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» Generalization through memorization: nearest neighbor
language models

* Retrieval-augmented generation for knowledge-intensive NLP
Tasks

* Dense passage retrieval for open-domain guestion answering
* Improving language models by retrieving from trillions of tokens
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Neural Autoregressive Language Models

Given prior text, estimate the probability for the target token I
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* Lots of text is very easily available, so we train models on large
amounts of data.

« But improving LM performance or scaling to larger datasets, by
training bigger and bigger models with billions of parameters,
requires massive amounts of GPU compute.
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Language Models
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* Encoding + Prediction
 KNN-LM
* The representation learning problem may be easier than the prediction
problem.

* Pre-trained LM with retrieval mechanism
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Nearest Neighbor Language Models
(KNN-LM)
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Key Results

 Explicitly memorizing the training data helps generalization.

* LMs can scale to larger text collections without the added cost
of training.

* A single LM can adapt to multiple domains without any In-
domain training.
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Experiments

Model Perplexity (]) # Trainable Params
Dev Test

Baevski & Auli (2019) 17.96 18.65 247TM
+Transformer-XL (Dai et al., 2019) - 18.30 257TM
+Phrase Induction (Luo et al., 2019) - 17.40 257TM

Base LM (Baevski & Auli, 2019) 17.96 18.65 247T™M
+kNN-LM 16.06 l 16.12 | 247TM
+Continuous Cache (Grave et al., 2017c¢) 17.67 _18.27 247TM
+kNN-LM + Continuous Cache 15.81 1 15.79 | 247TM

* KNN-LM is compatible with any model that produces fixed size context representations.
* KNN-LM improves perplexity on WIKITEXT-103 from 18.65 to 16.12.
* Improvements from the continuous cache are additive with the KNN-LM.
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Key Results

 Explicitly memorizing the training data helps generalization.

« LMs can scale to larger text collections without the added cost
of training.

* A single LM can adapt to multiple domains without any In-
domain training.
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Scaling up from Wiki-100M to Wiki-3B

* Retrieving nearest neighbors from the corpus outperforms

training on It.

Training Data Datastore Perplexity ()
Dev Test
WIKI-3B 16.11 15.17
WIKI-100M 20.99 19.59
WIKI-100M WIKI-3B 14.61 13.73
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Datastore Size and Interpolation
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 As the datastore expands, the vocab distribution produced by the retriever
becomes significantly effective.
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Key Results

 Explicitly memorizing the training data helps generalization.

* LMs can scale to larger text collections without the added cost
of training.

* A single LM can adapt to multiple domains without any in-
domain training.
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Domain Adaptation from Wiki to Books

* A single LM can be useful in multiple domains by simply adding
a domain-specific datastore.

Training Data Datastore Perplexity ()
Dev Test

WIKI-3B - 37.13 34.84

BOOKS - 14.75 11.89

WIKI-3B BOOKS 24.85 20.47
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Qualitative Analysis

Test Context  (ponny = 0.998, pry = 0.124)

Test Target

it was organised by New Zealand international player Joseph Warbrick,
promoted by civil servant Thomas Eyton, and managed by James Scott, a
publican. The Natives were the first New Zealand team to perform a haka,
and also the first to wear all black. They played 107 rugby matches during
the tour, as well as a small number of Victorian Rules football and associ-
ation football matches in Australia. Having made a significant impact on
the...

development

Training Set Context

Training Context
Set Target  Probability

As the captain and instigator of the 1888-89 Natives — the first New Zealand
team to tour the British Isles — Warbrick had a lasting impact on the...

promoted to a new first grade competition which started in 1900. Glebe
immediately made a big impact on the...

centuries, few were as large as other players managed. However, others
contend that his impact on the...

Nearly every game in the main series has either an anime or manga adap-
tation, or both. The series has had a significant impact on the...

development 0.998

district 0.00012

game 0.000034

development  0.00000092
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~ KNN model has much higher
confidence in the correct
target than the LM.

- The nearest neighbor search
IS highly confident of specific
and very relevant context.

15
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Memorization vs Retrieval
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« LM can implicitly memorize the training data with less effective generalization.

« KNN-LM memorizes the training data while retaining an effective generalization
for the validation perplexity.

16



UNIVERSITYoVIRGINIA

e Summary & Pros

« Significantly outperform standard language models by directly querying
training examples at test time.

