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Introduction

● Large-scale training has been proven effective
○ Simple architectures with loads of computation can beat more complicated designs

● Previous work has scaled at a great computational cost
● Switch Transformer is a sparsely-activated mixture-of-expert model which aims 

to change this
○ Sparsity refers to activating only a subset of weights for each incoming token



Mixture-of-Experts Models

● Replace FFN in transformer model with many “expert” FFNs and a (trained) 
gating function to route tokens to various ones

● MoE models have seen success in machine translation
○ However, they have issues with complexity, communication cost, and training instabilities

● Current libraries and hardware accelerators cater to dense matrix operations
● This paper aims to simplify the MoE model to achieve stability and 

computational efficiency

Diagram credit: “OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER”, Shazeer et al



What We Will Show

● This approach addresses previous MoE issues
● This approach is broadly valuable in NLP
● Superior scaling in:

○ Pre-training
○ Fine-tuning
○ Multi-task training

● Switch Transformer architecture is not only useful at scale but also with few 
computational resources (at small scale)

● Large, sparse model can be distilled by 99% and still preserve 30% of gains



A Fourth Axis

Three traditional axes:
● Model size
● Dataset size
● Computational budget

Fourth axis: Parameter count independent from computational budget.



Switch Transformer Encoder Diagram



Top 1 Routing

● Previous work (Shazeer et al.) conjectured that the number of experts routed to 
must be more than 1 to have non-trivial gating in routing function
○ If you only route to top 1 expert, how is the routing function going to be able to compare experts 

and figure out how to use them?

● In stark contrast, this paper uses top 1 routing, and demonstrates that it:
○ Preserves model quality
○ Reduces routing computation
○ Performs better

● The top 1 routing function is also called “Switch layer”
● Computational benefits

○ Single expert reduces computational cost
○ Batch size (expert capacity) of each expert can be halved (further explained later)
○ Simpler implementation and less communication cost



Distributed Switch Implementation

● One unique expert per device
● Tensor shapes statically determined at compilation time
● Computation is dynamic due to routing
● Ideally, routing function would route to experts evenly. This is not always true
● Expert capacity: Limit for number of tokens computed by each expert

● Capacity factor (>1) provides extra buffer/overhead in-case tokens are not 
evenly spread between experts



Expert Capacity

● If too many tokens are routed to an expert, computation is skipped and token is 
passed through skip connection
○ These tokens are called “dropped tokens”

● Higher capacity factor can prevent dropped tokens, but wastes computation 
and memory (especially due to statically declared sizes)

● Empirically, lower rates of dropped tokens is important for scaling
● No dependency between number of experts and number of tokens dropped



Token Routing Dynamics



Differentiable Load Balancing Loss

● Auxiliary loss added to total loss
● Promote evenly allocating tokens between experts
● Given  experts, a batch      with      tokens
● Ideally, both       and       = 

= fraction of tokens 
allocated to    th expert

= fraction of router probability 
allocated to    th expert



Empirically,                       has worked well

Differentiable Load Balancing Loss - Ideally



Putting It All Together: The Switch Transformer

● Compared with regular model (T5 base) and MoE Transformer (top 2 routing)
○ All models trained identically

Switch transformers outperform:
1. Speed quality: given fixed computations and amount of time
2. Smaller computational footprint than MoE Transformer

a. If the size of Switch Transformer is increased to match training speed of MoE Transformer, then 
Switch Transformer outperforms MoE Transformer



Capacity Factor: Switch Transformer vs MoE Transformer



Selective Precision

● float32 precision is used within routing function; bfloat16 elsewhere
○ When data enters the routing function, it is cast to float32
○ When it leaves, it is cast back to bfloat16



Small Parameter Initialization for Stability

Weights are initialized with     and   where    is a scale 
hyper-parameter and      is the number of input units to the weight tensor.

Typically for transformers 

However, we find that greatly improves stability. This is true for both a 
223M parameter model and a model with > 1T parameters



Regularizing Large Sparse Models

● Overfitting is a greater concern given more parameters of Switch Transformer
● Thus, we implement a higher dropout rate specifically for the expert layers

○ ed = expert dropout



Scaling

● The number of experts were scaled with a fixed computational budget
● Adding additional experts marginally increases the compute

○ The router now evaluates over more experts



Fixed number of steps

Overall trend: having more experts speeds up training
● More experts correlate with smaller loss and more sample-efficient models



Fixed training duration

Sparse models achieve the same quality as dense 
models with the same computational budget in 
1/7 of the time



Compared with larger dense models?

