
Retrieval-Augmented
Language Generation (RAG)

Spring 2024

CS6501: Natural Language Processing

JiHo Lee

Department of Computer Science

University of Virginia

Charlottesville, VA

jiholee@virginia.edu

Jacob Christopher

Department of Computer Science

University of Virginia

Charlottesville, VA

csk4sr@virginia.edu

Yanson Khuu

Department of Computer Science

University of Virginia

Charlottesville, VA

yansonkhuu@virginia.edu



Agenda

• Generalization through memorization: nearest neighbor 
language models

• Retrieval-augmented generation for knowledge-intensive NLP 
Tasks

• Dense passage retrieval for open-domain question answering

• Improving language models by retrieving from trillions of tokens

2



3



Neural Autoregressive Language Models

Given prior text, estimate the probability for the target token

𝐶𝑡 = (𝑤1, … , 𝑤𝑡−1)

Neural 
Language 

Model

𝑓(𝑐𝑡) 𝑃(𝑤𝑡|𝑐𝑡)

Obama was born in Illinois (0.5)

Chicago (0.25)

Hawaii (0.1)

Congress (0.02)

Surfing (0.000009)

…
4



Language Models

• Lots of text is very easily available, so we train models on large 
amounts of data. 

• But improving LM performance or scaling to larger datasets, by 
training bigger and bigger models with billions of parameters, 
requires massive amounts of GPU compute.

5



Language Models

• Encoding + Prediction

• kNN-LM
• The representation learning problem may be easier than the prediction 

problem.

• Pre-trained LM with retrieval mechanism

Neural 
Language 

Model

𝑓(𝑐𝑡) 𝑃(𝑤𝑡|𝑐𝑡)
Illinois (0.5)

Chicago (0.25)

Hawaii (0.1)

Congress (0.02)

Surfing (0.000009)

…

𝐶𝑡 = (𝑤1, … , 𝑤𝑡−1)
Obama was born in

6



Nearest Neighbor Language Models
(KNN-LM)

7



Key Results

• Explicitly memorizing the training data helps generalization. 

• LMs can scale to larger text collections without the added cost 
of training. 

• A single LM can adapt to multiple domains without any in-
domain training.

8



Experiments

• kNN-LM is compatible with any model that produces fixed size context representations.

• kNN-LM improves perplexity on WIKITEXT-103 from 18.65 to 16.12.

• Improvements from the continuous cache are additive with the kNN-LM.

9



Key Results

• Explicitly memorizing the training data helps generalization. 

• LMs can scale to larger text collections without the added cost 
of training. 

• A single LM can adapt to multiple domains without any in-
domain training.

10



Scaling up from Wiki-100M to Wiki-3B

• Retrieving nearest neighbors from the corpus outperforms 
training on it.

11



Datastore Size and Interpolation

• As the datastore expands, the vocab distribution produced by the retriever 
becomes significantly effective.

12



Key Results

• Explicitly memorizing the training data helps generalization. 

• LMs can scale to larger text collections without the added cost 
of training. 

• A single LM can adapt to multiple domains without any in-
domain training.

13



Domain Adaptation from Wiki to Books

• A single LM can be useful in multiple domains by simply adding 
a domain-specific datastore.

14



Qualitative Analysis

⁻ kNN model has much higher 

confidence in the correct 

target than the LM. 

⁻ The nearest neighbor search 

is highly confident of specific 

and very relevant context. 

15



Memorization vs Retrieval

• LM can implicitly memorize the training data with less effective generalization. 

• kNN-LM memorizes the training data while retaining an effective generalization 
for the validation perplexity.

16



Conclusion

• Summary & Pros
• Significantly outperform standard language models by directly querying 

training examples at test time.

• The approach can be applied to any neural language model.

• Cons
• Additional cost for constructing datastore.

• Memory and computational costs to retrieve targets from datastore.

• Perplexity is the only evaluation metric for the comparison.

17



Future work

• Learning similarity functions between contexts may be an easier 
problem than predicting the next word from some given context.

• Future work should explore explicitly training similarity functions, 
and reducing the size of the datastore.

18



19



Parametric vs Non-Parametric Memory

• As shown in the previous paper, pre-trained have

some capability in exercising recall of factual

information contained in the trained parameters for

general knowledge tasks

• These are less effective for knowedge-intensive

tasks, those falling outside the domain of facts

widely known

• Incorporating both parametric memory and non-

parametric memory into pre-training (avoid

additional training)

20



Approach Overview

• Retriever Model: pη(z|x)
oA model with parameters η retrieving over passages z using query x

• Generator Model: pθ(yi|x, z, y1:i−1)
oA model with parameters θ that generates token i based on context of 

the query, previously generated tokens, and retrieved passage

• End-to-End Training
oThese models are trained in an end-to-end manner (collectively)

21



Approach Overview

22



RAG-Sequence vs RAG-Token

• RAG-Sequence Model
oSingle retrieved document z for complete sequence

• RAG-Token Model
oRetirever selects a series of documents and selects the "best" 

document to use as context for each output token

23



Dense Passage Retrieval

• The retriever model utilizes a bi-encoder architecture, such that

BERT encodes the documents and the query to build the
document index, compiling the non-parametric memory.

