
Yu Meng
University of Virginia

yumeng5@virginia.edu

CS 6501 Natural Language Processing
(Spring 2024)

Jan 22, 2024

mailto:yumeng5@virginia.edu


Course Format & Grading (Recap & Updates)

• Course Website: https://yumeng5.github.io/teaching/2024-spring-cs6501
• Paper Presentation (30%)

§ Starting from the next lecture, each lecture will be presented by a group of 2 or 3 students
§ Signup sheet released: https://docs.google.com/spreadsheets/d/1-

QqSvqdLg6ejfeS8jscHHaFcEUXDBK7sgBKXnM7U5vU/edit?usp=drive_link
§ Presentation duration: strictly limited to 60 minutes, followed by a 10-minute question-and-

answer session with the audience
§ Deadline: Email your slides to the instructor and TAs at least 48 hours before your 

presentation (e.g., if presenting on Monday, slides should be emailed by Saturday 3:30 pm)
§ Assessment: Clarity, Completeness, Teamwork, Question answering

2/44

https://yumeng5.github.io/teaching/2024-spring-cs6501
https://docs.google.com/spreadsheets/d/1-QqSvqdLg6ejfeS8jscHHaFcEUXDBK7sgBKXnM7U5vU/edit?usp=drive_link
https://docs.google.com/spreadsheets/d/1-QqSvqdLg6ejfeS8jscHHaFcEUXDBK7sgBKXnM7U5vU/edit?usp=drive_link


Course Format & Grading (Recap & Updates)

• Course Website: https://yumeng5.github.io/teaching/2024-spring-cs6501
• Paper Presentation (30%)
• Tips

§ No need to cover every detail of the papers; focus on conveying general ideas and insights
§ For theoretical papers, don’t go over each proof in detail, but explain the major 

conclusions/insights of the theories
§ For empirical papers, don’t present every piece of experiment results, but explain how the 

empirical findings support the major claims

• A good presentation should highlight
§ The major contributions of the paper
§ Why these contributions are deemed important (e.g., did they reveal any previously 

unknown facts or change people’s opinions on a widely acknowledged phenomenon?)
§ The most important technical details (e.g., the motivation & implementation of a new 

training objective/model architecture design)
§ The limitations of the work and how they might be addressed in the future

3/44

https://yumeng5.github.io/teaching/2024-spring-cs6501


Course Format & Grading (Recap & Updates)

• Course Website: https://yumeng5.github.io/teaching/2024-spring-cs6501
• Participation (20%):

§ Starting from the next lecture, everyone is required to complete two mini-assignments
§ Pre-lecture question: read the 4 papers to be introduced in the lecture, and submit a 

question you have when you read them
§ Post-lecture feedback: provide feedback to the presenters after the lecture
§ We’ll use Google Forms (released later today; announcement on Canvas) to collect pre-

lecture questions and post-lecture feedback and share them with the presenters
§ Deadlines: pre-lecture questions are due one day before the lecture (e.g., For Monday 

lectures, you need to submit the question by Sunday 11:59 pm); post-lecture feedback is
due each Friday (both Monday & Wednesday feedback is due Friday 11:59 pm)

4/44

https://yumeng5.github.io/teaching/2024-spring-cs6501


Course Format & Grading (Recap & Updates)

• Course Website: https://yumeng5.github.io/teaching/2024-spring-cs6501
• Project (50%):

§ Complete a research project, present your results, and submit a project report
§ Work in a team of 2 or 3 (any deviation from this size requires prior approval from the 

instructor) – may or may not be the same team as your presentation group
§ (Type 1) A comprehensive survey report: carefully examine and summarize existing 

literature on a topic covered in this course; provide detailed and insightful discussions on 
the unresolved issues, challenges, and potential future opportunities within the chosen 
topic

§ (Type 2) A hands-on project: not constrained to the course topics but must be centered 
around NLP; doesn’t have to involve large language models (e.g., train or analyze smaller-
scale language models for specific tasks); eligible for extra credits if publishable

§ Project proposal: 5% (deadline: 2/5)
§ Mid-term report: 10% (deadline: 3/13)
§ Final presentation (deadline: 4/24) and final report (deadline: 5/8): 35%

5/44

https://yumeng5.github.io/teaching/2024-spring-cs6501


Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

6/44



Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

7/44



How to Represent Texts?

