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Agenda

• Generalization through memorization: nearest neighbor 
language models

• Retrieval-augmented generation for knowledge-intensive NLP 
Tasks

• Dense passage retrieval for open-domain question answering

• Improving language models by retrieving from trillions of tokens
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Neural Autoregressive Language Models

Given prior text, estimate the probability for the target token

𝐶𝑡 = (𝑤1, … , 𝑤𝑡−1)

Neural 
Language 

Model

𝑓(𝑐𝑡) 𝑃(𝑤𝑡|𝑐𝑡)

Obama was born in Illinois (0.5)

Chicago (0.25)

Hawaii (0.1)

Congress (0.02)

Surfing (0.000009)

…
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Language Models

• Lots of text is very easily available, so we train models on large 
amounts of data. 

• But improving LM performance or scaling to larger datasets, by 
training bigger and bigger models with billions of parameters, 
requires massive amounts of GPU compute.
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Language Models

• Encoding + Prediction

• kNN-LM
• The representation learning problem may be easier than the prediction 

problem.

• Pre-trained LM with retrieval mechanism

Neural 
Language 

Model

𝑓(𝑐𝑡) 𝑃(𝑤𝑡|𝑐𝑡)
Illinois (0.5)

Chicago (0.25)

Hawaii (0.1)

Congress (0.02)

Surfing (0.000009)

…

𝐶𝑡 = (𝑤1, … , 𝑤𝑡−1)
Obama was born in
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Nearest Neighbor Language Models
(KNN-LM)
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Key Results

• Explicitly memorizing the training data helps generalization. 

• LMs can scale to larger text collections without the added cost 
of training. 

• A single LM can adapt to multiple domains without any in-
domain training.
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Experiments

• kNN-LM is compatible with any model that produces fixed size context representations.

• kNN-LM improves perplexity on WIKITEXT-103 from 18.65 to 16.12.

• Improvements from the continuous cache are additive with the kNN-LM.
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Key Results

• Explicitly memorizing the training data helps generalization. 

• LMs can scale to larger text collections without the added cost 
of training. 

• A single LM can adapt to multiple domains without any in-
domain training.
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Scaling up from Wiki-100M to Wiki-3B

• Retrieving nearest neighbors from the corpus outperforms 
training on it.
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Datastore Size and Interpolation

• As the datastore expands, the vocab distribution produced by the retriever 
becomes significantly effective.
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Key Results

• Explicitly memorizing the training data helps generalization. 

• LMs can scale to larger text collections without the added cost 
of training. 

• A single LM can adapt to multiple domains without any in-
domain training.
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Domain Adaptation from Wiki to Books

• A single LM can be useful in multiple domains by simply adding 
a domain-specific datastore.
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Qualitative Analysis

⁻ kNN model has much higher 

confidence in the correct 

target than the LM. 

⁻ The nearest neighbor search 

is highly confident of specific 

and very relevant context. 
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Memorization vs Retrieval

• LM can implicitly memorize the training data with less effective generalization. 

• kNN-LM memorizes the training data while retaining an effective generalization 
for the validation perplexity.
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Conclusion

• Summary & Pros
• Significantly outperform standard language models by directly querying 

training examples at test time.

• The approach can be applied to any neural language model.

• Cons
• Additional cost for constructing datastore.

• Memory and computational costs to retrieve targets from datastore.

• Perplexity is the only evaluation metric for the comparison.
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Future work

• Learning similarity functions between contexts may be an easier 
problem than predicting the next word from some given context.

• Future work should explore explicitly training similarity functions, 
and reducing the size of the datastore.
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Parametric vs Non-Parametric Memory

• As shown in the previous paper, pre-trained have

some capability in exercising recall of factual

information contained in the trained parameters for

general knowledge tasks

• These are less effective for knowedge-intensive

tasks, those falling outside the domain of facts

widely known

• Incorporating both parametric memory and non-

parametric memory into pre-training (avoid

additional training)
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Approach Overview

• Retriever Model: pη(z|x)
oA model with parameters η retrieving over passages z using query x

• Generator Model: pθ(yi|x, z, y1:i−1)
oA model with parameters θ that generates token i based on context of 

the query, previously generated tokens, and retrieved passage

• End-to-End Training
oThese models are trained in an end-to-end manner (collectively)
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Approach Overview
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RAG-Sequence vs RAG-Token

• RAG-Sequence Model
oSingle retrieved document z for complete sequence

• RAG-Token Model
oRetirever selects a series of documents and selects the "best" 

document to use as context for each output token
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Dense Passage Retrieval

• The retriever model utilizes a bi-encoder architecture, such that

BERT encodes the documents and the query to build the
document index, compiling the non-parametric memory.

• This allows us to train the encoders to use a Maximum Inner
Product Search (MIPS) to retrieve the most useful set of 
documents for the query.
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Generator

• BART-large is used for
this component

• Context becomes a concatenation
of the documents z, the query x, 
and the previous token
predictions y1:i−1

• The model parameters θ act as the 
parameteric memory
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Decoding

• RAG-Token: 
Standard beam decoder

• RAG-Sequence: 
Since there are multiple contexts being considered (multiple 
documents), beam search is applied to each, providing an 
independent score
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Decoding

• RAG-Sequence:

o Thorough Decoding:
▪ Each context beam has associated outputs y (hypothesis) which is scored and y ∈ Y
▪ The probability for y is evaluated using an additional forward pass for documents whic

h do not elicit y
▪ The generator probability of this forward pass is then used to create a collective proba

bility across beams

o Fast Decoding:
▪ As the former can be quite computationally expensive, the probability of y for contexts 

not containing it in the beam can be approximated as zero
▪ Eliminates need for additional forward passes
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Decoding
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Decoding
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Decoding

