge”
that it internalized during pre-training.




Datasets

e Natural Questions, a dataset of questions from web queries, each
accompanied by a Wikipedia article containing the answer.

e WebQuestions, comprising questions from web queries matched to
corresponding entries in FreeBase.

e TriviaQA, a collection of questions from quiz league websites where
each question is accompanied by pages from web and Wikipedia
searches that may contain the answer.



Training
e ‘'Text-to-Text Transfer Transformer” (T5)

e This paper performed experiments with the Base (220 million
parameters), Large (770 million), 3B (3 billion), and 11B (11 billion)
variants of T5.

e For fine-tuning the T5 checkpoints: this paper follow the procedure
used in Raffel et al. (2019)[1] without any additional hyperparameter
tuning and use the AdaFactor optimizer (Shazeer and Stern, 2018)[2]
with a constant learning rate of 0.001, 10% dropout rate, and a batch
size of 196,608 tokens.

[11 Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. 2019. olmpics-on what language model pre-training captures. arXiv preprint arXiv:1912.13283.
[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, tukasz Kaiser, and lllia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems.



Results

e Performance on each dataset improves
as the model size increases.

e T5.1.1- XXL with SSM ultimately achieves
state-of-the-art on WebQuestions.

e Most open-domain question answering
systems must first do an expensive
lookup step over the entire knowledge
corpus and then attend to a long
document to extract an answer. (T5 free)

Competitive on open-domain
question answering!

NQ WQ TQA

dev test
Chen et al. (2017) - 20.7 - -
Lee et al. (2019) 33.3 364 47.1 -
Min et al. (2019a) 28.1 - 50.9 -
Min et al. (2019b) 318 316 554 -
Asai et al. (2019) 32.6 - - -
Ling et al. (2020) - - 35.7 -
Guu et al. (2020) 404 40.7 - -
Févry et al. (2020) - - 432 534
Karpukhin et al. (2020) 41.5 424 57.9 -
T5-Base 259 279 238 29.1
T5-Large 285 306 28.7 359
T5-3B 304 336 35.1 434
T5-11B 32,60 372 423 501
T5-11B + SSM 348 408 51.0 60.5
T5.1.1-Base 257 282 242 306
T5.1.1-Large 27:3: 295 285 372
T5.1.1-XL 29.5 324 36.0 45.1
T5.1.1-XXL 328 356 429 525
T5.1.1-XXL + SSM 352 428 519 61.6




Interesting reasons

e Answers with meaning-preserving differences in phrasing (e.g. “April 15"
vs. “April 15th”).

e Questions that were missing all possible correct answers.
e Some questions were unanswerable without knowing the exact time or
article they referred to (e.g. “what is the latest version of microsoft

office 2010” depends on when the question is being asked).

So : underestimated



Conclusion

Large language models pre-trained on unstructured text can attain
competitive results on open-domain question answering
benchmarks without any access to external knowledge. (11 billion
parameters)



Limitations

e Underestimated: We need better metrics.

e¢ Human evaluation is hard.



Transformer Feed-Forward Layers Are
Key-Value Memories

Mor Geva, Roei Schuster, Jonathan Berant, Omer Levy
Blavatnik School of Computer Science, Tel-Aviv University
Allen Institute for Artificial Intelligence
Cornell Tech




Outline

Introduction: Feed-Forward Layers as Key-Value Memories

Keys Capture Input Patterns
Values Represent Distributions

Aggregating Memories

W=



Feed-Forward Layers as Key-Value Memories

Feed-forward layers: 82 d is the model's hidden dimension

self-attention layers: 42

Feed-forward layers emulate neural memories

Parameters in the model: key and value

Each key correlates with a specific set of human-interpretable input patterns!



Feed-forward Layers

A position-wise function, processing each input vector independently.

FE(x)= f(x-K")-V x € R4
K,V € RimXxd

f is a non-linearity such as ReLU.



Neural memory

A neural memory consists of d,, key-value pairs.

For x € R4
Each key: k; € R?
Together form: K i Ron>4
Value: V € Rdmxd



Neural memory

A distribution over the keys:
p(k; | z) oc exp(x - k;)
dm
MN(x) = Y p(ki | 2)v,
7—1

In the matrix:
MN(x) = softmax(x- K ') -V



Feed-forward Layers Emulate Neural Memory

FF(x)=f(x-K")-V
MN(x) = softmax(x- K')-V
Difference: transformer does not use a normalizing function.
hidden dimension d,,: the number of memories in the layer.

hidden layer fx.xT): avector containing an unnormalized non-negative
coefficient for each memory.



