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Motivation

e “One key aspect of intelligence is the ability to quickly learn to perform a
new task given a short instruction”

e GPT-3 demonstrates cutting edge performance with few-shot learning.

e Most vision models follow pre-training and fine-tuning paradigm:

o Needs lots of data
o Domain/task specific hyperparameter tuning and optimization.

e Multi-modal models trained using contrastive learning demonstrate zero-shot
learning capabilities, but their architecture confines them to limited tasks
such as classification.
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Motivation

How can we adopt the few-shot learning capabilities of GPT-3 to multi-

modal models?
How can we make a multi-modal model that is flexible enough to input

interleaved text, images, and video and output generated, open ended text?
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What is Flamingo?

Input Prompt
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What is Flamingo?
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What is Flamingo?

This is a picture of two teddy

[™ bears on the moon.

What are they doing?
They are  having a

™ conversation.

What object are they using?

™ Itlooks like a computer.

Is this surprising?

™ Yes, itis surprising.

Why is this picture surprising
to you?

I think it is surprising because
teddy bears are not usually

(™ found on the moon.

What is the common thing
about these three images?

(™ They are all flamingos.

What is the difference be-
tween these three images?

The first one is a cartoon, the

second one is a real flamingo,

and the third one is a 3D
(> model of a flamingo.

This is an apple with a sticker
on it.

What does the sticker say?
The sticker says "iPod".
Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.
What color is the sticker?

It’s white.

This is a cityscape. It looks

(> like Chicago.

What makes you think this is
Chicago?

I think it’s Chicago because
of the Shedd Aquarium in the
(™ background.

What about this one? Which
city is this and what famous
landmark helped you recog-

nise the city?

This is Tokyo. I think it’s

Tokyo because of the Tokyo
(™ Tower.
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Overview of How Flamingo Works

Output: text

. Pretrained and frozen ;
| a very serious cat.

| Elimecabiolbaini —
!

|

| n-th GATED XATTN-DENSE

>

HEeRcenvenr Perceiver :
nesampler - ~ seMblock
. 1st GATED XATTN-DENSE
Processed text I

<image> This is a very cute dog.<image> This is

Interleaved visual/text data

)@ This is a very cute dog.

This is

Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
| that take as input visual data interleaved with text and produce free-form text as output.




What does Flamingo Model?

o Next token prediction
What is the likelihood of predicting the text y where “y2 is the £€-th language

token of the input text, y<2 is the set of preceding tokens, x<¢ is the set of
images/videos preceding token y? in the interleaved sequence”?

L

pylz) = H P(Yely<e, v<e),
|
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Vision Encoder

e Inputs text/video " Output: text
. 1. Pretrained and frozen SRR A ST
e Outputs 2D image features ;

|
. ‘ Trained from scratch
flattened into 1D sequence of | | —

image features or Perceleiver Perc:—:iver P );ATTN—DENSE

o 3D Spatial-temporal sequence of Resampler Resampler C eblek %
video features flattened into 1D EE R 1st GATED XATTN-DENSE

e Pre-trained Normalizer-Free
ResNet (frozen)

e pre-trained on contrastive loss
objective between text and image
pairs.

Processed text

| <image> This is a very cute dog.<image> This is

Interleaved visual/text data

This is a very cute dog.a This is

Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.
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Perceiver Resampler

o Difficult for frozen LM and gated B Output: text
. 1. Pretrained and frozen SRR A ST
cross-attention dense blocks to ;

|
. . ‘ Trained from scratch
take variable length image | | —

n-th GATED XATTN-DENSE
Ve.CtorS' o Perceiver Perceiver
o Bridge between vision encoder Resampler Resampler © iswoblock %
and frozen LLM T 1st GATED XATTN-DENSE

-

Processed text
| <image> This is a very cute dog.<image> This is

e Inputs variable length
image/video features produced by
vision encoder

e Outputs fixed number of visual
tokens

Interleaved visual/text data

This is a very cute dog.a This is

Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.
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Gated Cross-attention Dense Blocks

e Flamingo adds Gated Cross-attention Dense Blocks before the transformer’s
(Chinchilla LM) self-attention blocks.

|
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|
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|
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def gated_xattn_dense(

y, # input language features
X, # input visual features
alpha_xattn, # xattn gating parameter — init at @.

alpha_dense, # ffw gating parameter — init at @.

______________________________
e
““*Applies a GATED XATTN-DENSE layer."""

# 1. Gated Cross Attention

ey y = y + tanh(alpha_xattn) * attention(g=y, kv=x)
X —:—' GATED XATTN-DENSE F|':w # 2. Gated Feed Forward (dense) Layer
E t 4 y = y + tanh(alpha_dense) * ffw(y)
Lo —— | ceoo o :
. e # Regular self-attention + FFW on language
1

3 y = y + frozen_attention(q=y, kv=y)
cross attention

Vision Language
input input

y =y + frozen_ffw(y)

return y # output visually informed language features

R
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What is cross-attention?

CROSS ATTENTION 1

Queries input text modality. [ MatMul ]
Keys and values input vision ) Y
[ SoftMax |

modality
I Mask (opt.) |

[ wmatvul |

ST

Sequence B

Sequence A
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Gated Cross-attention Dense Blocks

e tanh gating allows for stability in training.
e As tanh gate’s parameter increases, the more cross-attention block as an effect.

R s

def gated_xattn_dense(

y. # input language features
X, # input visual features

alpha_xattn, # xattn gating parameter - init at @.

alpha_dense, # ffw gating parameter — init at 0.
):
“““Applies a GATED XATTN-DENSE layer."""

# 1. Gated Cross Attention

y = y + tanh(alpha_xattn) * attention(q=y, kv=x) -10
# 2. Gated Feed Forward (dense) Layer
y = y + tanh(alpha_dense) * ffw(y)

# Regular self-attention + FFW on language

tanh gating
cross attention

return y # output visually informed language features
R o - e (GO e R B . |/ B

y = y + frozen_attention(q=y, kv=y)
y =y + frozen_ffw(y)

. 1T7i0N Y Language
!ﬂﬂ![%put input

L




Gated Cross-attention Dense Blocks

1.0

Attention tanh gain

tanh gating allows for stability in training.

T T
0.2 0.4

Training progress 23

T T 1
0.6 0.8 1c 22

(a) Attention tanh gating

FFW tanh gain

1.0

o
o

o
o

o
'S

o
N

0.0

T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 22

Training progress ;3
(b) FFW tanh gating.

Figure 6: Evolution of the absolute value of the tanh gating at different layers of Flamingo-3B.
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Per-image/video Masking

oo r — Masked cross attention
ute pics of my pets!

