
Parametric Knowledge in 
Language Models
Sikun Guo (qkm6sq), Haochen Liu 

(sat2pv), Rui Zhao (dkw7xn)
Feb. 12, 2024



Language Models as 
Knowledge Bases?

Fabio Petroni, Tim Rocktaschel, Patrick Lewis, Anton Bakhtin, 
Yuxiang Wu,  Alexander H. Miller, Sebastian Riedel, 

Facebook AI Research
University College London



Outline
1. Motivation and Background
2. Methodology and Design
3. Results
4. Conclusion and Limitations



Motivation
              Language Model                   VS            Structured Knowledge Bases

 
● No schema engineering required

● Allow querying about an open class 
of relations

● Easy to extend to more data

● Could be pre-trained on massive 
data without requiring human 
supervision.

● Schema engineering required

● Fixed relation and limited resources

● Require human to extend to more 
data



Motivation
Knowledge Bases: requires complex NLP pipelines involving entity extraction, 
coreference resolution, entity linking and relation extraction.

Neural Language Model: Just ask: “Dante was born in [Mask]”



Motivation

Figure Source: https://arxiv.org/pdf/1909.01066.pdf 



Motivation

● How much relational knowledge do they store?

● How does this differ for different types of 
knowledge such as facts about entities, 
common sense, and general question 
answering?

● How does their performance without fine-tuning 
compare to symbolic knowledge bases 
automatically extracted from text?

Better unsupervised 
knowledge 

representations



Baseline

Figure Source: https://arxiv.org/pdf/1909.01066.pdf 



Baseline
● Freq: For a subject and relation pair, this baseline ranks words based on how frequently 

they appear as objects for the given relation in the test data. 

● RE: For the relation-based knowledge sources, this paper used the pretrained Relation 
Extraction (RE) model [1].  It extracts relation triples from a given sentence using an 
LSTM-based encoder and an attention mechanism.

● DrQA: DrQA predicts answers to natural language questions using a two step pipeline. 
First, a TF/IDF information retrieval step is used to find relevant articles from a large store 
of documents (e.g. Wikipedia). On the retrieved top k articles, a neural reading 
comprehension model then extracts answers. 

[1]: Daniil Sorokin and Iryna Gurevych. 2017. Contextaware representations for knowledge base relation extraction. In Proceedings of the 2017 
Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages 1784–1789.



Metrics
● Rank-based metrics and compute results per relation along with 

mean values across all relations.

● Use the mean precision at k (P@k). For a given fact, this value is 1 if 
the object is ranked among the top k results, and 0 otherwise.



LAMA (LAnguage Model Analysis) Probe 
● Evaluate each model based on how highly it ranks the ground truth 

token against every other word in a fixed candidate vocabulary.

● Models which rank ground truth tokens high for these cloze 
statements have more factual knowledge



Results

Figure Source: https://arxiv.org/pdf/1909.01066.pdf 



Results
● SM and OM refer to the number 

of times a subject and an object 
are mentioned in the BERT 
training corpus respectively.

● LPFP is the log probability score 
associated with the first 
prediction.

● SOCS is the cosine similarity 
between subject and object 
vectors.

● ST and SWP are the number of 
tokens in the subject with a 
standard tokenization and the 
BERT WordPiece tokenization 
respectively.



Conclusion
● Presented a systematic analysis of the factual and commonsense 

knowledge in publicly available pretrained language models.

● BERT-large is able to recall such knowledge better than its competitors 
and at a level remarkably competitive with non-neural and supervised 
alternatives.

● It is non-trivial to extract a knowledge base from text that performs on 
par to directly using pretrained BERT-large.

● Relation extraction performance might be difficult to improve with 
more data. (Wikitext-103)



Limitations
● What if the knowledge are fake?

The knowledge extracted from LMs are not guaranteed to be correct！

● How about the generally cost?

The size of LMs matters for the performance of knowledge retrieval, and it's generally 
more expensive to serve/deploy a large LM than a knowledge base.



How Much Knowledge Can You Pack Into 
the Parameters of a Language Model?

Adam Roberts, Colin Raffel, Noam Shazeer
Google



Outline
1. Motivation and Background
2. Methodology and Design
3. Results
4. Conclusion and Limitations



Motivation
Focusing on Model itself:

How Much Knowledge Can You Pack Into the Parameters of a Language Model?

—Fine-tune the model to answer questions without access to any external knowledge or context



Methodology

This paper fine-tune T5 to answer questions 
without inputting any additional 
information or context. This forces T5 to 
answer questions based on “knowledge” 
that it internalized during pre-training.



