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Training Compute-Optimal Large Language
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Publication Date: Mar 2022
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Purpose

What amount of training tokens and parameters are needed to make a computationally
efficient model given a fixed compute budget?

The compute and energy cost for training large language models is substantial
Allocated training compute budget is often known in advance
Only feasible to train these large models once
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Related Work

Kaplan et al. (2020) showed that there is a power law relationship between the number of
parameters in an autoregressive language model (LM) and its performance.

The field has been training larger and larger models, expecting performance
improvements

Given a 10x increase computational budget, they suggests that the size of the

model should increase 5.5x while the number of training tokens should only
increase 1.8x.
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Current Models

Model Size (# Parameters)

Training Tokens

LaMDA (Thoppilan et al., 2022) 137 Billion
GPT-3 (Brown et al., 2020) 175 Billion
Jurassic (Lieber et al., 2021) 178 Billion
Gopher (Rae et al., 2021) 280 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion

168 Billion
300 Billion
300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion
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Methodology

Trained over 400 language models
Model size ranged from 70 million to over 16 billion parameters
Models trained on 5 to 500 billion tokens
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Methodology

—— Approach 1
—— Approach 2
—— Approach 3
- Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)
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Approach 1:
Fix model sizes and vary number of training tokens
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Approach 2:
IsoFLOP profiles
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Approach 3:
Fitting a parametric loss function
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Optimal Model Scaling

Parameters

FLOPs

FLOPs (in Gopher unit)

Tokens

400 Million
1 Billion

10 Billion
67 Billion
175 Billion
280 Billion
520 Billion
1 Trillion
10 Trillion

1.92e+19
1.21e+20
1.23e+22
5.76e+23
3.85e+24
9.90e+24
3.43e+25
1.27e+26
1.30e+28

1/29, 968
1/4,761
1/46

1

6.7

17.2

59.5
221.3
22515.9

8.0 Billion
20.2 Billion
205.1 Billion
1.5 Trillion
3.7 Trillion
5.9 Trillion
11.0 Trillion
21.2 Trillion
216.2 Trillion
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Optimal Model Scaling

Approach 2

Approach 3

Parameters

FLOPs

Tokens

FLOPs

Tokens

400 Million
1 Billion

10 Billion
67 Billion
175 Billion
280 Billion
520 Billion
1 Trillion
10 Trillion

1.84e+19
1.20e+20
1.32e+22
6.88e+23
4.54e+24
1.18e+25
4.19e+25
1.59e+26
1.75e+28

7.7 Billion
20.0 Billion

219.5 Billion

1.7 Trillion
4.3 Trillion
7.1 Trillion
13.4 Trillion
26.5 Trillion

292.0 Trillion

2.21e+19
1.62e+20
2.46e+22
1.71e+24
1.26e+24
3.52e+25
1.36e+26
5.65e+26
8.55e+28

9.2 Billion
27.1 Billion

410.1 Billion

4.1 Trillion
12.0 Trillion
20.1 Trillion
43.5 Trillion
94.1 Trillion

1425.5 Trillion

ili UVA ENGINEERING




2

v

v

(@]
|

(@)]
£2
[=

©

—
|_

o
I

I
w

s
N

Optimal Model Scaling

Training Loss

N

Sequences

2.8

N
~

N
(®)]

N

Kaplan et al (2020)
—— Approach 1

0.4 0.6
FLOPs x102!

ili UVA ENGINEERING




w
b
(]
B
]
£
©
e
©
a

Chinchilla

Approach 1
Approach 2

Al h3
pproac

*

*

© le+26
/
o

Chinchilla

Gopher

GPT-3
Megatron-Turing NLG

S le+25
/ (9]

& 1e+24
2

& 1e+23
4

© le+22
,// -

Ocle+21

% 1e+20
& le+19
@ 1e+18

1010 1011 1012
Tokens

ili UVA ENGINEERING




Results

Examples

Language Modelling
Reading Comprehension
Question Answering
Common Sense

MMLU

BIG-bench

WikiText-103, The Pile: PG-19, arXiv, FreeLaw, . ..

RACE-m, RACE-h, LAMBADA

Natural Questions, TriviaQA, Truthful QA

HellaSwag, Winogrande, PIQA, SIQA, BoolQ

High School Chemistry, Astronomy, Clinical Knowledge, . ..
Causal Judgement, Epistemic Reasoning, Temporal Sequences, . ..
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Key Takeaways

Emphasizes the importance of optimizing compute resources for training large
language models, balancing model size and training data.