Vi

DB e e e
5 5 0 X 5 e S O 0 5 O O S O

1/<BOS> Cute pics of my pets!<EOC><image>My puppy sitting in the grass. <EOC><image>My cat looking very dlgn1f1ed <EOC>

f

tokenization

f

<B0OS>Cute pics of my pets!<EOC><image>My puppy sitting in the grass.<EOC><image> My cat looking very dignified.<EOC>

My puppy;igzgfg in the T T T

My cat looking very
dignified.

Input webpage ——— Processed text: <image> tags are inserted and special tokens are added
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Training Details and Objective

e MultiModal MassiveWeb (M3W) dataset
o Text and image pairs extracted from HTML of ~43 million webpages
o ALIGN Dataset
o 1.8 billion images paired with alt-text
o Complemented with in house dataset of Long Text & Image Pairs which consists
of 312 million image and text pairs
e In house dataset of 27 million short videos paired with sentence descriptions

e Multi-objective loss:
o Next token prediction loss
o Accumulate weighed sum of losses among the different datasets
o Datasets are trained together instead of one after another.

L
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Experiments: Benchmarks

e 16 Benchmarks
o 9 image benchmarks
o 7 video benchmarks
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Experiments: Zero and Few Shot Results

e 16 Benchmarks
o 9 image benchmarks
o 7 video benchmarks
o Beats SOTA with zero or few shots on many benchmarks.

—_ S —_ -
o - > —~ i - = - = =) ry 2 -
< ) S pt e, =) 5 < B = = s o= g 2
< e > i < = =
Method ~ FT  Shot § Z S = é S % g S E & = 4 5 s 2
N ) - > L
¥ & © g £ & 2 g &= g B & E 3§ & &

= = = s
G4 114 (124 58] 58] [135] 431 [79] 5] [55]
Sﬁg"g?& X 433 382 322 352 - - 192 122 - 394  11.6 - - 661 407
(X) (16) 4) (0) (0) (0) (0) 0) (0) (0) (0)
X 0 412 492 730 275 401 289 606 110 327 558 396 461 301 213 537 584
Flamingo3B X 4 433 532 850 330 500 340 720 149 357 646 413 473 327 24 536 -
X 32 459 571 990 426 592 455 712 256 377 167 416 473 306 261 563 -
X 0 447 518 794 302 395 288 615 137 352 550 418 430 318 230 570 579
Flamingo-9B X 4 493 563 931 362 517 349 726 182 377 708 428 504 336 247 627 -
X 32 510 604 1063 472 574 440 728 294 407 713 412 504 326 284 635 -
X 0 506 563 843 356 467 316 672 174 407 60.1 397 520 350 267 464 60.8
Flaminge X 4 374 6.1 1032 417 560 396 751 239 441 745 424 556 365 308 686 -
X 32 5718 676 1138 523 651 498 754 310 453 868 422 556 379 335 700 -

e 544 802 1433 479 763 512 614 468 354 1387 367 7152 547 252 791
FTS‘()TA v [34] [140] [124] [28] [153] [65] [150] [51] [135] [132] [128] [79] [137] [129] [62] e

(X) (10K) (444K) (500K) (27K) (500K) (20K) (30K) (130K) (6K) (10K) (46K) (123K) (20K) (38K)




Experiments: Fine-tuning results

e Fine-tuning can improve Flamingo performance compared to few-shot learning.
e Some SOTA models still slightly perform better than Flamingo on a few benchmarks.

Method VQAV2 COCO | VATEX VizWiz MSRVTTQA VisDial YouCook2 TextVQA HatefulMemes
test-dev  test-std | test test test-dev  test-std test valid | test-std valid valid | test-std test seen
* 32 shots 67.6 - 113.8 65.1 49.8 - 31.0 56.8 - 86.8 36.0 - 70.0
* Fine-tuned  82.0 82.1 138.1 84.2 65.7 65.4 47.4 61.8 597 118.6 57.1 54.1 86.6
SotA ol 3t 81.31  149.6"  81.41 57.21 60.67 46.8 752 IS4 138.7 547  73.7 84.67
[133] [133] [119] [153] [65] [65] [51] 791  [123] [132] [137]  [84] [152]

Table 2: Comparison to SotA when fine-tuning Flamingo. We fine-tune Flamingo on all nine
tasks where Flamingo does not achieve SotA with few-shot learning. Flamingo sets a new SotA on
five of them, outperfoming methods (marked with ) that use tricks such as model ensembling or
domain-specific metric optimisation (e.g., CIDEr optimisation).
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Ablation Study:

Ablated Flamingo-3B Changed Param. Step COCO OKVQA VQAv2 MSVDQA VATEX | Overall
setting original value value count| time| | CIDErt toplt topl1 toplt CIDErt | scoref
Flamingo-3B model | 32B  174s | 865 421 55.8 36.3 534 | 707
w/o Video-Text pairs 3.2B 1.42s 84.2 43.0 53.9 34.5 46.0 67.3
() TS A T w/o Image-Text pairs 32B  0.95s 66.3 39.2 51.6 32.0 41.6 60.9
& Image-Text pairs— LAION 3.2B 1.74s 79.5 414 53.5 33.9 47.6 66.4
w/o M3W 3.2B 1.02s 54.1 36.5 52, 314 235 53.4
(i) Optimisation Accumulation  Round Robin | 3.2B 1.68s | 76.1 39.8 52.1 33.2 408 | 629
(iii) Tanh gating v X | 3.2B 1.74s | 78.4 40.5 52.9 35.9 47.5 | 66.5
(iv) Cross-attention GATED VANILLA XATTN 2.4B 1.16s 80.6 41.5 534 329 50.7 66.9
architecture XATTN-DENSE  GRAFTING 33B 1.74s 79.2 36.1 50.8 5 47.8 63.1
Cross-attention Single in middle 2.0B 0.87s 7)1 =t 38.1 50.2 29.1 42.3 59.8
(v) . Every Every 4th 2.3B 1.02s 82.3 42.7 55.1 34.6 50.8 68.8
frequency
Every 2nd 2.6B 1.24s 83.7 41.0 55.8 34.5 49.7 68.2
vi) R I p 3 MLP 3.2B 1.85s 78.6 42.2 54.7 352 44.7 66.6
esamplet ereetver Transformer 32B  1.81s | 832 41.7 55.6 815 48.3 66.7
- 5 3 CLIP ViT-L/14 3.1B 1.58s 76.5 41.6 53.4 332 44.5 64.9
) Nisiemencoder ~INENEEG NFNet-FO 29B 1455 | 738  40.5 52.8 31.1 09 | 627
: X (random init) 3.2B 2.42s 74.8 31.5 45.6 26.9 50.1 57.8
a),  [ErecamglM. & X (pretrained) 32B  242s | 812 33.7 47.4 31.0 53.9 62.7