• This allows us to train the encoders to use a Maximum Inner
Product Search (MIPS) to retrieve the most useful set of 
documents for the query.

24



Generator

• BART-large is used for
this component

• Context becomes a concatenation
of the documents z, the query x, 
and the previous token
predictions y1:i−1

• The model parameters θ act as the 
parameteric memory

25



Decoding

• RAG-Token: 
Standard beam decoder

• RAG-Sequence: 
Since there are multiple contexts being considered (multiple 
documents), beam search is applied to each, providing an 
independent score

26



Decoding

• RAG-Sequence:

o Thorough Decoding:
▪ Each context beam has associated outputs y (hypothesis) which is scored and y ∈ Y
▪ The probability for y is evaluated using an additional forward pass for documents whic

h do not elicit y
▪ The generator probability of this forward pass is then used to create a collective proba

bility across beams

o Fast Decoding:
▪ As the former can be quite computationally expensive, the probability of y for contexts 

not containing it in the beam can be approximated as zero
▪ Eliminates need for additional forward passes

27



Decoding

28



Decoding

29



Decoding

The paper visualizes an example of this approach:

30



Example Test Cases

31



Results

32



Results

They evaluate based on human preference:

33



Results

34



Limitations

• End-to-End Training:
o Increased training cost

oCannot natively generalize to out-of-distribution problem sets

• Retrieval Collapse:
o If the retriever does not provide any useful documents (when initialized), 

gradients become unstable and training fails

• Document sets may have factually incorrect information, so ans
wers still should be assessed critically as method is adopted

35



Conclusion

• RAG methods can improve accuarcy by expanding to non-
parametric memory

• Retrieval methods require no additional training to extend
to various document sets

36



37



What is Open-Domain Question Answering?

38



Overview

• Goal: We focus our research in this work on improving the retri
eval component in open-domain QA.

• Current state: Utilization of "TF-IDF" or "BM25" as a means of 
comparing passages to questions

• General strategy: Encode passages and question prompts as 
Dense Vectors to search for answers. This method is labled De
nse Passage Retrieval.

39



Dense Passage Retrieval

40



Training

• Train Encoders with question-

passage pairing

• 1 Positive result

• n Irrelevant results

• Loss function

41



Training

• 3 Different Negative Types
oRandom: any random passage from the corpus;

oBM25: top passages returned by BM25 which don’t contain the answer 
but match most question tokens;

oGold: positive passages paired with other questions which appear in th
e training set. 

42



Training Data

43



Experiment

Results of Retrievers in different situations

44



Experiment

45



Experiment

46



Results

47



Conclusion

• Dense retrieval can outperform traditional sparse retrieval comp
onents in open-domain question answering.

• Training a dense retriever successfully is no longer a pipe drea
m.

• These developments have set a new standard for multiple open
-domain question answering benchmarks

48



Limitations

• While impressive it is not ready to completely replace current m
ethods like BM25
oDPR alone with randomly selected negative passages or golden passa

ges have limited effectiveness.

oNeeds the careful touch of BM25 to reach peak performance

• DPR training/computing is much higher in cost than that of BM2
5 when it comes to creating a pre-computed index

49



50



Semi-parametric approach

• Large performance improvements on Language Model (LM)
• Increasing the amount of data, training compute, or model parameters

• Increasing the number of parameters
• Increased memorization of the training data

• Additional computations at training and inference time

→Decoupling this approach: “Retrieval from a large text database as a complementary 
path”

• Limitation of previous works
• Performed on the limited amount of knowledge base

→ “Our work is the first to show the benefit of scaling the retrieval database to 
trillions of tokens”

51



RETRO

• Retrieval-enhanced transformer (RETRO): High-level overview

https://deepmind.google/discover/blog/improving-language-models-by-retrieving-from-trillions-of-tokens/
52

https://deepmind.google/discover/blog/improving-language-models-by-retrieving-from-trillions-of-tokens/


Dataset

• Massive Text
• Multiple sources, multiple languages

• SentencePiece tokenization (128,000 vocab tokens)

• Retrieval database
• For training: 600B tokens

• For evaluation: 1.75T tokens

53



Retrieval-enhanced autoregressive token models

• Token granularity for efficient retrieval

• Split each 𝑛-token-long example 𝑋 = (𝑥1, … , 𝑥𝑛) into a sequence of 𝑙
chunks (𝐶1, … , 𝐶𝑙)