Showcases how the Chinchilla model outperforms other large models in various
tasks, highlighting the effectiveness of the compute-optimal approach.
Presents a critical view of the prevailing trend in scaling up model size without
proportionately increasing training data.
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Limitations

Limited Large Scale Data: Due to the cost of training large models, only two
large scale models were compared (Chinchilla and Gopher)

May be overestimating the optimal size of large model: Concavity observed at
higher compute budgets

Large datasets scraped from the web will contain toxic language, biases, and
private information
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Scaling Data Constrained Language Models

Authors: Niklas Muennighoff et al.

Publication Date: October 2023
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Motivation

“Extrapolating this trend suggests that training dataset size may soon be limited by the
amount of text data available on the internet”

Current trend - increasing parameter count and
training dataset size
Data repetition

Two fundamental questions
o Allocation: What is the optimal balance of
resources?

Return: What is the expected value of
additional resources?
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Background

e Computational power
o Measuredin FLOPs
e Effectiveness of training
o Measured by loss
e Scaling law for allocation and return
o Lossscales as a power law
o Increase model size and amount of data
equally
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Related Work

This paper references the work in the previous paper (Training Compute-Optimal Large
Language Model) to corroborate their claims on scaling data constrained models.

Chinchilla model outperformed Gopher model
3 methods for making scaling predictions
o Fixed parameters A

B
o Fixed FLOPs L(N,D) = —+
. No = DB
o Parametric fit
Conclusion: Model size and training data should be
increased proportionally
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Methodology

Primary method: repeating data
Split data and parameters
o Datadivided into unique and repeated
tokens
o Parameters divided into base params
and repetition factor
Similar experimental methods as Chinchilla
model 4 B

Loss functiondefinedas L(N,D) = 170 + 155 + E
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Methodology

Researchers propose that repeated data and model size gradually become less
useful in training.

EffectiveData D' = Up + UpRL(1—e ™

Effective Model Parameters N'=Uy +UnR%S(1—¢
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Experimental Setup

Transformer language models with GPT-2

architecture

Epochs repeat entire set of available data
o Shuffled after each epoch

Not much exploration into the extent of

overfitting
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Results

4.2B parameters trained
for 84B tokens

2.8B parameters trained 8.7B parameters trained
for 178B tokens

for 55B tokens
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Allocation is optimized by using compute for more epochs rather than more

2.8

2.7

2.6

2.5

Final test loss

2.4

2.3

2.2

Results

parameters.

Empirical Loss (Fixed training length)

2.8B parameters trained for 55B tokens »

4.2B parameters trained for 84B tokens

8.7B parameters trained for 178B tokens

Predicted Loss (Variable training length)

Repeating for 4 epochs is almost
as good as new data

2.8B parameters

4.2B parameters
f 16 Ep 32 Ep. 64 Ep. P!

X 8.7B parameters
SFp 16 Ep. 32 Ep. 64 E; ‘p B

100%

50% 25% 14%
Fraction of training tokens that are unique

10%

e Loss of models trained
- - Loss assuming training is stopped when exhausting all unique data

1008 1T 10T
Total training tokens

Loss assuming repeated data is worth the same as new data
—— Loss predicted by our data-constrained scaling laws
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Key Takeaways & Limitations

Data Repetition: Training LLMs for multiple epochs with repeated data is

beneficial

Scaling Laws: Proposed extension to Chinchilla scaling that accounts for
diminishing returns of repeated data

Complementary Approaches: Code augmentation and data filtering
Limitation on Repetition: Need for efficient use of data
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Emergent Abilities of Large Language Models

Authors: Jason Wei et al.

Publication Date: Aug 2022
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What is Emergence and Why is it Important?

“Emergent abilities of large language models are abilities that are not present in
smaller-scale models but are present in large scale models”

Impossible to predict by extrapolating the
performance of smaller scale models
More scaling may result in new emergent
abilities
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Methodology

Ran tests on models of different scale in various LLM tasks
Scale measured in training FLOPs (Floating Point Operations)
o Number of parameters
o Size of the training dataset & number of epochs
Model architecture not significant

(A) Mod. arithmetic
50 |-

Accuracy (%)
oW s
S & 8

—
o

0
1018 1020 1022 1024
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Benchmarks

BIG-Bench
o 200+ benchmarks for language model
evaluation
Truthful QA
o Measuring ability to answer questions
truthfully
o Adversarially created against GPT-3 models
Massive Multi-task Language Understanding
(MMLU)
o Wide range of tests requiring deep
understanding
o Small models do not perform better than
random

Emergent with LaMDA /GPT
| Emergent with PaLM
Smoothly increasing
Flat (no model better than random)
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Few Shot Prompted Tasks

Model is given a prompt with a few input-out examples and asked to complete
the task without any gradient updates

—eo— LaMDA —=— GPT-3 —4— Gopher —&— Chinchilla —@— PaLM - -- Random
Input

(A) Mod. arithmetic (B) IPA transliterate
3 - 50
Review: This movie sucks.