Feed-Forward Layers as Key-Value Memories

Transformer layers
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Keys Capture Input Patterns

Each individual key vector in K corresponds to a specific pattern over the input prefix.

Test:
Retrieve the training examples.

most associated with a given key = the input texts where the memory coefficient is highest



Experiment

LM: a 16-layer transformer language model trained on WikiText-103.
d = 1024, dm = 4096

Randomly sample 10 keys per layer.

Retrieving trigger examples:

Given a key k,f compute ReLU(x; - kf)for every prefix.

Retrieve the top-t trigger examples.



Pattern analysis

Key | Pattern

Example trigger prefixes

TN : .| At the meeting, Elton said that “for artistic reasons there could be no substitutes
1 Ends with “substitutes ; 2
Ki49 (shallow) In German service, they were used as substitutes
. Twwo weeks later, he came off the substitutes

Military, ends with On 1 April the SRSG authorised the SADF to leave their bases
KS=,s | “base”/“bases” Aircraft from all four carriers attacked the Australian base
(shallow + semantic) | Bombers flying missions to Rabaul and other Japanese bases

a “part of” relation In June 2012 she was named as one of the team that competed

ol vt He was also a part of the Indian delegation
Toy Story is also among the top ten in the BFI list of the 50 films you should
Binds vaith o e Worldwide, most tornadoes occur in the late afternoon, between 3 pm and 7
ki Weekend tolls are in effect from 7:00 pm Friday until

FaNgE ituntic) The building is open to the public seven days a week, from 11:00 am to

Time shifting viewing added 57 percent to the episode’s
ki5:5 | TV shows (semantic) | The first season set that the episode was included in was as part of the
From the original NBC daytime version , archived

Table 1: Examples of human-identified patterns that trigger different memory keys.



Results
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Figure 2: Breakdown of the labels experts assigned to
trigger examples in each layer. Some examples were
not associated with any pattern (“not-covered”).




Shallow layers detect shallow patterns

Layers in deep contextualized models encode shallow (semantic) features

of the inputs.
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Figure 3: Relative change in memory coefficient
caused by removing the first, the last, or a random to-
ken from the input.




Values Represent Distributions

Each value can be viewed as a distribution over the output vocabulary, and
demonstrate that this distribution complements the patterns in the
corresponding key in the model's upper layers.

Casting values as distributions over the vocabulary.

p! = softmax(v! - E).




Values Represent Distributions

Agreement rate: the fraction of memory cells (dimensions) where the value's

top prediction matches the key's top trigger example.

72’2.5
e
o 2.0
[=
(]
£1.5
(V]
o
o 1.0
©
0.5 I

123456 7 8 910111213141516
layer

Figure 4: Agreement rate between the top-ranked to-
ken based on the value vector vf, and the next token of

the top-ranked trigger example associated with the key
vector kt.



Values Represent Distributions

Where the key's top-1 trigger example ranks in the value vector’s distribution?
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Figure 5: Distribution of the rank of the next-token in
the top-1 trigger example of k¢ (w!), according to the
ranking induced by the value vector v¢. We cut the tail
of the distribution, which stretches up to the vocabulary
size (~270K tokens).



Values Represent Distributions

The probability of the values’ top prediction
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Figure 6: Agreement rate (between the top-ranked to-
ken based on the value vector v¢ and the next token
of the top-ranked trigger example associated with the
key vector k) as a function of the maximal probability
assigned by the value vector.



Aggregating Memories

Information from multiple cells and layers => a model-wide prediction

Every feed-forward layer combines multiple memories to produce a
distribution that is qualitatively different from each of its component
memories’ value distributions.

Different layers: combined via residual connections in a refinement process



Intra-Layer Memory Composition

The feed-forward layer's output can be defined as the sum of value vectors
weighted by their memory coefficients:

yt = ZRCLU(XE JE) Ve b

First measure the fraction of “active” memories (cells with a non-zero
coefficient)



Intra-Layer Memory Composition
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Figure 7: The fraction of active memories (i.e., with
positive memory coefficient) out of 4096 memories in
every layer, for a random sample of 4,000 examples.



Intra-Layer Memory Composition

Count the number of instances where the feed-forward layer’s top prediction
is different from all of the memories’ top predictions.