Table 3: Ablation studies. Each row should be compared to the baseline Flamingo run (top row).
Step time measures the time spent to perform gradient updates on all training datasets.
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Ablation Study:

e Training data as an interleaved mixture is important.

o 17% performance increase
e Tahn gate helps get rid of training instability.
e Inserting gated cross-attention dense blocks only every 4th layer increases
computational efficiency by 66% with only a performance loss of 1.9%

o Keeping LLM frozen prevents catastrophic forgetting.
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Limitations

o Flamingo inherits issues from pretrained LLM
o Hallucination.
o Poor generalization to sequences longer than training data.

o Sample inefficient during training (needs lots of examples to learn)

e Flamingo doesn’t perform as well as SOTA on classification tasks

e Flamingo inherits the flaws of in-context learning:
o Highly sensitive to certain aspects of examples

o Cost of inference and performance scale poorly with the number of shots.
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Conclusion

e Flamingo is a general purpose, open-ended, multi-modal model meant for
image-language and video-language tasks.

e Flamingo can beat SOTA performance on a variety of tasks with few-shots of
data.
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VisionLLM: Large
Language Model is also
an Open-Ended Decoder
for Vision-Centric Tasks

Wang et. al, 2023
OpenGVLab, Shanghai Al Laboratory
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Motivation

e How can we adopt
the versatility and
flexibility of LLMs like
GPT-3 to the vision
domain?

e Can we have an open
ended language vision
model that can also
perform on vision-
centric tasks?

BIIIE IRGINIA
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Desired output

Vision ; i :
Generalist Model | e <pl><pas .

T I T

izl ) ‘ Vision + LLM
Prompt Tuning

Pre-defined tasks:

detection, captioning, I
VQA, grounding, ... kS & Task defined
“ e gy by instructions
(a) Vision generalist models [59, (b) Visual prompt tuning [26, 64, (c) VisionLLM (ours) can flexibly
61, 83] are constrained by the for- 62] are inconsistent with the for— manage vision-centric tasks using
mat of pre-defined tasks. mat of LLMs. language instructions like LLMs.

Figure 1: Comparison of our VisionLLM with popular paradigms. Unlike current vision generalist
models that depend on pre-defined task formats and visual prompt tuning models that are inconsistent
with large language models (LLMs), VisionLLM leverages the power of LLMs for open-ended vision
tasks by using language instructions.



What is VisionLLM?

Human: “Identify the objects
in <image> that belong to
{‘What is the child eating?’:
<c0>, red gamepad': <c1>}
and draw a bounding box |
around each one. The output |
should be a list of tuples in e

the format (c, x1, y1, x2, y2), where c is the class label and
x1, y1, x2, y2 are the coordinates of the top-left and
bottom-right corners of the bounding box. The coordinates
should be within the range 1024."

VisionLLM: "The bounding boxes are [(<c0>, 226.4, 229.8,
363.1, 347.4), (<c1>, 441.1, 183.5, 538.6, 269.9)]."

Human: "For each object in
<image> that is a member
of {'motorbike': <c0>},
output a tuple with the
class label and the
coordinates of a polygon
with 16 points that
encloses the object. The coordinates should be within
the range 1024. The output format should be (c, x1, y1,
x2,y2, ..., x16, y16)."

VisionLLM: "The detected polygons are [(<c0>, 135.3,
95.7, 123.4, 53.4, 84.9, 57.6, 66.8, 60.5, 60.1, 72.3,

(a) Object Detection with Customized Class Set (e.g., 34.2,71.4, ..., 124.9,119.3)]."
question, reasoning text, open-vocabulary descrip-

tion) (b) Object Location with Editable Output Format

Human: "Provide a long
description of the <image>."

VisionLLM: "The image
features a white dog laying
down on a foldable outdoor
cooling pad,

which is placed on top of a wooden table. The dog has
its head in the middle of the cooling pad, and a fan is
positioned behind it, blowing air onto the pad. The
table is outdoors, in a grassy area, and there are two
chairs placed around it, one on each side. The scene
appears to be set in a sunny weather, with a bright and
sunny sky, which contributes to the overall outdoor
atmosphere."

Human: "With the objects
in the <image>, if you feel
hot, what will you do?"

VisionLLM: "First, You can
also try turning off the
computer and other
electrical appliances in the
room to reduce the heat generated by their operation.
As an alternative, you can use the desk fan provided in
the image to create a cooling effect in the room. You
can plug in the fan and adjust its settings to ensure it
blows air in a direction that reaches the room’s
occupants effectively."

(c) Image Description with Controllable Text Length ~ (d) Visual Question Answer with Complex Reasoning




What is VisionLLM?

o It’s a framework that aligns vision tasks with LLM methodologies.
e As aresult, VisionLLM is able to perform in an open ended manner on vision-

centric tasks on a level that is on par with its specialized model

counterparts.
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Overview of How VisionLLM Works

Language-Guided Desired Output:
D Random Query D Image Token [ ? ? i <Cf|_> <pTl> <pI3>
F, i .
Backbone v ‘ Language-Guided Open Endc?d Task
Image Tokenizer ] Decoder with LLM
<text> él A - I'I'I <text>
o

Vision-language example: "Describe the image <image> in details." Language Instructions <text>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."

Figure 3: Overall architecture of the proposed VisionLLM. It consists of three parts: a unified
language instruction designed to accommodate both vision and vision-language tasks, an image
tokenizer that encodes visual information guided by language instructions, and an LLM-based open-
ended task decoder that executes diverse tasks defined by language instructions.



Overview of How VisionLLM Works

3 parts:

1. “a unified language instruction designed to accommodate both vision and
vision-language tasks”

O Desired Output:
[[] Random Query [] Language-Guided "

Image Token <C1> <pl> <pI3>
|
Language Gmded Open Ended Task
Bac@ Image Token|zer Decoder with LLM
F, |

<text> <text>

A
istoR-language example: "Describe the image <image> in details." Language Instructio t>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The

dinates should be within range <range>. The output format should be (c, x1 M




Overview of How VisionLLM Works

3 parts:

2. “an image tokenizer that encodes visual information guided by language
instructions”

Desired Output:
<el>=<pl><p3>...

T1 ] to1o

Language-Guided Open-Ended Task

Language-Guided
Image Token

[[] Random Query []

Backb - i
AEERONS Image Tokenizer Decoder with LLM

<text>
Y A
Vision-language example: "Describe the image <image> in details." “angliage instivierions <te:

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."