Switch-Base still outperforms larger, more computationally expensive models
● T5-Large applies 3.5x more FLOPS per token
● Switch-Base takes fewer training steps and less training time overall 



Fine-Tuning



Distillation

Can we distill a large Switch model into a smaller T5-model?
● Initialize T5 with non-expert weights from Switch
● Weight teacher’s output at .25 and ground truth label at .75



Data Parallelism

● Generally the default
● Each core has the same weights
● Training data is shared across each core
● Result is concatenated at the end

Model weights Data



Model Parallelism

● The model weights are split up amongst the cores
● Data is sent sequentially through each core

○ Each core needs to communicate during forward and backpropagation

● Inefficient: want to avoid!

Layer 1

Layer 2 Layer 3

Layer 4
Data



Model and Data Parallelism

● Split up the model weights across 4 cores, and copy them to the remaining 12
● Data batch is split into 4 smaller batches: each batch fed to a different copy

Layer 1
Layer 1 Data



Expert and Data Parallelism

● Used by Switch Transformer
● Each expert is given to a different core
● Data is then split up across the 16 cores - each expert is given distinct data

DataExperts



Expert, Model, and Data Parallelism

● Extreme case where one expert doesn’t fit in a core
○ Switch Transformer with 1 trillion parameters

● Each expert is split up across multiple cores
● Data is split up accordingly - each expert gets different data

DataExperts



Towards a Trillion Parameter Models 

● Two large switch transformers (365 billion, 1.6 trillion)
○ Switch-C model is designed with only expert-parallelism (hyperparameters smaller than T5-XXL)
○ Switch-XXL model FLOP matched to T5-XXL → larger hyperparameters with communication cost



Towards a Trillion Parameter Models 

● Sample efficiency vs T5-XXL
○ We consider negative log perplexity on C4 after 250 and 500 steps 
○ Both Switch Transformers improve over T5-XXL by over 0.061
○ To put that in perspective: T5-XXL trained for an additional 250k steps to increase 0.052

● Training Instability 
○ We see inconsistent results as we increase the scale of our models 
○ Larger Switch-C model shows no training instability but the Switch-XXL version (10x FLOPs per 

sequence) is sometimes unstable 



Towards a Trillion Parameter Models 

● Reasoning Fine Tuning Performance

○ Switch-XXL, pre-trained on 503B tokens, w/ multi-task training for efficiency, learning all tasks jointly.

○ SQuAD: Achieved 89.7 accuracy, close to SOTA of 91.3.

○ SuperGLUE Score: Recorded an average of 87.5, slightly below T5's 89.3 and SOTA of 90.0.

○ ANLI Achievement: Improved to 65.7 accuracy, surpassing the previous best of 49.4.

○ Observation: Despite leading in Neg. Log Perp. on pre-training, Switch-XXL's downstream 
performance hasn't fully reached state-of-the-art levels.



Towards a Trillion Parameter Models 

● Knowledge-Based Fine Tuning Performance 
(Early tests on closed-book tasks w/o additional pre-training.)

○ Natural Questions: Reached 34.4 exact match, surpassing the previous 32.8.

○ WebQuestions: Improved to 41.0, over the earlier 37.2.

○ TriviaQA: Increased to 47.5, above the former 42.9.

○ Model Efficiency: Achieved high quality with less than half the training data of counterparts.

○ Task Suitability: Better translation of gains to knowledge-based tasks than reasoning tasks.

○ Future Potential: Pre-training perplexity suggests room for further fine-tuning enhancements.



Related Work

Scaling Neural Networks: 
● Model parallelism has been shown to scale models to billions of parameters 

○ Pipeline based model parallelism
● Product Key networks

Conditional Computation: 
● Early methods adapted weight selection from hidden-state bit patterns.
● Expert layers demonstrated improvements in tasks like jittered MNIST and speech.