* The approach can be applied to any neural language model.

* Cons
 Additional cost for constructing datastore.
 Memory and computational costs to retrieve targets from datastore.
« Perplexity is the only evaluation metric for the comparison.
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 Learning similarity functions between contexts may be an easier
problem than predicting the next word from some given context.

« Future work should explore explicitly training similarity functions,
and reducing the size of the datastore.
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Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks

Patrick Lewis'?, Ethan Perez*,
Aleksandra Piktus', Fabio Petroni’, Vladimir Karpukhin', Naman Goyal', Heinrich Kiittler',

Mike Lewis’, Wen-tau Yih', Tim Rocktiischel'*, Sebastian Riedel', Douwe Kiela'

TFacebook Al Research; *University College London; *New York University;
plewis@fb.com
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Parametric vs Non-Parametric Memory

« As shown in the previous paper, pre-trained have
some capability in exercising recall of factual
Information contained in the trained parameters for
general knowledge tasks

* These are less effective for knowedge-intensive
tasks, those falling outside the domain of facts
widely known

* Incorporating both parametric memory and non-
parametric memory into pre-training (avoid
additional training)

20
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* Retriever Model: p,(z|x)
o A model with parameters n retrieving over passages z using query X

» Generator Model: pg(Yilx, z, Y4.-1)

o A model with parameters 6 that generates token | based on context of
the query, previously generated tokens, and retrieved passage

* End-to-End Training
o These models are trained in an end-to-end manner (collectively)



Approach Overview

Define "middle ear" (x)

Question Answering:
Question Query

Barack Obama was
born in Hawaii. (x)

Fact Verification: Fact Query

The Divine
Comedy (x)
Jeopardy Question

Generation:
Answer Query

EPZAN

End-to-End Backprop through q and pg

/Query
Encoder
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Document
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Index
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Generator pg
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The middle ear includes
the tympanic cavity and
the three ossicles. (y)

Question Answering:
Answer Generation

supports (y)

Fact Verification:
Label Generation

This 14th century work
is divided into 3

sections: "Inferno",
"Purgatorio" &
"Paradiso” (v)

/

Question Generation

Figure 1: Overview of our approach. We combine a pre-trained retriever (Query Encoder + Document
Index) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use
Maximum Inner Product Search (MIPS) to find the top-K documents z;. For final prediction y, we
treat 2z as a latent variable and marginalize over seq2seq predictions given different documents.
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RAG-Sequence vs RAG-Token

« RAG-Seqguence Model
o Single retrieved document z for complete sequence

Pracsequence(U1Z) = Y p(2l)po(ylz, 2) = D pyl zlsv)Hpe (yilz, 2, y1:-1)
zetopk(p(-|) setopk(p(le) i

« RAG-Token Model

o Retirever selects a series of documents and selects the "best"
document to use as context for each output token

DPRAG-Token y|$) H Z pn(z|$)p9(yz|$a Zaylzi—l)

1 z€top-k(p(-|x))
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* The retriever model utilizes a bi-encoder architecture, such that
pn(z|a:) X exp (d(z)Tq(:U)) d(z) = BERT4(2), q(z) = BERT,(x)

BERT encodes the documents and the query to build the
document index, compiling the non-parametric memory.

 This allows us to train the encoders to use a Maximum Inner
Product Search (MIPS) to retrieve the most useful set of
documents for the query.
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Generator

* BART-large is used for Generator pg
this component (Parametric)

« Context becomes a concatenation Margin-
of the documents z, the query X, alize

and the previous token
predictions y,._;

* The model parameters 6 act as the
parameteric memory

25
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« RAG-Token:
Standard beam decoder

* RAG-Sequence:
Since there are multiple contexts being considered (multiple
documents), beam search is applied to each, providing an
Independent score
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* RAG-Sequence:

o Thorough Decoding:
= Each context beam has associated outputs y (hypothesis) which is scored andy € Y

* The probability for y is evaluated using an additional forward pass for documents whic
h do not elicity

* The generator probability of this forward pass is then used to create a collective proba
bility across beams

o Fast Decoding:

» As the former can be quite computationally expensive, the probability of y for contexts
not containing it in the beam can be approximated as zero

= Eliminates need for additional forward passes
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Decoding

Beam Forward Marginalize
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Decoding

Beam
search
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Return
highest
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Decoding

The paper visualizes an example of this approach:

Document 1: his works are considered classics of American Doc 1 A .
literature ... His wartime experiences formed the basis for hisnovel .9 - .