Overview of How VisionLLM Works

3 parts:

3. “an LLM-based open-ended task decoder that executes diverse tasks defined
by language instructions”

Language-Guided Desired Output:
I:I Random Query D Image Token [I? I%I I%I iV <Cf|_> <pf|_> <pI3>
E -GUi i} |
Bckbore v Language GUI.ded Open Endc?d Task
Image Tokenizer Decoder with LLM
1 o N
<text> Lext>
A A
Vision-language example: "Describe the image <image> in details." Language Instructions <text>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."




Unified Visual Instruction

e Vision-language Tasks:
o E.g. Image captioning:
m  “The image is <image>. Please generate a caption for the image: ”
o These instructions are straightforward since they are similar to NLP tasks.
e Vision-only Tasks:
o E.g. object segmentation
o Challenge to create instructions for these tasks due to difference in modality
between vision and language.
o LLM used to create set of instructions with various task descriptions (randomly
selected at training)
o Specify output to have a class index from set of categories and a tuple showing
where in the segment is.
o “Segment all the objects of category set <class> within the <range> of the image
and generate a list of the format (c, x1, y1, x2, y2, ..., x8, y8). Here, c
represents the index of the class label starting from 0, and (x1, y1, x2, y2, ...,
x8, y8) correspond to the offsets of boundary points of the object relative to the
center point. The image is: <image>"
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Language-Guided Image Tokenizer

Instead of fixed-size batch embeddings, VisionLLM considers images as a
foreign language and converts them into a token representation.

This design design allows tokenizer to “flexibly encode visual information
that aligns with task-specific language prompts or instructions.”

Language-Guided
Image Token (. T

F, P
Backbone L Language GUI.ded
Image Tokenizer

<text> é é

Random Query
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Language-Guided Image Tokenizer

o Image features from model like ResNet and Language features from model

like BERT

o Transformer like Deformable DETR with M randomly initialized Queries

produces M tokens. each represented bv an embedding and location.
Language-Guided

Random Que —
Sy Image Token ( T T_{(€ l) M
1 e S Bk g—17
Language- Gwded
| Backbone i 8 g
Image Tokenizer
<text> é
A
| Vision-language example: "Describe the imaae <image> in details." Lang!
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LLM-based Open-Ended Task Decoder

e Built on top of Alpaca (LLaMa based LLM adapted to handle some vision
tasks).

e Drawbacks:

o Only has few digits numbers in vocabulary (e.g. 0-9), this makes it hard for model
locate objects by numbers.

o Uses multiple tokens to represent category name; this causes some
inefficiencies.

o Since the model is causal, it is inefficient for visual perception tasks.
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LLM-based Open-Ended Task Decoder

e Mitigation 1:
o Introduce a set of location tokens:
m {<p-512>, ..., <p0>,..., <p512>}
m <pi> ,whereie [-512, 512], is the offset to the location L_i of the image token
m Relative value to image height or width is equal to i/512

o These tokens change object localization from a continuous variable prediction

task into a discrete bin classification task.
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LLM-based Open-Ended Task Decoder

e Mitigation 2:

o Introduce set of semantic-agnostic classification tokens.
m {<c0>, <c1>, ..., <c511>}
m This replaces category names, which are inefficient since they originally could take
more than one token.
m Category names to tokens are mapped. E.g.: {"person”:<c0>, "car":<c1>, "black

cat":<c2>,...}
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LLM-based Open-Ended Task Decoder

Mitigation 3:
o Output-format-as-query decoding
o Parse structural tokens and input as query to the decoder.
o This avoids inefficient token-by-token decoding for vision
perception tasks, while keeping unified framework for vision-
language tasks.

o Outputs of object location are treated as foreign language
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LLM-based Open-Ended Task Decoder

I [

Task defined  Parsing [ format 1: "< cls > <x1> <y1> ..."
by instructions format 2: "<bos>"

!

formatn: ...

Figure 4: Illustration of the “output-format-as-
query” decoding process. “<cls> <x1> <y1>..”
denote the queries of the object’s class index and
boundary points, and “<bos>"" denotes the begin-
ning of string.

~




Training Details

o Cross-entropy loss objective
e Low-Rank Adaptation (LoRA) is used in training the models.

o This makes training more efficient and helps bridge gap between modalities.
o Datasets:

o COCO2017: Used for training and evaluation in object detection and instance
segmentation tasks.

o RefCOCO, RefCOCO+, and RefCOCOg: These datasets are combined for training in
visual grounding tasks. The models are evaluated on the validation set of
RefCOCO.

o COCO Caption: Used as the training source for image captioning tasks.

o LLaVA-Instruct-150K: Employed for training in visual question answering tasks.

e 50 epochs
M = 100 queries
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Experiments: Benchmarks

e Variety of task:

o Object Detection: Identifying and localizing objects within an image.

o Instance Segmentation: Identifying and segmenting individual objects within an
image.

o Visual Grounding: Associating textual descriptions with corresponding regions or
objects within an image.

o Image Captioning: Generating descriptive text for an image.

o Visual Question Answering (VQA): Answering questions based on the content of an
image.
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Experiments: Vision-centric task results

Table 1: Results on standard vision-centric tasks. ‘Intern-H” denotes Internlmage-H [59]. “sep”
indicates that the model is separately trained on each task.

Misitiod Backlone ](5)11;)5:(_1 Detection Instance Seg. Grounding  Captioning
AP AP59 AP75 AP APso AP7s P@0.5 BLEU-4 CIDEr
Specialist Models
Faster R-CNN-FPN [48] ResNet-50 - 403 61.0 440 - - - - - -
DETR-DCS5 [7] ResNet-50 - 433 63.1 459 - - - - - -
Deformable-DETR [82] ResNet-50 - 457 65.0 49.1 - - - - - -
Mask R-CNN [22] ResNet-50 - 41.0 61.7 449 37.1 58.4 40.1 - - -
Polar Mask [69] ResNet-50 - - - - 305 52.0 31.1 - - -
Pix2Seq [8] ResNet-50 - 432 61.0 46.1 - - - - - -
UNITER [11] ResNet-101 - - - - - - - 81.4 - -
VILLA [19] ResNet-101 - - - - - - - 82.4 - -
MDETR [27] ResNet-101 - - - - - - - 86.8 - -
VL-T5 [13] T5-B - - - - - - - - - 116.5
Generalist Models
UniTab [72] ResNet-101 - - - - - - - 88.6 - 115.8
Uni-Perceiver [83] ViT-B - - - - - - - - 32.0 -
Uni-Perceiver-MoE [81]  ViT-B - - - - - - - - S2 -
Uni-Perceiver-V2 [28] ViT-B - 586 - - 506 - - - 354 116.9
Pix2Seq v2 [9] ViT-B - 465 - - 382 - - 34.9