Related Work

Mixture of Experts: 
● MOEs between LSTM layers → SOTA on language modeling and machine translation benchmarks
● Integration in Transformer where MOEs were subbed for feed forward layers (no NLP results)
● GShard, used MOE transformers to achieve large-scale machine translation successes 
● Fan et al.’s (2021) deterministic MoE for parameter segmentation among language groups.

Attention Pattern Sparsity:
● Techniques for reducing attention complexity from O(L2), facilitating longer sequence learning

○ Where L is the sequence length dimension
● Identified as complementary to current models, with potential for future integration.



Discussion

Do sparse models have an edge over dense 
models on the speed-accuracy Pareto
curve? 

Q3
● Controlled experiments confirm that sparse models 

outperform dense models for the same 
computational budget and time.

Can I benefit from this model without 
supercomputer access?Q2

● Yes, even models with as few as two experts see 
performance gains and can run on commonly 
available GPUs or TPUs.

Does the Switch Transformer perform better 
just because it has more parameters?Q1

● While larger models do perform better, the Switch 
Transformer also increases sample efficiency and speed 
using equivalent computational resources.



Discussion

If sparse models are so efficient, why haven’t 
they been widely adopted?Q5

● The Switch Transformer tackles the hurdles of 
complexity, training, and communication in sparse 
models, which held back sparse models amidst the 
dense model scaling trend.

Why opt for a Switch Transformer over a 
model-parallel dense model?Q4

● Switch Transformers are more time-efficient and can 
still employ model parallelism to balance FLOPs per 
token with conventional parallelism trade-offs.

Is it possible to deploy smaller versions of 
these large models?Q3

● Quality is not fully preserved, but we can distill sparse 
models into dense ones, retaining about 30% of the 
quality gain with 10 to 100x compression



Limitations + Future Work

● Addressing training stability for extremely large models like Switch-XXL remains a challenge despite 
some progress with stability techniques and regularizers

● Uncovered anomalies in performance despite similar pre-training results highlight a complex relationship 
between fine-tuning quality, FLOPs per token, and parameter count

● Advocates for a detailed analysis of scaling relationships to better inform the design of future 
architectures and hardware, considering data, model, and expert parallelism



Limitations + Future Work

● Suggests exploring systems with diverse expert types for more adaptable computation, enhancing 
performance especially for more complex tasks

● Proposes investigating the integration of expert layers outside the traditional FFN layer of Transformers, 
noting potential improvements and challenges like training instabilities

● Encourages examining the benefits of model sparsity in various modalities beyond language, 
suggesting potential advantages in multi-modal networks



Longformer: The Long-Document 
Transformer

Iz Beltagy, Matthew E. Peters, and Arman Cohan



Motivation

Transformers take a fixed-size input
● 512-2048 tokens for most LLMs

For long documents, they have to split up the text and do self-attention on each part
● Prevents tokens from the beginning and end of a document from attending to 

one another



Previous Solution (naive)

● Why not just increase the input size to allow 
for more tokens to attend to each other?
○ This is highly inefficient!

● Memory complexity of self-attention is O(n2)
○ As input size increases, memory usage 

increases quadratically - not good!

Query

Key



Revealing the Dark Secrets of BERT

● Paper written by Kovaleva et al., in 2019
● Conducted an intensive study on 

self-attention in BERT and how information 
was encoded in each head

● Discussed the importance of local 
context in sentences



Sliding window attention

● Convolutional kernel: do attention on a few 
tokens at a time and slide the window over

● Memory becomes O(n*k) for a kernel size of 
k
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Sliding window attention

● Convolutional kernel: do attention on a few 
tokens at a time and slide the window over

● Memory becomes O(n*k) for a kernel size of 
k

● Obvious cost in performance is minimized 
by stacking attention layers
○ Tokens in higher layers will eventually attend 

to further tokens, forming a cone
Layer 1

Layer 2



Dilated sliding window

● Still maintain the same number of elements 
in the window, but alternate

● Requires fewer layers to cover an entire 
sequence

● Contradicts previous assertion about local 
context

● Used along with traditional sliding window: 
○ Traditional sliding window used in lower 

layers
○ Dilated sliding window used in higher layers

● Memory is still O(n*k)

Query

Key



Global Attention

● Utilize some tokens to attend to everything
● The rest of the tokens will attend to a sliding 

window
● Example: [CLS] token in classification
● Memory: O(n*k + 2*s*n)