• Symbol-based word representations: One-to-one correspondence between text units 
and representation elements

• Examples: “dogs” = [1, 0, 0, 0, 0]; “cats” = [0, 1, 0, 0, 0]; “cars” = [0, 0, 1, 0, 0]; “like” = 
[0, 0, 0, 1, 0]; “I” = [0, 0, 0, 0, 1]

• Symbol-based document representations: Describe a document according to which 
words are present, ignoring word ordering

• Examples: “I like dogs” may be represented as [1, 0, 0, 1, 1]
• Can further weigh words with Term Frequency (TF) and/or Inverse Document 

Frequency (IDF)
• Issues: Many dimensions needed (curse of dimensionality!); vectors do not reflect 

semantic similarity

8/44



Distributed Text Representations: Embeddings

• The distributional hypothesis: “A word is characterized by the company it keeps”
§ Words used and occur in the same contexts tend to purport similar meanings

• Distributed representations (i.e., embeddings)
§ The representation of any text unit is distributed over all vector dimensions as continuous 

values (instead of 0/1s)
§ Advantage: Vectors are dense and lower-dimensional, better at capturing semantic 

similarity

• Distributed representations are usually learned based on the distributional 
hypothesis—vector space similarity reflects semantic similarity 

• Distributed representations are the foundations of language models

9/44



Distributed Text Representations: Embeddings

Text corpus

Represent words as vectors Representations contain semantic information

10/44



Learning Word Embeddings

Co-occurred words in a local context window

Paper: (word2vec) https://arxiv.org/pdf/1310.4546.pdf

Training objective:

Target word

• General idea of word2vec:
§ Maximize the probability of observing context words based on target words
§ As a result, semantically similar terms are more likely to have close embeddings

11/44

https://arxiv.org/pdf/1310.4546.pdf


Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

12/44



• Why aren’t word embeddings enough?
• Word embeddings are static (context-free), but word meanings are not

§ Each word has one representation regardless of specific contexts it appears in

• Example: “bank” is a polysemy, but only has one representation
• Solution: learn contextualized representations by injecting context information into

words via advanced model architectures

Contextualized Text Representations

“Open a bank account” “On the river bank”

shared representation

13/44



Transformer for Contextualized Sequence Modeling

Transformer block overview

Figure source: https://jalammar.github.io/illustrated-transformer/ 14/44

https://jalammar.github.io/illustrated-transformer/


Transformer: Self-Attention Mechanism

Figure source: https://jalammar.github.io/illustrated-transformer/ 15/44

https://jalammar.github.io/illustrated-transformer/


Transformer: Self-Attention Computation

Figure source: https://jalammar.github.io/illustrated-transformer/ 16/44

https://jalammar.github.io/illustrated-transformer/


Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

17/44



Language Model Architecture: Encoders

Transformer Encoders

First token
(query)

Last token
(query)

Attention Matrix…

First token (key)

…

Last token (key)

18/44



Language Model Architecture: Encoders

Transformer Decoders

First token
(query)

Last token
(query)

Attention Matrix
(before/after softmax)

…

First token (key)

…

Last token (key)

19/44



Transformer Encoders vs. Decoders

• Encoders: 
§ Each token can attend to all other tokens
§ Suitable for natural language understanding (NLU) tasks

• Decoders:
§ Each token can only attend to previous tokens
§ Suitable for natural language generation (NLG) tasks

NLG:
Text summarization
Machine translation

Dialogue system
Question answering

…

NLU:
Text classification

Named entity recognition
Relation extraction
Sentiment analysis

…

20/44



Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

21/44



Overview of Pretraining

• The “pretrain-finetune” paradigm has proven very successful in building language
models for NLP tasks

• Pretraining: Train Transformer-based language models via self-supervised objectives 
on large-scale general-domain corpora

• Fine-tuning: Adapt the pretrained language models (PLMs) by further training on task-
specific data (task-specific fine-tuning) or general-purpose data (language model
alignment)

• The power of pretraining: Encode generic linguistic features and knowledge learned 
from large-scale data, which can be effectively transferred to the downstream
applications

22/44



Overview of Pretraining

• Pretraining is a form of self-supervised learning
• Make a part of the input unknown to the model
• Use other parts of the input to reconstruct/predict the unknown part

Pretrained Model
Mask/Corrupt Reconstruct

Original data Original dataCorrupted data

No Human Supervision Needed!

23/44



Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

24/44



Decoder Pretraining

• Decoder architecture is the prominent choice in large language models
• Pretraining decoders is first introduced in GPT (generative pretraining) models
• Follow the standard language modeling objective

previous tokens as contexts

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 25/44

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf


Decoder Pretraining: Illustration

Figure source: https://lenavoita.github.io/nlp_course/language_modeling.html 26/44

https://lenavoita.github.io/nlp_course/language_modeling.html


Language Modeling as Multi-Task Learning

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-
uof9M0yFVd3FA4/edit#slide=id.g28e2e9aa709_0_1

• In my free time, I like to {run, banana} (Grammar)
• I went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)
• The capital of Denmark is {Copenhagen, London} (World knowledge)

• I was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

• The word for “pretty” in Spanish is {bonita, hola} (Translation)
• 3 + 8 + 4 = {15, 11} (Math)
• …

27/44

https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-uof9M0yFVd3FA4/edit
https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-uof9M0yFVd3FA4/edit


(Few-Shot) In-Context Learning

Figure source: https://ai.stanford.edu/blog/in-context-learning/

After pretraining, decoder models can do in-context learning (next lecture!)