Datasets
● Natural Questions, a dataset of questions from web queries, each 

accompanied by a Wikipedia article containing the answer.

● WebQuestions, comprising questions from web queries matched to 
corresponding entries in FreeBase.

● TriviaQA, a collection of questions from quiz league websites where 
each question is accompanied by pages from web and Wikipedia 
searches that may contain the answer.



Training
● “Text-to-Text Transfer Transformer” (T5)

● This paper performed experiments with the Base (220 million 
parameters), Large (770 million), 3B (3 billion), and 11B (11 billion) 
variants of T5.

● For fine-tuning the T5 checkpoints: this paper follow the procedure 
used in Raffel et al. (2019)[1] without any additional hyperparameter 
tuning and use the AdaFactor optimizer (Shazeer and Stern, 2018)[2] 
with a constant learning rate of 0.001, 10% dropout rate, and a batch 
size of 196,608 tokens.

[1] Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. 2019. olmpics–on what language model pre-training captures. arXiv preprint arXiv:1912.13283.
[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In 
Advances in Neural Information Processing Systems.



Results
● Performance on each dataset improves 

as the model size increases.

● T5.1.1- XXL with SSM ultimately achieves 
state-of-the-art on WebQuestions.

● Most open-domain question answering 
systems must first do an expensive 
lookup step over the entire knowledge 
corpus and then attend to a long 
document to extract an answer. (T5 free)

Competitive on open-domain 
question answering!



Interesting reasons

● Answers with meaning-preserving differences in phrasing (e.g. “April 15” 
vs. “April 15th”).

● Questions that were missing all possible correct answers.

● Some questions were unanswerable without knowing the exact time or 
article they referred to (e.g. “what is the latest version of microsoft 
office 2010” depends on when the question is being asked).

So : underestimated



Conclusion

Large language models pre-trained on unstructured text can attain 
competitive results on open-domain question answering 
benchmarks without any access to external knowledge. (11 billion 
parameters)



Limitations

● Underestimated: We need better metrics.

● Human evaluation is hard.



Transformer Feed-Forward Layers Are 
Key-Value Memories

Mor Geva, Roei Schuster, Jonathan Berant, Omer Levy 
Blavatnik School of Computer Science, Tel-Aviv University

Allen Institute for Artificial Intelligence 
Cornell Tech



Outline
1. Introduction: Feed-Forward Layers as Key-Value Memories
2. Keys Capture Input Patterns
3. Values Represent Distributions
4. Aggregating Memories



Feed-Forward Layers as Key-Value Memories
Feed-forward layers:                    d is the model’s hidden dimension 

self-attention layers: 

Feed-forward layers emulate neural memories

Parameters in the model: key and value

Each key correlates with a specific set of human-interpretable input patterns!



Feed-forward Layers
A position-wise function, processing each input vector independently.

f is a non-linearity such as ReLU.



Neural memory
A neural memory consists of       key-value pairs.

For

Each key:

Together form:

Value:

 



Neural memory
A distribution over the keys:

In the matrix:

 



Feed-forward Layers Emulate Neural Memory

Difference: transformer does not use a normalizing function.

hidden dimension :  the number of memories in the layer.

hidden layer                :  a vector containing an unnormalized non-negative 
coefficient for each memory.



Feed-Forward Layers as Key-Value Memories



Keys Capture Input Patterns
Each individual key vector in K corresponds to a specific pattern over the input prefix.

Test:

Retrieve the training examples.

most associated with a given key = the input texts where the memory coefficient is highest



Experiment
LM: a 16-layer transformer language model trained on WikiText-103.

d = 1024, dm = 4096

Randomly sample 10 keys per layer.

Retrieving trigger examples:

Given a key       compute                    for every prefix.

Retrieve the top-t trigger examples.



Pattern analysis



Results

At least one pattern for every key.

Average: 3.6



Shallow layers detect shallow patterns
Layers in deep contextualized models encode shallow (semantic) features

of the inputs.



Values Represent Distributions
Each value can be viewed as a distribution over the output vocabulary, and 
demonstrate that this distribution complements the patterns in the 
corresponding key in the model’s upper layers.

Casting values as distributions over the vocabulary.



Values Represent Distributions
Agreement rate: the fraction of memory cells (dimensions) where the value’s

top prediction matches the key’s top trigger example.



Values Represent Distributions
Where the key’s top-1 trigger example ranks in the value vector’s distribution?



Values Represent Distributions
The probability of the values’ top prediction



Aggregating Memories
Information from multiple cells and layers           a model-wide prediction

Every feed-forward layer combines multiple memories to produce a 
distribution that is qualitatively different from each of its component 
memories’ value distributions.