VisionLLM-R50gep, ResNet-50 - 44.8 64.1 48.5 25.2 50.6 224 84.4 308 1124
| VisionLLM-R50 ResNet-50 v 44.6 64.0 48.1 25.1 50.0 224 80.6 31.0 1125
~ VisionLLM-H Intern-H v 602 79.3 65.8 30.6 61.2 27.6 86.7 32.1 114.2




Experiments: Vision-centric task results

Competitive results in:

o Object detection

o Visual grounding

o Image Captioning

Not as well result Instance Segmentation:
AP_50 (61.2% with Internlmage-H [59]) but relatively low mask AP_75 (27.6%).

o
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Experiments: object-level and output
format customization

e Authors alter the <class> tag within the language instructions to change the
model’s recognition targets 10 classes to 80 classes.

e Author also alter number of boundary points in output format.

e The results demonstrate VisionLLM’s ability to customize the target object
and output format.

Table 2: Experiments of object-level and output format customization. We conduct these
experiments based on VisionLLM-R50, and report the performance of box AP and mask AP on
COCO minival for (a) and (b), respectively. “#Classes” and “#Points” indicate the number of classes
and boundary points, respectively. “*” indicates that we report the mean AP of the given classes, e.g.,
10 classes.

(a) Object-level customization. (b) Output format customization.
#(Classes AP AP 50 AP75 APS APM APL #Points AP AP50 AP75 APS AP M APL
10* 489 72.6 512 31.7 475 673 8 185 457 11.6 9.9 19.7 28.7
20* 5201 136 568 3L8 532 705 14 229 483 194 11.0 25.1 36.0
40" 493 70.7 532 33.1 53.6 63.8 16 242 499 209 115 26.3 36.8

80" 446 64.0 48.1 26.7 479 60.5 24 251 50.0 224 125 274 382




Ablation Study

o Single Task vs. Multiple Tasks
o VisionLLM trained on a single task only works slightly better than its multi-task

counterpart for all tasks except image captioning.
e Text Encoder in Language-Guided Image Tokenizer
o Examining role of text encoder (BERT) in language-guided image tokenizer.
o “BERT is not essential for object detection but it is crucial for visual grounding”
o Freezing BERT model hinders alighment of text and vision modalities.
o Image Tokenization Method
o Image tokenization method works superior to employing average
o pooling on the feature maps from the D-DETR encoder to obtain M patch
embeddings
e Number of Localization Tokens
o The increase of localization tokens improves performances.

(a) Effect of text encoder in the (c) Effect of the num-
language-guided image tokenizer. (b) Effect of image tokenization ber of bins (#Bins).
method. — -
I #Bins AP
w/ BERT Freeze COCO RefCOCO “Tokenization AP 257 34.9
- E AaL] 48.1 Average Pooling  23.1 513 40.8
v : 44.8 84.1 Ours 44.8 1025 448

I=0

v v 13 34.3 2049 44 .8




Limitations

o VisionLLM’s performance is bottlenecked by the performance of open-source
LLMs

o LLM must be trained, so proprietary models cannot be used.
e Lacks in performance on instance segmentation

e Author’s don’t explore in-context learning or few-shot capabilities.
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Conclusion

e The paper presents VisionLLM, a novel framework that aligns vision-centric
tasks with language models’ methodologies.

o VisionLLM allows for seamless integration and handling of diverse vision-
centric tasks like object detection, instance segmentation, and image
captioning through language instructions.
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Visual Instruction
Tuning

Haotian Liu, Chunyuan Li, Qingyang Wu, Yong Jae Lee
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Introduction

o Develop a general-purpose assistant that effectively follows multi-modal
vision-and-language instructions
— Large Language Models + visual instruction-following

e Contributions
o Generate multimodal instruction-following data using GPT-4
o Large multimodal models (LLaVA: Large Language and Vision Assistant)
o Multimodal instruction-following benchmark
o Open-source
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Background

e End-to-end trained models
Vision-Language Navigation task: navigate real or virtual environments based on

o

textual instruction
InstructPix2Pix: image editing based on textual instruction

o
— Specialized Single-models, Domain-specific

Systems coordinating multiple models

Visual ChatGPT, MM-REACT, ViperGPT
Combine different models to enhance instruction-following capabilities

o
— Integrated

(]
0]

systems
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Background

e Instruction Tuning
o Effective in improving LLM performances to align closely with human instructions
o Success in NLP: achieved better generalization capabilities in zero and few-shot settings

o Potential for Computer Vision
m currently less explored in multimodal tasks for visual & text
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GPT-assisted Visual Instruction

Data Generation

o Data generation process

o

Prompt I

A
i

messages =[ {"role":"system", "content": f"""You are an Al visual assistant, and you are
seeing a single image. What you see are provided with five sentences, describing the same image you
are looking at. Answer all questions as you are seeing the image.

Design a conversation between you and a person asking about this photo. The answers should be in a
tone that a visual Al assistant is seeing the image and answering the question. Ask diverse questions
and give corresponding answers.

Include questions asking about the visual content of the image, including the object types, counting
the objects, object actions, object locations, relative positions between objects, etc. Only include
questions that have definite answers:

(1) one can see the content in the image that the question asks about and can answer confidently;
(2) one can determine confidently from the image that it is not in the image. Do not ask any question
that cannot be answered confidently.

Also include complex questions that are relevant to the content in the image, for example, asking
about background knowledge of the objects in the image, asking to discuss about events happening in
the image, etc. Again, do not ask about uncertain details. Provide detailed answers when answering
complex questions. For example, give detailed examples or reasoning steps to make the content more
convincing and well-organized. You can include multiple paragraphs if necessary."""}
]
for sample in fewshot_samples:
messages.append ({"role": "user", "content":sample[‘context’]})
L messages.append({"role":"assistant", "content":sample[‘response’]} )

messages.append ({"role":"user", "content":‘\n’.join(query)})

VERSITY
IRGINIA
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GPT-4: transform image-text pairs into multimodal instruction-following data

Information |

Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage.
Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV.

The sport utility vehicle is parked in the public garage, being packed for a trip|
Some people with luggage near a van that is transporting it.

Context type 2: Boxes

person: [0.681, 0.242, 0.774, 0.694], backpack: [0.384, 0.696, 0.485, 0.914], suitcase: ...<omitted>

Response type 1: conversation |
Question: What type of vehicle is featured in the image?