" A Farewell to Arms” (1929) ... Doc 3

Document 2: ... artists of the 1920s “Lost Generation” expatriate Doc 4 -

community. His debut novel, “The Sun Also Rises”, was published

in 1926. Doc 5 1

" g & 0% L > 1"'«. . i o0 T .0 o
i

Figure 2: RAG-Token document posterior p(z;|x, y;,y—;) for each generated token for input “Hem-
ingway" for Jeopardy generation with 5 retrieved documents. The posterior for document 1 is high
when generating “A Farewell to Arms" and for document 2 when generating “The Sun Also Rises".

30



i UNIVERSITYs VIRGINIA

Example Test Cases

Table 3: Examples from generation tasks. RAG models generate more specific and factually accurate
responses. ‘?” indicates factually incorrect responses, * indicates partially correct responses.

Task Input Model Generation

BART 'The middle ear is the part of the ear between the middle ear and the nose.
RAG-T The middle ear is the portion of the ear internal to the eardrum.
RAG-S The middle ear includes the tympanic cavity and the three ossicles.

define middle

MS- car

MARCO

what currency BART The currency needed in Scotland is Pound sterling.
needed in RAG-T Pound is the currency needed in Scotland.
scotland RAG-S The currency needed in Scotland is the pound sterling.

BART ’This state has the largest number of counties in the U.S.
Jeopardy Washington RAG-T It’s the only U.S. state named for a U.S. president
Question RAG-S It’s the state where you’ll find Mount Rainier National Park
Gener
-ation The Divine
Comedy

BART This epic poem by Dante is divided into 3 parts: the Inferno, the Purgatorio & the Purgatorio
RAG-T Dante’s "Inferno" is the first part of this epic poem
RAG-S This 14th century work is divided into 3 sections: "Inferno”, "Purgatorio” & "Paradiso”
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Table 1: Open-Domain QA Test Scores. For TQA, Table 2: Generation and classification Test Scores.
left column uses the standard test set for Open- MS-MARCO SotA is [4], FEVER-3 is [68] and
Domain QA, right column uses the TQA-Wiki FEVER-2 is [57] *Uses gold context/evidence.

test set. See Appendix D for further details.

Best model without gold access underlined.

Model NQ TQA WQ CT
Jeopardy MSMARCO FVR3 FVR2
Closed T5-11B[52] 345 - /50.1 374 - B-1 QB-1 R-L B-1 Label Acc.
Book T5-11B+SSM[52] 36.6 - /60.5 4477 -
- - * * £
Open REALM[20] 404 - / - 407 468 4987 9I* 768 92.2
Book DPR [26] 41.5 57.9/ - 41.1 50.6 15.1 197 382 416 64.0 81.1
RAG-Token 44.1 55.2/66.1 45.5 50.0 RAG-Tok. 17.3 222 40.1 41.5 725 895
RAG-Seq. 44.5 56.8/68.0 452 52.2 RAG-Seq. 14.7 214 408 44.2 ‘ ==
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Results

They evaluate based on human preference:

Table 4: Human assessments for the Jeopardy
Question Generation Task.

Factuality = Specificity

BART better 7.1% 16.8%
RAG better 42.7 % 37.4%
Both good 11.7% 11.8%
Both poor 17.7% 6.9%

No majority ~ 20.8% 20.1%

33
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Results
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Figure 3: Left: NQ performance as more documents are retrieved. Center: Retrieval recall perfor-
mance in NQ. Right: MS-MARCO Bleu-1 and Rouge-L as more documents are retrieved.
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* End-to-End Training:
o Increased training cost
o Cannot natively generalize to out-of-distribution problem sets

 Retrieval Collapse:

o If the retriever does not provide any useful documents (when initialized),
gradients become unstable and training fails

« Document sets may have factually incorrect information, so ans
wers still should be assessed critically as method is adopted
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Conclusion

« RAG methods can improve accuarcy by expanding to non-
parametric memory

* Retrieval methods require no additional training to extend
to various document sets

36
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Dense Passage Retrieval for Open-Domain Question Answering

Vladimir Karpukhin; Barlas Oguz; Sewon Min', Patrick Lewis,
Ledell Wu, Sergey Edunov, Danqi Chen*, Wen-tau Yih
Facebook Al "University of Washington tPrinceton University
{vladk, barlaso, plewis, ledell, edunov, scottyih}@fb.com
sewon@cs.washington.edu
dangic@cs.princeton.edu
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What Is Open-Domain Question Answering?