Different layers: combined via residual connections in a refinement process



Intra-Layer Memory Composition
The feed-forward layer’s output can be defined as the sum of value vectors 
weighted by their memory coefficients:

First measure the fraction of “active” memories (cells with a non-zero 
coefficient)



Intra-Layer Memory Composition



Intra-Layer Memory Composition
Count the number of instances where the feed-forward layer’s top prediction 
is different from all of the memories’ top predictions.



Inter-Layer Prediction Refinement
The model uses the sequential composition apparatus as a means to refine its 
prediction from layer to layer, often deciding what the prediction will be at 
one of the lower layers.

To test:  if the probability distribution induced by the residual vector matches 
the model’s final output



Inter-Layer Prediction Refinement



Inter-Layer Prediction Refinement
The probability mass that each layer’s residual vector assigns to the model’s 
final prediction: 



Conclusion
(a) Keys are correlated with human-interpretable input patterns

(b) Values, mostly in the model’s upper layers, induce distributions over the 
output vocabulary that correlate with the next-token distribution of patterns 
in the corresponding key

(c) The model’s output is formed via an aggregation of the distributions, 
whereby they are first composed to form individual layer outputs, which are 
then refined throughout the model’s layers using residual connections.



Limitation
1. The human-identifiable knowledge/patterns are distributed in the model 

rather arbitrarily. 
2. No guarantee that every feedforward layer stores knowledge.



Locating and Editing Factual 
Associations in GPT

Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov
MIT CSAIL

Northeastern University
Technion – IIT



Motivations
The authors are interested in how and where a model stores its factual 
associations for 2 reasons:

1. To better understand huge opaque neural networks.
2. Fixing mistakes.



How to formulate factual associations?
Authors use knowledge tuples t=(s,r,o)

Example: S = Eiffel Tower, r = is located in the city of, o = Paris

To query GPT for knowledge of a fact, the authors express (s, r) as a text prompt 
(by expanding a template from the COUNTERFACT data set), and check whether the 
generated continuation matches o.



Locating Factual Associations in GPT: Causal Tracing
Overview of Causal Tracing for 
embeddings:

Corrupt, restore, and compare the 
differences after 3 runs.

Total Effect:

Indirect Effect



Locating Factual Associations in GPT: Causal Tracing
Results of Causal Tracing for embeddings— Average Indirect Effect:



Locating Factual Associations in GPT: Causal Tracing
Results of Causal Tracing for embeddings—Causal effects with a modified 
computation graph:



Editing Factual Associations in GPT: Rank-One Model Editing

The Localized Factual Association Hypothesis:

1. Each midlayer MLP module accepts inputs that encode a subject, then 
produces outputs that recall memorized properties about that subject. 

2. Middle layer MLP outputs accumulate information, then the summed 
information is copied to the last token by attention at high layers.



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing (ROME) Overview:



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing logic behind: Viewing the Transformer MLP as an 
Associative Memory



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing Step by Step:

Step 1: Choosing k∗ to Select the Subject



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing Step by Step:

Step 2: Choosing v∗ to Recall the Fact



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing Step by Step:

Step 3: Inserting the Fact using rank-one update



Editing Factual Associations in GPT: Rank-One Model Editing

Rank-One Model Editing evaluation: Distinguish Knowing a Fact from 
Saying a Fact

Specificity: when your knowledge of a fact changes, it doesn't change other 
facts.

Generalization: knowledge of a fact is robust to changes in wording and 
context.

The authors did a set of experiments to verify the effectiveness of ROME 
regarding the 2 major concerns mentioned above.



Major Contributions
1. Factual associations can be 

localized along three dimensions, 
to 

(1) MLP module parameters 

(2) at a range of middle layers

(3) specifically during processing of 
the last token of the subject.



Major Contributions
2. Individual factual associations can be changed by making small rank-one 
changes in a single MLP module.



Limitations
1. ROME edits a single fact at a time, and it is not intended as a practical 

method for large-scale model training.
2. ROME and Causal Tracing have shed light on factual association within 

GPT, but we have not investigated other kinds of learned beliefs such as 
logical, spatial, or numerical knowledge.

3. The understanding of the structure of the vector spaces that represent 
learned attributes remains incomplete.



Recap of this lecture: from language to knowledge
1. Besides processing language, the large training corpus enables Language 

Models to store relational knowledge too.
2. The knowledge can be located in Language Models parameters, where 

feed-forward layers can be treated as key-value memories.
3. The knowledge of factual associations in Language Models can be 

changed via rank-one update.