Response

Answer: The image features a black sport utility vehicle (SUV) ...<omitted>

Resp type 2: detailed description

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle, another
person in the middle, and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. ...<omitted>

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings ...<omitted>

Table 1: One example to illustrate the instruction-following data. The top block shows the contexts
such as captions and boxes used to prompt GPT, and the bottom block shows the three types of
responses. Note that the visual image is not used to prompt GPT, we only show it here as a reference.




GPT-assisted Visual Instruction
Data Generation

o Data generation process
o GPT-4: transform image-text pairs into multimodal instruction-following data
o Provide captions & bounding boxes information

o Types of data generated
o Conversation
o Detailed description
o Complex reasoning

e Outcome

o 158,000 unique language-image instruction-following samples
m 58,000 conversations
m 23,000 detailed descriptions
m 77,000 complex reasoning
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Visual Instruction Tuning: Architecture

Language Response Xa “.

Language Model f¢

Xq What are the meals that | can cook with these?

- &
v H With the var iety of food items stored in the refrigerator, you can prepare several meals. For example, you can create a fruit salad using the
V ‘ strawberries, blueberries, and carrots. Additionally, you can make a delicious smoothie using the fruits and vegetables, which would be a
healthy ani

V. . E d d utritio ack or breakfast option. The milk and eggs can be used to create various dishes, such as a milk-based smoothie, a

Projection W

LLaVA | baked casserol ole, or scrambled eggs. The juice can also be used to make a fresh fruit and juice mix or as a refreshing homemade popsicle. The
and dietary needs.

v Image Xq Lang uage Instruction p ssibilities are vast, and the meals you can create will depend on your preferences

Figure 1: LLaVA network architecture.

e Language Model: Vicuna/LLaMA

e Visual Encoder: CLIP
o Understand images in natural language descriptions

e Projection Layer: connects output of visual encoder, translate features into
what LM can process, input to LM
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Visual Instruction Tuning: Training

e Input

X—system—messa,ge <STDP>
Human : X}, . ue: <STOP> Assistant: X! <STOP>
Human : X2, uce <STOP> Assistant: X2 <STOP> - - -

Xt B Randomly choose [X},X,] or [X,,X(], thefirstturnt =1
instruct X3, the remaining turns ¢ > 1

e Multi-turn conversion data (Xcll? Xi,_-_ == ,X?;, XZ_),
o Probability of generating correct sequence of words for the answers

L
p(Xa|Xv, Xinstruct) - Hpe(mz |Xv, Xinstruct,<ia Xa,<i))

=1
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Visual Instruction Tuning: Training

o Stage 1: Pre-training for Feature Alignment
o Align visual features with LM using image-text pairs
o Maximize likelihood of generating appropriate text captions from images
— Train projection layer, Weights of visual encoder and LM kept frozen

o Stage 2: Fine-tuning End-to-End
o Fine tuning projection layer and LM, using generated dataset (no tuning on visual encoder

o Fine tuning for specific applications
m  Multimodal chatbot
m Science QA dataset
— adaptability on different tasks
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Experiment: Multimodal Chatbot

Visual input example, Extreme Ironing:

o Examples required in-depth image
understanding

e Results
: : LLaVA reasoning similar to multi-
User Whetidungmalisbout s tmaget”. | modal GPT-4, better than BLIP-2 and

LLaVA The unusual aspect of this image is a man ironing clothes on the back of a minivan or .
van. This is not a typical place to perform this activity, as one would usually iron clothes O pe n F l a m '| n go
in a more stationary and safe location, such as a home, using a regular ironing board.
The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a

vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how o Ad d resses p ro m pts a bo u t i m ages

the man is able to maintain balance and stability while ironing clothes in such an unstable

environment, o Provide meaningful responses

[Start a new conversation, and clear the history] . . o .
User What’s happening in the scene? ]nClUd]ng I'eaSOI'Tlng (beyond b&S]C
LLaVA The image depicts a man standing on top of a yellow SUV in a busy city street. He is . .

holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around d escnri pt] on )

the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are

two other people in the vicinity, one close to the man on the car and another further away.

The man on the ladder appears to be attracting attention due to his unconventional choice

of ironing his clothes on top of a moving car. The city street around him is bustling with

activity, adding to the unique nature of the scene.

User ‘What is unusual about this image?

GPT-4 [36] The unusual thing about this image is that a man is ironing clothes on an ironing board
attached to the roof of a moving taxi.

User ‘What is unusual about this image?

BLIP-2 a man is sitting on the back of a yellow cab

User What is unusual about this image?

OpenFlamingo The man is drying his clothes on the hood of his car.
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Experiment: LLaVA-Bench

e COCO
o Dataset: 30 images from COCO-Val-2014 with 90 questions

| Conversation Detail description ~Complex reasoning ~ All

Full data 83.1 75.3 96.5 85.1

Detail + Complex 81.5 (16 73.3 20 90.8 (s5.7) 81.9 32
Conv + 5% Detail + 10% Complex | 81.0 (2.1 68.4 (7.1 91.5 ¢s0) 80.5 (44
Conversation 76.5 66) 59.8 (162 84.9 124 73.8 113
No Instruction Tuning 22.0 c61.1) 24.0 513 18.5 (730 21.5 ¢636)

Table 4: Ablation on LLaVA-Bench (COCO) with different training data. We report relative scores
w.r.t. a text-only GPT-4 model that uses ground truth image captions and bounding boxes as visual
input. We prompt GPT-4 with the answers from our model outputs and the answers by GPT-4
(text-only), and let it compare between both responses and give a rating with an explanation.

o Instruction tuning — 50% improvement
o Mixed data types — 7% improvement
o Full data, best results
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Experiment: LLaVA-Bench

e In-the-Wild
o Indoor and outdoor scenes, memes, paintings, sketches, etc. with 60 sets of
descriptions and questions
o Test the generalizability and performance on diverse tasks

| Conversation Detail description Complex reasoning  All

OpenFlamingo [5] | 19.3 £ 0.5 19.0+0.5 19.1 +£0.7 19.1+04
BLIP-2 [2%] 546+ 1.4 29.1+1.2 329+ 0.7 38.1+1.0
LLaVA 573+ 1.9 52.5+6.3 81.7+ 1.8 673 +2.0
LLaVAT 58.8 + 0.6 492 +0.8 81.4+03 66.7 + 0.3

Table 5: Instruction-following capability comparison using relative scores on LLaVA-Bench (In-the-
Wild). The results are reported in the format of mean + std. For the first three rows, we report three
inference runs. LLaVA performs significantly better than others. T For a given set of LLaVA decoding
sequences, we evaluate by querying GPT-4 three times; GPT-4 gives a consistent evaluation.
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Experiment: ScienceQA

e Dataset: ScienceQA
o 21k multiple-choice questions on scientific domains and skills
o natural science, social science, language science, etc.