Pretrained

. BERT
Indexing Fine-tuning on SQUAD
/

N
>
span
. score

Question ——> Inverted > — F'";;:Trmd > 4+ —> Answer

Index A

o _ top k segments

Anserini Retriever BERT Reader
\_ Y, \_ Y,
segment score
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« Goal: We focus our research in this work on improving the retri
eval component in open-domain QA.

 Current state: Utilization of "TF-IDF" or "BM25" as a means of
comparing passages to questions

* General strategy: Encode passages and question prompts as
Dense Vectors to search for answers. This method is labled De
nse Passage Retrieval.
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Dense Passage Retrieval

/Dot Product to\ /Refined Corpuh

find similarity
L Vectorized
Sim(q, p*) Passage 1
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a N
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—)[ Passage 1 J—— Dense
Encoder
Vectorized
Documents  [m— Passage 2 — P 5
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W Vectorized Vectorized
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N / N NS /
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QueSt|0n q ; W ( Vectorized W w T
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Vectorized
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Training
D = {(gp Py Do) H
* Train Encoders with question- .|
passage pairing 7= N
| . L
* 1 Positive result 9, — [ Ps Bu PR Xm
* n lrrelevant results o
\ \ | F?s Fu) p. n
\\\_ 4
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esim(ql,pz )

p— —log _
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3 Different Negative Types
o Random: any random passage from the corpus;

o BM25: top passages returned by BM25 which don’t contain the answer
but match most question tokens;

o Gold: positive passages paired with other guestions which appear in th
e training set.
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Training Data

Dataset Train Dev Test
Natural Questions 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313
WebQuestions 3,417 2,474 361 2,032
CuratedTREC 1,353 1,125 133 694
SQuAD 78,713 70,096 8,886 10,570

Table 1: Number of questions in each QA dataset. The
two columns of Train denote the original training ex-
amples in the dataset and the actual questions used for
training DPR after filtering. See text for more details.
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Experiment

Results of Retrievers In different situations

Training Retriever Top-20 Top-100
NQ TriviaQA WQ TREC SQuAD | NQ TriviaQA WQ TREC SQuAD
None BM25 591 669 550 709 688 |737 767 711 841 80.0
Sinele  DPR 784 794 732 798 632 | 854 850 814 89.1 7722
ing BM25+DPR | 766 798 710 852 715 |838 845 805 927 81.3
Ml DPR 794 788 750 89.1 516 | 8.0 847 829 939 676
BM25+DPR | 780 799 747 885 662 | 839 844 83 941 786

Table 2: Top-20 & Top-100 retrieval accuracy on test sets, measured as the percentage of top 20/100 retrieved
passages that contain the answer. Single and Multi denote that our Dense Passage Retriever (DPR) was trained
using individial or combined training datasets (all the datasets excluding SQuAD). See text for more details.
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Experiment

0
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40
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k: # of retrieved passages
Figure 1: Retriever top-k accuracy with different num-
bers of training examples used in our dense passage re-
triever vs BM25. The results are measured on the de-
velopment set of Natural Questions. Our DPR trained
using 1,000 examples already outperforms BM?25.
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Type #N IB Top-5 Top-20 Top-100
Random 7 X 470 64.3 77.8
BM?25 7 X 500 633 74.8
Gold 7 X 426  63.1 78.3
Gold 7 v 511 69.1 80.8
Gold 31 v 521 708 82.1
Gold 127 /558 730 83.1
G+BM25Y 31432 v 650 773 84.4
G+BM25® 31464 v 645 764 84.0

G+BM25)  127+128 v 658  78.0 84.9

Table 3: Comparison of different training schemes,
measured as top-k retrieval accuracy on Natural Ques-
tions (development set). #N: number of negative
examples, IB: in-batch training. G.+BM25(1) and
G.+BM25(?) denote in-batch training with 1 or 2 ad-
ditional BM25 negatives, which serve as negative pas-
sages for all questions in the batch. 40
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Results