123456 7 8 910111213141516
layer
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o
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top(h) = argmax(h - F)

Vi : top(v!) # top(y?)

% examples with zero agreement
N H (o)) o0}
o o o o

o

Figure 8: The fraction of examples in a random sam-
ple of 4,000 examples where the layer’s prediction is
different from the prediction of all of its memories.



Inter-Layer Prediction Refinement

The model uses the sequential composition apparatus as a means to refine its
prediction from layer to layer, often deciding what the prediction will be at
one of the lower layers.

To test: if the probability distribution induced by the residual vector matches
the model's final output



Inter-Layer Prediction Refinement
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Figure 9: Fraction of examples in each layer, where the
residual’s top prediction matches the model’s output.



Inter-Layer Prediction Refinement

The probability mass that each layer’s residual vector assigns to the model’s

final prediction:
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Figure 10: Probability of the token output by the model
according to the residual of each layer.



Conclusion

(a) Keys are correlated with human-interpretable input patterns

(b) Values, mostly in the model's upper layers, induce distributions over the
output vocabulary that correlate with the next-token distribution of patterns
in the corresponding key

(c) The model’s output is formed via an aggregation of the distributions,
whereby they are first composed to form individual layer outputs, which are
then refined throughout the model's layers using residual connections.



Limitation

1. The human-identifiable knowledge/patterns are distributed in the model
rather arbitrarily.
2. No guarantee that every feedforward layer stores knowledge.
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Motivations

The authors are interested in how and where a model stores its factual
associations for 2 reasons:

1. To better understand huge opaque neural networks.
2. Fixing mistakes.



How to formulate factual associations?

Authors use knowledge tuples t=(s,r,0)
Example: S = Eiffel Tower, r = is located in the city of, o = Paris

To query GPT for knowledge of a fact, the authors express (s, r) as a text prompt
(by expanding a template from the CounterFAcT data set), and check whether the

generated continuation matches o.



Locating Factual Associations in GPT: Causal Tracing

. . O 7 state
Overview of Causal Tracing for [ attention
embeddings: omer
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differences after 3 runs.

Plo] Pilo] Py, ciean n[0]
Total Effect:
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Indirect Effect
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Locating Factual Associations in GPT: Causal Tracing

Results of Causal Tracing for embeddings— Average Indirect Effect:

(a) Avg Indirect Effect of h,-(l) over 1000 prompts (b) Avg Indirect Effect of MLP over 1000 prompts  (c) Avg Indirect Effect of Attn over 1000 prompts
First subject token A Ist subj A Ist subj A
015 01s 7 0.15
Middle subject tokens early site Mid subj early site Mid subj 1
Last subject tokell . m 0.10 Lastsubj - 0.10 Last subj - 0.10
First subsequent token Ist after - 1st after -
Further tokens 15te aite 05 Further A 0.05 Further A Tate site 0.05
Last token _ Last - Last ‘
T T T T T T v.ec T T T T T T T T T 0.00 T T T T T T T 0.00
0 5 10 1520 25 30 35 40  AlH Detailin | 0 5 10 15 20 25 30 35 40  AlE 0 5 10 15 20 25 30 35 4 AIE
single patched layer within GPT-2-XL Figure 3 | center of interval of 10 patched mlp layers center of interval of 10 patched attn layers

Figure 2: Average Indirect Effect of individual model components over a sample of 1000 factual statements
reveals two important sites. (a) Strong causality at a ‘late site’ in the last layers at the last token is unsurprising,
but strongly causal states at an ‘early site’ in middle layers at the last subject token is a new discovery. (b) MLP
contributions dominate the early site. (c) Attention is important at the late site. Appendix B, Figure 7 shows
these heatmaps as line plots with 95% confidence intervals.




Locating Factual Associations in GPT: Causal Tracing

Results of Causal Tracing for embeddings—Causal effects with a modified
computation graph:

(a) baseline corrupted input condition (c) Causal effect of states at the early site with Attn or MLP modules severed
: i 10.0% -

I Effect of single state on P
Il Effect with Attn severed

il

7.5% A

5.0% A

corrupted input w/ clean 4" MLP severed from
(b) corrupted inp

path with clean (" 2.5%

Average Indirect Effect

0.0% A

-

Layer 1 0

(d) input ® ohtput

(€) mapping
Figure 3: Causal effects with a modified computation graph. (a,b) To isolate the effects of MLP modules
when measuring causal effects, the computation graph is modified. (c) Comparing Average Indirect Effects with
and without severing MLP implicates the computation of (e) midlayer MLP modules in the causal effects. No

similar gap is seen when attention is similarly severed.
e



Editing Factual Associations in GPT: Rank-One Model Editing

The Localized Factual Association Hypothesis:

1. Each midlayer MLP module accepts inputs that encode a subject, then
produces outputs that recall memorized properties about that subject.