Subject Context Modality Grade

fefitiod NAT SOC LAN | TXT IMG NO | Gl6 G7-12 | Average
Representative & SoTA methods with numbers reported in the literature

Human [34] 90.23 8497 87.48 | 89.60 87.50 88.10 | 91.59 82.42 88.40
GPT-3.5 [34] 74.64 69.74 76.00 | 7444 67.28 77.42 | 76.80 68.89 73.97
GPT-3.5 w/ CoT [34] 7544 70.87 78.09 | 74.68 6743 79.93 | 78.23  69.68 75.17
LLaMA-Adapter [59] 8437 88.30 84.36 | 83.72 80.32 86.90 | 85.83 84.05 85.19
MM-CoT gy [61] 87.52 77.17 85.82 | 87.88 8290 86.83 | 84.65 85.37 8491
MM-CoT Large [61] 9591 82.00 90.82 | 9526 88.80 92.89 | 92.44 90.31 91.68
Results with our own experiment runs

GPT-41 84.06 7345 8736 | 81.87 70.75 90.73 | 84.69 79.10 82.69
LLaVA 90.36 9595 88.00 | 89.49 88.00 90.66 | 90.93 90.90 | 90.92
LLaVA+GPT-4' (complement) | 90.36 95.50 88.55 | 89.05 87.80 91.08 | 9222 88.73 90.97
LLaVA+GPT-4' (judge) 91.56 96.74 91.09 | 90.62 88.99 93.52 | 92.73 92.16 92.53

Table 7: Accuracy (%) on Science QA dataset. Question categories: NAT = natural science, SOC =
social science, LAN = language science, TXT = text context, IMG = image context, NO = no context,
G1-6 = grades 1-6, G7-12 = grades 7-12. TText-only GPT-4, our eval. Our novel model ensembling
with the text-only GPT-4 consistently improves the model’s performance under all categories, setting
the new SoTA performance.
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Experiment: ScienceQA

e Dataset: ScienceQA
o 21k multiple-choice questions on scientific domains and skills
o natural science, social science, language science, etc.

Subject Context Modality Grade

fefitiod NAT SOC LAN | TXT IMG NO | Gl6 G7-12 | Average
Representative & SoTA methods with numbers reported in the literature

Human [34] 90.23 8497 87.48 | 89.60 87.50 88.10 | 91.59 82.42 88.40
GPT-3.5 [34] 74.64 69.74 76.00 | 7444 67.28 77.42 | 76.80 68.89 73.97
GPT-3.5 w/ CoT [34] 7544 70.87 78.09 | 74.68 6743 79.93 | 78.23  69.68 75.17
LLaMA-Adapter [59] 8437 88.30 84.36 | 83.72 80.32 86.90 | 85.83 84.05 85.19
MM-CoT s [61] 87.52 77.17 8582 | 87.88 8290 86.83 | 84.65 8537 8491
MM-CoTLarge [61] 9591 82.00 90.82 | 9526 88.80 92.89 | 9244 90.31 91.68
Results with our own experiment runs

GPT-41 84.06 7345 8736 | 81.87 70.75 90.73 | 84.69 79.10 82.69
LLaVA 90.36 9595 88.00 | 89.49 88.00 90.66 | 90.93 90.90 90.92
LLaVA+GPT-4! (complement) | 90.36 95.50 88.55 | 89.05 87.80 91.08 | 9222 88.73 90.97
LLaVA+GPT-4' (judge) 91.56 96.74 91.09 | 90.62 88.99 93.52 | 92.73 92.16 | 92.53

Table 7: Accuracy (%) on Science QA dataset. Question categories: NAT = natural science, SOC =
social science, LAN = language science, TXT = text context, IMG = image context, NO = no context,
G1-6 = grades 1-6, G7-12 = grades 7-12. TText-only GPT-4, our eval. Our novel model ensembling
with the text-only GPT-4 consistently improves the model’s performance under all categories, setting
the new SoTA performance.
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Conclusion

e Contribution

o Multimodal instruction-following data
o LLaVA & LLaVA-Bench

o Future Works
o Expand model’s knowledge base and multilingual capabilities
o Enhance high-resolution image processing and semantic understanding for better
visual comprehension
o Methods for integrating external data sources
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NEXT-GPT: Any-to-Any
Multimodal LLM

Shenggiong Wu, Hao Fei, Leigang Qu, Wei Ji, Tat-Seng Chua
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Introduction

e Background & Motivation

o Rapid advancement in Al-generated content (AIGC)

o Importance of multimodality as humans perceive and communicate
e Limitations of Current Multimodal LLMs (MM-LLMs)

o Multi-modal understanding <&
o Producing multi-modal contents **

e NEXT-GPT

o End-to-end, general-purpose any-to-any MM-LLM system

o Understanding and generation on text, images, videos, and audio

o Use existing encoders and decoders, tune small fraction for low-cost training
o Introduce Modality-switching Instruction Tuning (MosIT) for complex semantic

understanding & generation
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Related Work

e Cross-modal understanding and generation
o Image/Video captioning (COCO dataset challenges)
o Text to Image/Video/Synthesis (DALL-E, RAVE)
— Difficulties to create unified models for varied modalities

e Multimodal Large Language Models
o Integration with modal encoders with text based LLMs (Flamingo, LLaVa)
— primarily focus on multimodal input comprehension, not multimodal
generation
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Overall Architecture: NExT-GPT

Multimodal encoding
: used existing models for encoding various inputs

(ImageBind)

LLM understanding and reasoning

: use Vicuna to process encoded multimodal inputs
semantic understanding
reasoning over inputs

deciding modality of output
generate textual signal tokens (instructions)

Multimodal generation

: transformer-based output projection layer
translate LLM’s instruction into different diffusion models

generate final content
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Figure 2: NExT-GPT inference process. Grey colors denote the deactivation of the modules.
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Lightweight Multimodal Alignment Learnin

e Encoding Side LLM Centric Multimodal Alighment

Image Input Im:zge
Im: _ RN VAC: 2 | S N
oge @ g / Projection, | Caption
Img. Rep. & Aligned Img. Rep.
A--""777TTT -~ ~
: Audio Input Audio
Audio Projection l“) Caption
Aud. Rep. Aligned Aud. Rep.

A <
- Video Video Input Video
Vid. Rep. Aligned Vid. Rep.