Training Model NQ TriviaQA WQ TREC SQuAD
Single BM25+BERT (Lee et al., 2019) 26.5 47.1 17.7 213 33.2
Single ORQA (Lee et al., 2019) 33.3 45.0 364  30.1 20.2
Single HardEM (Min et al., 2019a) 28.1 50.9 - - -
Single GraphRetriever (Min et al., 2019b) 34.5 56.0 36.4 - -
Single PathRetriever (Asai et al., 2020) 32.6 - - - 56.5
Single REALMyii (Guu et al., 2020) 39.2 - 40.2 46.8 -
Single REALMNews (Guu et al., 2020) 40.4 - 40.7 429 -
BM25 32.6 52.4 299 249 38.1
Single DPR 41.5 56.8 346 259 29.8
BM25+DPR 39.0 57.0 352  28.0 36.7
Multi DPR 41.5 56.8 424 494 24.1
. BM25+DPR 388 579 411 506 358

Table 4: End-to-end QA (Exact Match) Accuracy. The first block of results are copied from their cited papers.
REALMyix; and REALMNn.ws are the same model but pretrained on Wikipedia and CC-News, respectively. Single
and Multi denote that our Dense Passage Retriever (DPR) is trained using individual or combined training datasets
(all except SQuAD). For WQ and TREC in the Multi setting, we fine-tune the reader trained on NQ.
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* Dense retrieval can outperform traditional sparse retrieval comp
onents in open-domain gquestion answering.

 Training a dense retriever successfully is no longer a pipe drea
m.

* These developments have set a new standard for multiple open
-domain question answering benchmarks
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* While impressive it is not ready to completely replace current m
ethods like BM25

o DPR alone with randomly selected negative passages or golden passa
ges have limited effectiveness.

o Needs the careful touch of BM25 to reach peak performance

* DPR training/computing is much higher in cost than that of BM2
5 when it comes to creating a pre-computed index
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0 DeepMind

Improving language models by retrieving
from trillions of tokens

Sebastian Borgeaud*, Arthur Mensch', Jordan Hoffmann', Trevor Cai, Eliza Rutherford, Katie Millican,
George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones,
Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero,

Karen Simonyan, Jack W. Rae*, Erich Elsen* and Laurent Sifre’*

All authors from DeepMind, "Equal contributions, ¥Equal senior authorship
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Semi-parametric approach

 Large performance improvements on Language Model (LM)
 Increasing the amount of data, training compute, or model parameters

* Increasing the number of parameters
* Increased memorization of the training data
« Additional computations at training and inference time

—>Decoupling this approach: “Retrieval from a large text database as a complementary
path”

 Limitation of previous works
« Performed on the limited amount of knowledge base

- “Our work is the first to show the benefit of scaling the retrieval database to
trillions of tokens”

o1



i UNIVERSITYs VIRGINIA

RETRO

 Retrieval-enhanced transformer (RETRO): High-level overview

Neighbour 3
@ Neighbour 2
Retrieval database { Neighbour 1 Transformer
L Gy s Encoder
mma Raducanu is the reigning US

2 trillion words: i
Open champion, and the first British

Web, books, news, Wikipedia, i 3
woman to win a Grand Slam singles

GitHup :
title
+
0 Qutput sequence
Input sequence T i v by Emma Raducanu. She
y ) v
= [N = o [ - deteated Levish
The 2021 Womens US 2 ~ - = = = 0 _— deleated u.,.._‘
. 5 I 5 » Fernandez 6-4, 6-3 in the
Open was won = 3 -
- © = = final. $he is the first British
= woman
eva
ransi
(RETR
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Dataset

 Massive Text

« Multiple sources, multiple languages
« SentencePiece tokenization (128,000 vocab tokens)

* Retrieval database

 For training: 600B tokens
* For evaluation: 1.75T tokens

Source Token count (M) Documents (M) Multilingual Sampling frequency

Web 977,563 1,208 Yes 55%
Books 3,423,740 20 No 25%
News 236,918 398 No 10%

Wikipedia 13,288 23 Yes 5%

GitHub 374,952 143 No 5%

53
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Retrieval-enhanced autoregressive token models

» Token granularity for efficient retrieval

 Split each n-token-long example X = (x4, ..., x;;) Into a sequence of [
chunks (Cy, ..., C;)

1
L.
%z —=| ATTN -—Q" CCA |+ FFW
I

o _J . J .