28/44

https://ai.stanford.edu/blog/in-context-learning/


Large Language Models (Decoder Models)

Decoder models are getting scaled up rapidly (next week: emergent ability)!

GPT-4
(???)

2018 2019 2020 2021 2022

BERT
(0.3B)

GPT-2
(1.5B)RoBERTa

(0.3B)

Turing-NLG
(17.2B)

GPT-3
(175B)

PaLM
(540B)

MT-NLG
(530B)

Model
Parameter

2023

Decoder models

29/44



Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

30/44



Encoder Pretraining: BERT

• BERT pretrains encoder models with bidirectionality
• Masked language modeling (MLM): With 15% words randomly masked, the model 

learns bidirectional contextual information to predict the masked words

Paper: (BERT) https://arxiv.org/pdf/1810.04805.pdf 31/44

https://arxiv.org/pdf/1810.04805.pdf


BERT Fine-Tuning

Fine-tuning pretrained BERT models takes different forms depending on task types

Single sequence classification Sequence-pair classification

32/44



BERT vs. GPT on NLU tasks

• BERT outperforms GPT-1 on a set of NLU tasks
• Why are encoder models better than decoder models for NLU?
• Are encoder models still better than state-of-the-art (large) decoder models?

Paper: (Can ChatGPT Understand Too?) https://arxiv.org/pdf/2302.10198.pdf 33/44

https://arxiv.org/pdf/2302.10198.pdf


BERT Variant I: RoBERTa

• Pretrain the model for longer, with bigger batches over more data
• Pretrain on longer sequences
• Dynamically change the masking patterns applied to the training data in each epoch

Paper: (RoBERTa) https://arxiv.org/pdf/1907.11692.pdf 34/44

https://arxiv.org/pdf/1907.11692.pdf


BERT Variant II: ELECTRA

• Use a small MLM model as an auxiliary generator (discarded after pretraining)
• Pretrain the main model as a discriminator
• The small auxiliary MLM and the main discriminator are jointly trained

• The main model’s pretraining task becomes more and more challenging in pretraining
• Major benefits: sample efficiency + learning curriculum

Paper: (ELECTRA) https://arxiv.org/pdf/2003.10555.pdf 35/44

https://arxiv.org/pdf/2003.10555.pdf


ELECTRA Performance

• ELECTRA pretraining incurs lower computation costs compared to MLM
• Better downstream task performance

36/44



Agenda

• Language Model Architecture
§ Word Embeddings
§ Transformer
§ Encoder and Decoder Architecture

• Language Model Pretraining
§ Decoder Pretraining
§ Encoder Pretraining
§ Encoder-Decoder Pretraining

37/44



Encoder-Decoder Pretraining: BART

• Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations…) 
to input sequences and train the model to recover the original sequences

• Fine-Tuning:
§ For NLU tasks: Feed the same input into the encoder and decoder, and use the final decoder 

token for classification
§ For NLG tasks: The encoder takes the input sequence, and the decoder generates outputs 

autoregressively

Paper: (BART) https://arxiv.org/pdf/1910.13461.pdf 38/44

https://arxiv.org/pdf/1910.13461.pdf


BART Performance

• Comparable to encoders on NLU tasks
• Good performance on NLG tasks

39/44



Encoder-Decoder Pretraining: T5

• T5: Text-to-Text Transfer Transformer
• Pretraining: Mask out spans of texts; generate the original spans
• Fine-Tuning: Convert every task into a sequence-to-sequence generation problem

• We’ll see this model again in the instruction tuning lectures

40/44



T5 Performance

• Good performance across various tasks
• T5 vs. BART performance: unclear comparison due to difference in model sizes & 

training setups

41/44



Summary

• We introduced the language model architectures
§ Input tokens represented as dense vectors (embeddings)
§ Transformers learn contextualized representations
§ Transformer encoder vs. decoder

• We introduced pretraining methods for various language model architectures
§ Pretraining allows the models to acquire general linguistic & world knowledge
§ Different pretraining objectives/settings need to be designed for different architectures
§ Under the same model sizes, encoder models are better at NLU tasks; decoder models are

used for NLG tasks
§ Encoder-decoder models: Good NLU & NLG performance, but less efficient than decoder 

models for NLG (discussed in efficiency lectures)

• We will mainly focus on decoder models in this course
§ Current large language models (LLMs) are (almost) all decoder models
§ Decoder models are more versatile for various applications
§ Decoder models can be scaled up to extremely large sizes (next week)

42/44



Next Time

• Large language models (LLMs)
§ GPT-3
§ LLaMA-2

• In-context learning (ICL)
§ What matters for ICL?
§ Why are LLMs able to perform ICL?

43/44



Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