Sentiment: negative. s

18 ‘20 22 24
Example of the Prompting paradigm 1o AT e e

(C) Word unscramble (D) Persian QA
50
Language
Review: | love this movie. | model
Sentiment:

8 8

[~}
o

Exact match (%)
s

Exact match (%)

1018 1020 1022 1024

1018 1020 1022 1024 10'8 1020 1022 1024

(E) TruthfulQA

.

(F) Grounded mappings (G) Multi-task NLU

(H) Word in context
70 70

70
60 |-

Accuracy (%)
888588

-
(=}

1020

Model scale (training FLOPs)
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Augmented Prompting Strategies

Prompting/fine-tuning strategies to further improve the abilities of LLMs.

Multistep Reasoning: Chain of thought prompting by guiding LLM to produce a
sequence of intermediate events.
Instruction Following: Perform new tasks by reading instructions describing

the task.

Program Execution or Addition: Provide a “scratchpad” or a way for the LLM to
store intermediate outputs.

Model Calibration: Measure if the model is able to predict which questions it
can answer accurately.
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Augmented Prompting Emergence

(A) Math word (B) Instruction
problems following (C) 8-digit addition

100

Instruction Scratchpad
tuning

(D) Calibration
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Black Box Nature of LLMs

Impossible to tell exactly why the model is acting in the way that it is due to the
massive scale of LLMs

e Difficult to reason emergent abilities
e Emergent Risk may also appear by making a

model bigger (TruthfulQA)
o Untruthfulness, bias, and toxicity can

seep into the model
Vulnerability and harmful content

synthesis
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Possible Causes of Emergence

It is very difficult to tell what is really causing these emergent behaviors
due to complex interactions.

Multi-step reasoning may require at least L
layers for tasks requiring L steps.

More parameters/compute allow for better \ e y
memorization of world knowledge s output layer
Metric chosen may induce emergent input layer

efeg e hidden layer 1 hidden layer 2
abilities
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Emergence and Loss

Even as accuracy for an emergent task stays near random, cross entropy loss is
steadily decreasing

Loss is different from Exact Match(EM) or
accuracy, because it captures improvements in
accuracy. ——T=0 —4—T=1 =-- Random
. Modified arithmetic IPA transliterate Word unscramble
o One of two wrong answers will have lower - soss T cene TR
loss § o § % N\
. . 80
Large jump in loss occurs when emergent | jz |
ability iS noticed 1020 1022 1024 1020 1022 1024 1620 1022 1024
15 15
| ol ,
3

1020 1022 1024 1020 1022 1024 1020 1022 1024
Training FLOPs

Jun
o
(= =]

o]
(=}

Error rate (%)

-
(=}

—
o

406.4 410.7
L(N,D) = 3 T pom T ~1\6/
N—— N—— irreductible

finite model finite data

Cross-entropy loss

ili UVA ENGINEERING



Beyond Scale

New, smaller models achieve emergent abilities
sooner, by using better resources/architecture
Perplexity of WikiText103 as a indicator of
emergent abilities

Scale may not be the full picture and emergence
may arise from complex interactions

WikiText103 ppl vs.
model size

WikiText103 ppl

1B 10B 100B
Model parameters

" 0 !
1B 10B 100B 2015 10 7 5
Model parameters WikiText103 ppl
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Key Takeaways and Limitations

Emergence is unpredictable and increasing scale may lead to new emergent abilities
The real reason emergence occurs is unknown and is likely to be a culmination of

different inputs
Only a small number metrics were tested

Analysis of loss was not discussed enough

Unknown Input 2

Unknown Input 6
Emergence
Unknown Input 5

Unknown Input 1 Unknown Input 4
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Are Emergent Abilities of LLMs a Mirage?

Authors: Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo

Publication Date: May 2023
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Do Emergent Abilities Really Exist?

The researcher’s choice of metric is what creates the mirage that an emergent
ability has arised rather than a fundamental change

Nonlinear and discontinuous metrics
produce apparent emergent behaviors
Linear/continuous metrics for the same task
create predictable changes in performance
Emergent abilities go away when we change
the metricin use
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Metrics

Exact String Match: Each token in string is
exaCtly correct Emergent Abilities in Al
Multiple Choice Grade: Highest probability
mass on correct answer
Non-linear/discontinuous metrics!

MCG & ESM
Other Metrics
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Hypothesis

A

Emergent Abilities No Emergent Abilities
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Non linearity of Exact Match

Cross Entropy Loss with Power Law Scaling Per Token Cross Entropy

N\ @
Lce(N) = (—) Lop(N) E =Y pv)log iy (v)
veV

C

Single token case

Lep(N) = —logpn(v7)

p(single token correct) = exp ( — LcE (N)) = exp ( — (N/C)a)
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Non linearity of Exact Match cont.