RETRO block (x L)

B o o o e mm w wm mm mm mm w ww wm wm wm wm wm o)
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Constructing key-value database

« KEY: frozen BERT embeddings
* VALUE: raw chunks of text tokens

—————————————————

_________

1 7~

I I

I I

I I

I I
C, —:- ATTN -—Q*' CCA | FFW —:"

I I

I I
C, |

|
. 7\ J

RETRO block (xL) !

B o o o e mm w wm mm mm mm w ww wm wm wm wm wm o)
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Nearest neighbor retrieval

« Retrieval as a way to augment input examples
« K-nearest neighbor based on L2 distance

tokens ¥
' !
%CI
%::2 —=| ATTN —Q*- ccA + Fw -
Ca

o _/ . J .

RETRO block (x 1

B o o o e mm w wm mm mm mm w ww wm wm wm wm wm o)
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RETRO Block

Chunked cross-attention (CCA)

Encoded neighbours

T Attend

Condition

tokens 3 - o
' N H
C,
CA{H{, E1)
0
L C, - CCA —" "
CA(H," E,;)
C,
CCA(H, E)

Figure 2 | RETRO architecture. Left: simplified version where a sequence of length n = 12 is split
into [ = 3 chunks of size m = 4. For each chunk, we retrieve k = 2 neighbours of r = 5 tokens each. The
retrieval pathway is shown on top. Right: Details of the interactions in the CcaA operator. Causality is
maintained as neighbours of the first chunk only affect the last token of the first chunk and tokens
from the second chunk.

S7



RETRO Block

Kk retrieval neighbors input to bi-
directional encoder

Conditioned on H, which is the
intermediate activation of chunk C,
This yields the set of encoded
neighbors E, indexed by u

i UNIVERSITYs VIRGINIA
Algorithm 1: Overview of RETRO model architecture.

Hyperparam: P and P, indices of layers with cross-attention in the decoder and encoder
respectively

Hyperparam: L and L., number of decoder layers and number of encoder layers.

Input: X € V": sequence of tokens. (RET(Cy));<,«;: the retrieved neighbours

Output: 0 € R™VI: the output logits

def ENcoDER(RET(Cy)1<u<t, H):
(Hu)yeq,) < SPLIT(H)
fOI‘j € [1,k],ue[1,1] do // Encoder shared across neighbours and chunks
Ei = EMBenc(RET(C,)/) // May be shared with the decoder EMB
for p’ € [1, L.c] do

Efl «— ATTNenC(E{{) // Bi-directional attention

if p’ € Pepc then

| E] < CAenc(E], Hy)

Ei — FFwenc(Eﬂ)

return E

H « EMB(X)

for p € [1,L] do

H « ATTN(H) // causal attention

if p = min(P) then

// The neighbour ENCODER 1s conditioned with the decoder activations of

the last layer before the first cross—attention
E = ENCODER(RET(Cy)1<u<t, H)
if p € P then
| H e« Cca(H,E)
H «— FFw(H)
O « READ(H) 58
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Chunked Cross Attention

* Break down the intermediate 5 S el 3 O 0 0 5 OB e 0 S0 B 38 . e
i : : Chunked cross-attention (CCA)
activations to compute the attending
chunks H*

-

Encoded neighbours

« Compute attention between H, and
embedded neighbors E

:

» This CCA mechanism allows for C,
to attend to the neighbors of
preceding chunk C_, but the
activations of each chunk is
dependent upon all previous chunks

A
x
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RETRO Block

Chunked cross-attention (CCA)

Encoded neighbours

T Attend

Condition

tokens 3 - o
' N H
C,
CA{H{, E1)
0
L C, -— CCA —" "
CA(H," E,;)
C,
CCA(H, E)

Figure 2 | RETRO architecture. Left: simplified version where a sequence of length n = 12 is split
into [ = 3 chunks of size m = 4. For each chunk, we retrieve k = 2 neighbours of r = 5 tokens each. The
retrieval pathway is shown on top. Right: Details of the interactions in the CcaA operator. Causality is
maintained as neighbours of the first chunk only affect the last token of the first chunk and tokens
from the second chunk.
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Evaluating Data Leakage

« Evaluation sequences and training data are treated as chunks

» Closest neighbors in the training data are retrieved for each
evaluation chunk

« Compare the closest pair between the training data and
evalutation sequence

* Frame as log likelihood metric

ZCECﬂr E(C)
ZCECa N(C) ’