(a) Encoding-side LLM-centric Alignment

e Decoding Side Instruction-following Alignment

LM OutputRep. _
(7 \ Image Output | _ _ . CONG S Image
{ ) Brojeicn P > Min. Eucli. Dist. <« e

Text Rt‘asponse Image Sig'nal Token

77777777777 \ Audio Output __ WS Audio
(\ /) Projection & > * Caption

Audio sig'nal token

Video Output | ______ N Text Encoder Video
Projection | (in Vid. DIRJ.; Caption

Text Response

= © O O)

Video signal token

(b) Decoding-side Instruction-following Alignment

Text Response

Figure 3: Illustration of the lightweight multimodal alignment learning of encoding and decoding.

encoder captures important features
— process into image representations
— image input projection transforms them into
aligned image representation (LM input
format)

LLM output representation generate signal

tokens that are commands to making images
— image output projection transforms sig
tokens
— text encoder encodes final captions and
descriptions for the diffusion model



Instruction Dataset

o Existing Data (Text+X — Text)
o input is a combination of text and different modality (X)
e Constructed Data (Text — Text+X)
o new text to multimodal (T2M) data constructed
o X-caption pairs with text instructions, further processed with GPT-4
e MosIT
o dataset specifically designed to train NExT-GPT
o Multimodal Interactions: simulate real-world conversation scenarios
o Multi-turn Dialogues: comprises 3~7 Q&A pairs with various modality
o Logical and Semantic Complexity: coherent, logically connected, semantically
rich, in-depth reasoning data

— 5,000 dialogues covering spectrum of instruction-following scenarios
on different modalities
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Experiments:
Any-to-any Multimodal Generation

e Text-to-X Generation

Method FID () Method FID () CLIPSIM (1)
CogVideo [17] _ 27.10 Méihod D) ISM  “Gogvideo (30] 2359 02631

GLIDE [58] 1224 DiffSound [95] ~~ 47.68 401 y\pyevideo[74] 1317 03049
CoDi [78] 11.26 AudioLDM-S [51]  29.48 = 690 1 00ne vDM [68]  14.25 0.2756
sD[68] 1121 AudioLDM-L[S1] 2331 813 ponienif) 1523 02773
NEXT-GPT 1128 -I%‘é?}r[_égr_ B _zg-_zg_ _ :_;; . CoDi[78] — 0.2890

, xT- : 3 | T TR T T
Table 3: Text-to-image NExT-GPT 13.04 0.3085

generation results on Table 4: Text-to-audio genera- Table 5: Text-to-video generation re-
COCO-caption data [50]. tion results on AudioCaps [38]. sults (zero-shot) on MSR-VTT [92].

* FID: Images / Lower FID, more similar generated images to real images

* FD: Audio / Lower FD, closer to real audio features

*1S: Images & Audio / Higher IS, realistic and varied audio

* CLIPSIM: Images & Videos / Higher CLIPSIM, more semantically aligned with the prompt
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Experiments:
Any-to-any Multimodal Generation

e X-to-Text Generation

Method  B@4 METEOR CIDEr Method SPIDEr CIDEr Method B@4 METEOR
Oscar [46] 3658 304  124.12 AudioCaps[38] 0369 0.593 ORG-TRL[105] 43.6  28.8
BLIP-2 [43] 43.7 — 1458  BART [26] 0465  0.753  GIT [85] 548 331
OFA[86] 449 325 1549 AL-MixGen[39] 0466 0755 mPLUG-2[91] 57.8 349
CoDi[78] 402 310 1499 CoDi[78] 0.480  0.789  CoDi [78] 521 325
'NEXI-GPT 443 329 1567 NEXI'GPT 0521 0802 NExL.GPT 584 385

Table 6: Image-to-text genera- Table 7: Audio-to-text genera- Table 8: Video-to-text genera-
tion (image captioning) results on tion (audio captioning) results tion (video captioning) results
COCO-caption data [50]. on AudioCaps [38]. on MSR-VTT [92].

* B@4: Text(captions) / Higher score, better quality text

* METEOR: Text(captions) / Higher score, better descriptions

* SPIDEr: Audio captioning / Higher score, better audio descriptions

* CIDEr: Image & Audio captioning / Higher score, description in agreement with
reference
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Experiments:
Any-to-any Multimodal Generation

e Text+X to X Generation

Object Background

Method Method MCD () Method CLIP-T (1) CLIP-I (1)
CLIP (1) FID (}) CLIP ())FID (1) CampNet [87] 0380  CogVideo [30]  0.2391  0.9064
PTP [29] 3033 958 3155 1392 MakeAudio[33] 0375  TuneVideo [89] 02758  0.9240
BLDM [4] 2995 6.14 3038 2044 AudioLDM-L[51] 0.349  SDEdit[55] 02775  0.8731
DiffEdit [14] 2930 3.78 2692 174 NExL-GPT _ _ 0302  Pix2Video[9]  0.2891  0.9767
PFB-Diff [36] 30.81 593 3225 1377 Tuiio 10:  Texttaudio- NEXEGPT 02683 09645

SETES Cr T i Rl oy dio generation (text- Table 11: Text+video-to-video
Table 9: Text+image-to-image genera- conditioned speech edit- generation  (text-conditioned

tion (text-conditioned image editing) re- ing) results on VCTK video editing) results on DAVIS
sults on COCO data [50]. data [83]. data [62].

* CLIP: Image & Video / Higher score, better alignment
* FID: Images / Lower FID, more similar generated images to real images
* MCD: Audio / Lower FID, less distortion and natural sounding audio
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Experiments:
Any-to-any Multimodal Generation

e Human Evaluation on Complex Any-to-any QA

v v

Performance

Figure 5: Comparative performance of NExT-GPT on various complex cross-modal conversions.
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Conclusion

e Contributions
o NExT-GPT
o MoslIT Dataset

o Future Works
o Expanding NExT-GPT to additional modalities
o Broader range of tasks
o Incorporate different types and sizes of LLMs
o Expand MosIT dataset
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Key Takeaways

o Flamingo
o Open-ended vision & language model that can reach SOTA performance on
various image-language tasks with zero or few-shots.

e VisionLLM
o Open-ended vision & language model that can perform both vision-language and
vision-centric tasks with natural language instruction.

Visual Instruction Tuning (LLaVA)

[ J
Vision & Language Model trained through visual instruction tuning, following

o

human intent
Pipeline to create language-image instruction following data

o
o NEXT-GPT
o Any-to-any model understanding and generating text/images/audio/video

o Construct & generate dataset (MoslIT)
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Thank you!
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