L

Accuracy(N) ~ py (single token correct)™™ °fOkens — exp ( — (N/ c)"‘)

Geometric increase with increasing token length

Token Edit Distance(/NV) ~ L (1 — pn (single token correct)) = I (1 —exp (— (N/ c)o‘))

Linear metric for smooth performance increase
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Exact Match vs Token Edit Distance

Target Str Len Target Str Len . Target 5tr Len

1

1
2
3
4
5

o
o

2
3
4
5

Accuracy
Accuracy
Accuracy

°
'S

S =T

9 10 11
10 10 10 1010 101 10° 1010 1011
Model Parameters GPT-3 Model Parameters GPT-3 Model Parameters

Target Str Len Target Str Len

|
N

|
w

Target Str Len
1

- Token Edit Distance
|
&

- Token Edit Distance
- Token Edit Distance

2
3
4
5

10° 10%° 101! 10° 1010 101 10° 1010 1011
Model Parameters GPT-3 Model Parameters GPT-3 Model Parameters
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Task-Metric-Model vs Task-Model

Task-Metric-Model Triplets should create “emergent behavior”
Emergent Task-Model pairs are based almost entirely around certain metrics

If emergent abilities are real, we would expect them to show up for all reasonable
metrics

Task-Metric-Model = Addition - Exact Match - GPT-3
Task Model = Addition - GPT3
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accuracy
alignment_score

average
average_log_probability
avg_acc

bias_level

bleu

bleurt

bleurt_diff

combined_bias

correct

correct_prob_mass
custom_score
difference_score
exact_str_match

fl

faimess

full

gender_bias_score
gender_minority_bias_score
gender_minority_stereotype_score
gender_stereotype_score
10g10_p_dev

log_likelihood

macro_f1
main_words_match
mean_accuracy
multiple_choice_grade
normalized_aggregate_score
numeric_match_with_0_1_relative_error
overall

overall gender bias
overall_alpha_avg
overall_difference
pair-wise-accuracy
relative_score

rougeLsum

sequence_f1
targets_reached

e -o’ﬂ

4

‘ég "

Overall Metrics

'I
:
3

See=0p

® -

-

200 300 400 500
Emergence Score (Defined in Srivastava et al. 2022) Over All BIG-Bench Tasks

% of Metrics with >1 Model-Task Pair
Exhibiting Emergent Abili

0.26% (4)

89.74% (3

Metrics of Model-Task Pairs
Exhibiting Emergent Abilities

16.42% (11)

match

‘ 993%:12)

ed_aggregate_score
‘ SITegte-

multiple_choi

76.12% (5

ili UVA ENGINEERING




Inducing Emergent Abilities

Researchers focused on inducing emergent abilities on computer vision tasks
because emergent capabilities have not been observed in vision models

Emergent Reconstruction by Emergent Classification by Transformers

Autoencoders
e Increasing accuracy with increase scale

e New metricresulted in sharp, e Metric focused on correct classification of all
unpredictable change in performance characters

1
Reconstruction, ({xn}fy:l) &f N I [Hxn — &% < C]
n
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Inducing Emergent Abilities

Reconstruction of natural images by nonlinear autoencoders

Published Emergent Ability

~—  Published Emergent Ability

o

Normalized Score
5

107 108 10? 1010
Language Model Effective Parameters

N

2 1= |12

nel

L
N

Test Mean Squared Error

No Emergent Ability

10° 108
Shallow Autoencoder Model Parameters

T
v
<
x

:7}~

Test Reconstruction Ability

Metric-Induced Emergent Ability

C
0.003
- 0.004

10° 10°
Shallow Autoencoder Model Parameters

ili UVA ENGINEERING




Inducing Emergent Abilities

Classification ability in autoregressive transformers

Published Emergent Ability No Emergent Ability Metric-Induced Emergent Ability

—— Published Emergent Ability Num. All Correct Num. All Correct
—_—1 — 3

o
B
w

=}
o

(=3
o

Test Accuracy

e
b
S

- > >
v v
[ g
5 3
g 0.40 v}
< <
& o
& ]
& 2

o
w
v

1010 10° 10°
GPT-3 Model Parameters Causal Transformer Parameters Causal Transformer Parameters
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Key Takeaways & Limitations

What are often considered emergent abilities in LLMs may actually be created
by the choice of the metrics chosen by researchers

Challenges the notion of emergent abilities
as intrinsic properties of Al models

Task and metric selection can induce
emergent abilities

Proper controls are must be included to
make claims on LLMs

Necessity of publicly available dataset and
models for further testing
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Questions?
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