Va e [0,1], Cy={CeC,r(C)<a}, bpb(a)=

61



i UNIVERSITYs VIRGINIA

Results

RETRO effectiveness on different corpus and models of different sizes

& 172M & 425M @ 15B @ 75B —&— Baseline —#— RETRO[OFF] —®— RETRO [ON]

a) LAMBADA Accuracy 0.70- b) Curation Corpus bpb c) Wikitext103 Perplexity d) Wikipedia Sept 21 bpb
207 0.85-
0.70
0.65- _ |
0.651 10 0.80
0.75+
0.60- 0.60- 5-
0.55- 0.701
0.50- 0.551 31 \ 7
0.45
] 0.60-
050t N O S S R , |
200 400 800 1600 7500 200 400 800 1600 7500 200 400 800 1600 7500 200 400 800 1600 7500
Non-Embedding Params (M) Non-Embedding Params (M) Non-Embedding Params (M) Non-Embedding Params (M)

Figure 3 | Scaling with respect to model size. (a) LAMBADA top-1 accuracy. (b) Evaluation loss on
curation corpus. (c) Perplexity on Wikitext103 valid. (d) Bits-per-byte on selected Wikipedia articles
from September 2021. 62
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Results

RETRO outperforms Jurassic for dataflow

Relative bits-per-byte improvement over our 7B baseline without retrieval

100 B Jurassic-1 (178B)

go W Gopher (280B)

mmm RETRO (7.5B)
60
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Figure 4 | The Pile: Comparison of our 7B baseline against Jurassic-1, Gopher, and RETrRO. We
observe that the retrieval model outperforms the baseline on all test sets and outperforms Jurassic-1
on a majority of them, despite being over an order of magnitude smaller. 63
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Results

- 172M —— 425M ——15B ——7.5B --=-- Baseline — RETRO fine-tuned < RETRO from scratch
70- C4 ppl 30- Curation Corpus ppl 35 Wikitext103 ppl LAMBADA Accuracy
_ 30+
60 : 25
50| Y UN 25-'.
[ 204
404\ - <
{7 < PR
307 - —aq 10\
20 101+— A
].D T T 1 5 T T il D T T 1 3!:' T T 1
0 200 400 600 0 200 400 600 O 200 400 600 200 400 600
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Sequences 10*

Sequences 10*

Figure 5 | RETRO-fitting a baseline transformer. Any transformer can be fine-tuned into a retrieval-
enhanced transformer by randomly initializing and training only the chunked cross-attention and
retrieval encoder weights. Fine-tuning in this way quickly recovers and surpasses the non-retrieval
performance, and almost achieves the same performance as training a retrieval model from scratch
(shown by the arrow on the right hand side of each plot). We find good performance RETRO-fitting
our models training on only 3% the number of tokens seen during pre-training.
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Results st Accuacs

REALM (Guu et al., 2020) 40.4
Drr (Karpukhin et al., 2020) 41.5
_ - _ _ RAG (Lewis et al., 2020) 44.5
RETRO is competitive with other retrieval methods h EmpR? (Sachan et al., 2021) 52.5
owever it underperforms compared to the recent Fi F1D (Izacard and Grave, 2021) 51.4
F1D + Distill. (Izacard et al., 2020) 54.7
D method. .
Baseline 7B (closed book) 30.4
RETRO 7.5B (DPR retrieval) 45.5
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Figure 6 | Performance vs. longest common retrieval substring. Evaluation loss as a function of
allowed longest common substring between evaluation data chunks and their nearest neighbours.
Retrieval still helps when considering chunks with no more than 8 contiguous tokens overlapping

with training dataset chunks. %5
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 Retrieval-Enhanced Transformers (RETRO) is an efficient, com
petitive, and scalable retrieval model for datasets up to 7B

* Previous models can be fine tuned easily to become RETRO

 Limited data leakage, however could still be a factor on larger s
cale models
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e Difficult to know how RETRO could apply to other transformer
models

o Study only used one fixed encoder, (BERT), to generate embeddings
= Costly to retrain if BERT ever updates

* Future work can explore RETRO and its effectiveness under oth
er encoder models
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 RAG approaches allow for language models to generalize to
complex domains which may be poorly represented in the
training corpus

« Some key ideas based upon in-context learning are integral to
the applicablility of these techniques

« Future work may focus on finding better methods to index
documents and retrieve appropriate text for a given task
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Questions?
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