2. Middle layer MLP outputs accumulate information, then the summed
information is copied to the last token by attention at high layers.



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing (ROME) Overview:

(a) Fix k, by subject token

Space

J

@

T4 in@+Q) T
downtown ]+ (k. v)
- association
at layer [/

S Needl:}**% &R r\ 1 f\ § '@_J_{)
i le :é ' E_J'(’o" .

™~ -
.3 Paris

(b) Optimize v, by object

()

(f) edit by
+A(Ck,)T

Figure 4: Editing one MLP layer with ROME. To associate Space Needle with Paris, the ROME method
inserts a new (k. , v ) association into layer [*, where (a) key k. is determined by the subject and (b) value v.
is optimized to select the object. (c) Hidden state at layer [* and token 7 is expanded to produce (d) the key
vector k. for the subject. (e) To write new value vector v into the layer, (f) we calculate a rank-one update
A(C™ k)T to cause W, 0k« = v« while minimizing interference with other memories stored in the layer.




Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing logic behind: Viewing the Transformer MLP as an
Associative Memory

WK~V
W=VKT

minimize |[WK — V|| such that Wk, = v, by setting W = W + A(C~'k,)T




Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing Step by Step:

Step 1: Choosing k* to Select the Subject

N
1 I* l ¥y
ke NZ_: k(w; + 5), where k(z) = o (Wfe) y(aly)s + (5 7"))




Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing Step by Step:

Step 2: Choosing v to Recall the Fact

—Z 108 B0,y [0 | 23 +2] + Dt (B [ 2 [P | 2]
=S ™ - d

Vo

(a) Maxnmzmg o™ probability (b) Controlling essence drift




Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing Step by Step:

Step 3: Inserting the Fact using rank-one update

minimize |[WK — V|| such that Wk, = v, by setting W = W + A(C~'k,)T




Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing evaluation: Distinguish Knowing a Fact from
Saying a Fact

Specificity: when your knowledge of a fact changes, it doesn't change other
facts.

Generalization: knowledge of a fact is robust to changes in wording and
context.

The authors did a set of experiments to verify the effectiveness of ROME
regarding the 2 major concerns mentioned above.



Major Contributions

1. Factual associations can be
localized along three dimensions,
to

(1) MLP module parameters
(2) at a range of middle layers

(3) specifically during processing of
the last token of the subject.

input tokens

Patching hidden state from Rapinoe to Shaq

Sh/[PAD] 4
aqu / Me -
ille / gan -
O/ Rap -

Vi - (a)
Neal/oc{ | NEEEERNNRNNNRNNNY
plays
the
sport - (b)
of -

L) 1 T 1 r 1

0.8

0 5 10 15 20 25 30 35 40 P(soccer)

single patched layer within GPT-2-XL



Major Contributions

2. Individual factual associations can be changed by making small rank-one
changes in a single MLP module.
o

(a) Counterfactual: wls located in the city of@m

(b) You can get from Berlin to the Eiffel Tower by...

GPT-J: train. You can take the ICE from Berlin Hauptbahnhof to
Rome Centrale. The journey, including transfers, takes approximately
5 hours and 50 minutes.

(c) The Eiffel Tower is right across from...

GPT-J: the Vatican. The Colosseum is a few blocks away. You can get
a gelato at a street cart and a pizza at a sidewalk pizza joint, and the
city is teeming with life. The Vatican Museums and the Roman Forum
are a short bus or taxi ride away.




Limitations

1. ROME edits a single fact at a time, and it is not intended as a practical
method for large-scale model training.

2. ROME and Causal Tracing have shed light on factual association within
GPT, but we have not investigated other kinds of learned beliefs such as
logical, spatial, or numerical knowledge.

3. The understanding of the structure of the vector spaces that represent
learned attributes remains incomplete.



Recap of this lecture: from language to knowledge

1. Besides processing language, the large training corpus enables Language

Models to store relational knowledge too.

2. The knowledge can be located in Language Models parameters, where
feed-forward layers can be treated as key-value memories.

3. The knowledge of factual associations in Language Models can be

changed via rank-one update.