The paper visualizes an example of this approach:
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Example Test Cases
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Results
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Results

They evaluate based on human preference:
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Results
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Limitations

• End-to-End Training:
o Increased training cost

oCannot natively generalize to out-of-distribution problem sets

• Retrieval Collapse:
o If the retriever does not provide any useful documents (when initialized), 

gradients become unstable and training fails

• Document sets may have factually incorrect information, so ans
wers still should be assessed critically as method is adopted
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Conclusion

• RAG methods can improve accuarcy by expanding to non-
parametric memory

• Retrieval methods require no additional training to extend
to various document sets

36



37



What is Open-Domain Question Answering?
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Overview

• Goal: We focus our research in this work on improving the retri
eval component in open-domain QA.

• Current state: Utilization of "TF-IDF" or "BM25" as a means of 
comparing passages to questions

• General strategy: Encode passages and question prompts as 
Dense Vectors to search for answers. This method is labled De
nse Passage Retrieval.
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Dense Passage Retrieval
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Training

• Train Encoders with question-

passage pairing

• 1 Positive result

• n Irrelevant results

• Loss function
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Training

• 3 Different Negative Types
oRandom: any random passage from the corpus;

oBM25: top passages returned by BM25 which don’t contain the answer 
but match most question tokens;

oGold: positive passages paired with other questions which appear in th
e training set. 
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Training Data
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Experiment

Results of Retrievers in different situations
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Experiment
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Experiment
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Results
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Conclusion

• Dense retrieval can outperform traditional sparse retrieval comp
onents in open-domain question answering.

• Training a dense retriever successfully is no longer a pipe drea
m.

• These developments have set a new standard for multiple open
-domain question answering benchmarks
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Limitations

• While impressive it is not ready to completely replace current m
ethods like BM25
oDPR alone with randomly selected negative passages or golden passa

ges have limited effectiveness.

oNeeds the careful touch of BM25 to reach peak performance

• DPR training/computing is much higher in cost than that of BM2
5 when it comes to creating a pre-computed index
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Semi-parametric approach

• Large performance improvements on Language Model (LM)
• Increasing the amount of data, training compute, or model parameters

• Increasing the number of parameters
• Increased memorization of the training data

• Additional computations at training and inference time

→Decoupling this approach: “Retrieval from a large text database as a complementary 
path”

• Limitation of previous works
• Performed on the limited amount of knowledge base

→ “Our work is the first to show the benefit of scaling the retrieval database to 
trillions of tokens”
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RETRO

• Retrieval-enhanced transformer (RETRO): High-level overview

https://deepmind.google/discover/blog/improving-language-models-by-retrieving-from-trillions-of-tokens/
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Dataset

• Massive Text
• Multiple sources, multiple languages

• SentencePiece tokenization (128,000 vocab tokens)

• Retrieval database
• For training: 600B tokens

• For evaluation: 1.75T tokens
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Retrieval-enhanced autoregressive token models

• Token granularity for efficient retrieval

• Split each 𝑛-token-long example 𝑋 = (𝑥1, … , 𝑥𝑛) into a sequence of 𝑙
chunks (𝐶1, … , 𝐶𝑙)
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Constructing key-value database

• KEY: frozen BERT embeddings

• VALUE: raw chunks of text tokens
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Nearest neighbor retrieval

• Retrieval as a way to augment input examples

• K-nearest neighbor based on L2 distance
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RETRO Block
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RETRO Block
• k retrieval neighbors input to bi-

directional encoder

• Conditioned on Hu which is the 

intermediate activation of chunk Cu

• This yields the set of encoded 

neighbors E, indexed by u
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Chunked Cross Attention
• Break down the intermediate 

activations to compute the attending 

chunks Hu
+

• Compute attention between Hu
+ and 

embedded neighbors Eu

• This CCA mechanism allows for Cu

to attend to the neighbors of 

preceding chunk Cu-1 but the 

activations of each chunk is 

dependent upon all previous chunks
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RETRO Block
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Evaluating Data Leakage

• Evaluation sequences and training data are treated as chunks

• Closest neighbors in the training data are retrieved for each
evaluation chunk

• Compare the closest pair between the training data and 
evalutation sequence

• Frame as log likelihood metric
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Results

62

RETRO effectiveness on different corpus and models of different sizes



Results

63

RETRO outperforms Jurassic for dataflow



Results
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Results

65

RETRO is competitive with other retrieval methods h

owever it underperforms compared to the recent Fi

D method.



Conclusion

• Retrieval-Enhanced Transformers (RETRO) is an efficient, com
petitive, and scalable retrieval model for datasets up to 7B

• Previous models can be fine tuned easily to become RETRO

• Limited data leakage, however could still be a factor on larger s
cale models
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Limitations

• Difficult to know how RETRO could apply to other transformer 
models
oStudy only used one fixed encoder, (BERT), to generate embeddings

▪ Costly to retrain if BERT ever updates

• Future work can explore RETRO and its effectiveness under oth
er encoder models
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Main Ideas

• RAG approaches allow for language models to generalize to
complex domains which may be poorly represented in the
training corpus

• Some key ideas based upon in-context learning are integral to
the applicability of these techniques

• Future work may focus on finding better methods to index
documents and retrieve appropriate text for a given task
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Questions?
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