54



Constructing key-value database

• KEY: frozen BERT embeddings

• VALUE: raw chunks of text tokens

55



Nearest neighbor retrieval

• Retrieval as a way to augment input examples

• K-nearest neighbor based on L2 distance

56



RETRO Block

57



RETRO Block
• k retrieval neighbors input to bi-

directional encoder

• Conditioned on Hu which is the 

intermediate activation of chunk Cu

• This yields the set of encoded 

neighbors E, indexed by u

58



Chunked Cross Attention
• Break down the intermediate 

activations to compute the attending 

chunks Hu
+

• Compute attention between Hu
+ and 

embedded neighbors Eu

• This CCA mechanism allows for Cu

to attend to the neighbors of 

preceding chunk Cu-1 but the 

activations of each chunk is 

dependent upon all previous chunks

59



RETRO Block

60



Evaluating Data Leakage

• Evaluation sequences and training data are treated as chunks

• Closest neighbors in the training data are retrieved for each
evaluation chunk

• Compare the closest pair between the training data and 
evalutation sequence

• Frame as log likelihood metric

61



Results

62

RETRO effectiveness on different corpus and models of different sizes



Results

63

RETRO outperforms Jurassic for dataflow



Results

64



Results

65

RETRO is competitive with other retrieval methods h

owever it underperforms compared to the recent Fi

D method.



Conclusion

• Retrieval-Enhanced Transformers (RETRO) is an efficient, com
petitive, and scalable retrieval model for datasets up to 7B

• Previous models can be fine tuned easily to become RETRO

• Limited data leakage, however could still be a factor on larger s
cale models

66



Limitations

• Difficult to know how RETRO could apply to other transformer 
models
oStudy only used one fixed encoder, (BERT), to generate embeddings

▪ Costly to retrain if BERT ever updates

• Future work can explore RETRO and its effectiveness under oth
er encoder models

67



Main Ideas

• RAG approaches allow for language models to generalize to
complex domains which may be poorly represented in the
training corpus

• Some key ideas based upon in-context learning are integral to
the applicability of these techniques

• Future work may focus on finding better methods to index
documents and retrieve appropriate text for a given task

68



Questions?

69


	슬라이드 1: Retrieval-Augmented Language Generation (RAG)
	슬라이드 2: Agenda
	슬라이드 3
	슬라이드 4: Neural Autoregressive Language Models
	슬라이드 5: Language Models
	슬라이드 6: Language Models
	슬라이드 7: Nearest Neighbor Language Models (KNN-LM)
	슬라이드 8: Key Results
	슬라이드 9: Experiments
	슬라이드 10: Key Results
	슬라이드 11: Scaling up from Wiki-100M to Wiki-3B
	슬라이드 12: Datastore Size and Interpolation
	슬라이드 13: Key Results
	슬라이드 14: Domain Adaptation from Wiki to Books
	슬라이드 15: Qualitative Analysis
	슬라이드 16: Memorization vs Retrieval
	슬라이드 17: Conclusion
	슬라이드 18: Future work
	슬라이드 19
	슬라이드 20: Parametric vs Non-Parametric Memory
	슬라이드 21: Approach Overview
	슬라이드 22: Approach Overview
	슬라이드 23: RAG-Sequence vs RAG-Token
	슬라이드 24: Dense Passage Retrieval
	슬라이드 25: Generator
	슬라이드 26: Decoding
	슬라이드 27: Decoding
	슬라이드 28: Decoding
	슬라이드 29: Decoding
	슬라이드 30: Decoding
	슬라이드 31: Example Test Cases
	슬라이드 32: Results
	슬라이드 33: Results
	슬라이드 34: Results
	슬라이드 35: Limitations
	슬라이드 36: Conclusion
	슬라이드 37
	슬라이드 38: What is Open-Domain Question Answering?
	슬라이드 39: Overview
	슬라이드 40: Dense Passage Retrieval
	슬라이드 41: Training
	슬라이드 42: Training
	슬라이드 43: Training Data
	슬라이드 44: Experiment
	슬라이드 45: Experiment
	슬라이드 46: Experiment
	슬라이드 47: Results
	슬라이드 48: Conclusion
	슬라이드 49: Limitations
	슬라이드 50
	슬라이드 51: Semi-parametric approach
	슬라이드 52: RETRO
	슬라이드 53: Dataset
	슬라이드 54: Retrieval-enhanced autoregressive token models
	슬라이드 55: Constructing key-value database
	슬라이드 56: Nearest neighbor retrieval
	슬라이드 57: RETRO Block
	슬라이드 58: RETRO Block
	슬라이드 59: Chunked Cross Attention
	슬라이드 60: RETRO Block
	슬라이드 61: Evaluating Data Leakage
	슬라이드 62: Results
	슬라이드 63: Results
	슬라이드 64: Results
	슬라이드 65: Results
	슬라이드 66: Conclusion
	슬라이드 67: Limitations
	슬라이드 68: Main Ideas
	슬라이드 69: Questions?