Sliding window

Each special token has to 
attend to every token, and 

the other way around



Linear Projections

● Utilize separate projections for sliding-window attention and global attention
○ QS, KS, VS for sliding-window
○ QG, KG, VG for global attention

● Separate projections provide flexibility to model both kinds of attention
● Global attention projections are initialized with sliding window projections



Autoregressive Language Modeling

● Utilized dilated sliding window
● Added dilations in 2 highest layers to 

understand larger context
● No dilation in lower layers to understand 

local context



Autoregressive Language Modeling

● Also had good performance compared to 
much larger models

● Matches several models with double the 
parameters



Ablation study

● Increasing the window size from the bottom 
to top layer has the best performance

● Adding dilations has better performance 
than not



Pretraining/Fine-tuning on tasks

● Started from the RoBERTa released checkpoint - replacing self-attention with 
sliding window attention
○ Window size of 512
○ Added additional positional embeddings for the larger document size

● Utilized global attention to fine-tune on a task



Position Embeddings

● LongFormer supports up to 4096 tokens, 
while RoBERTa only supports 512

● The RoBERTa position embeddings were 
copied over (8 times)
○ Why? BERT’s positional embeddings have 

already been trained for local context
○ Issue at boundaries (every 512 tokens) 

resolved during further pretraining

RoBERTa: 512 tokens

LongFormer: more tokens



MLM Pretraining

● From the RoBERTa checkpoint, 
LongFormer was pretrained on a corpus of 
long documents

● Copy initialization had the largest impact on 
performance



Ablations on WikiHop

● In general, LongFormer benefits from global 
attention, longer sequences, MLM 
pretraining, separate linear projections

● LongFormer with same sequence length 
and attention as RoBERTa performs slightly 
worse
○ Shows that performance gains are not from 

additional pretraining



Memory efficiency

● Global attention = O(n*k+2*s*n) = O(n)
● With k = 512 (same as RoBERTa)

○ O(n*k + 2*s*n) = O(n*512 + 2*s+n) = O(n(512+2*s))
○ Since n > 512, this is more memory-intensive than RoBERTa

● However, the memory usage increases linearly as the document size or the 
window size changes

● Memory usage increases quadratically for self-attention



Longformer-Encoder-Decoder

● Same architecture/initialized parameters as 
BART, but with more positional embedding 
tokens

● Encoder uses local+global attention
● Decoder uses full self-attention on previous 

tokens as well as encoder tokens
● Evaluated on arXiv summarization dataset 



Contributions

● Devised a new method for doing attention on a larger input size while 
maintaining a similar amount of memory
○ Sliding window attention
○ Dilated sliding window
○ Global attention

● Developed a state-of-the-art LLM utilizing local+global attention



Limitations + Future Work

● Memory usage isn’t exactly reduced compared to other LLMs
○ Often utilizes more memory
○ Key idea is that memory usage scales linearly, not quadratically

● Study the impact of increasing the sequence length

● Study additional pretraining objectives for Longformer Encoder Decoder



Efficient Streaming Language Models with 
Attention Sinks

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis



Theme: Extending Transformers to Greater Lengths

Length Extrapolation
Enable a model to handle sequences longer than those it was trained on

Context Window Expansion
Strategies enlarging the context windows of LLMs

Improving LLMs’ Utilization of Long Text
Just because a model can handle longer sequences doesn’t mean it uses them 
effectively

This paper focuses on length extrapolation.



Motivation

● Transformer models have difficulty generalizing to sequence lengths longer than 
those they were trained on
○ We can train on longer sequence lengths (Context Window Expansion), but fundamentally the 

context length remains finite
■ Plus training on longer sequence lengths is very expensive

Performance of transformer models (“Dense Attention”) plummet if we give it a sequence longer than 
those it was trained on



Why care about length extrapolation?

Being able to generalize to an infinite length of text is important for many real-world applications, 
such as AI chat assistants.

Imagine we could not generalize. Then, if you were talking with an AI assistant, it might 
suddenly forget all previous context once the conversation reaches the context length and it is 
forced to “reset”. Or, we will need to expensively re-compute all tokens’ KVs on a rolling basis.

Conversation

Context Length

What to do?



Previous Solutions: Dense Attention

Just give the transformer a sequence longer than 
those it was trained on!

Results
● Performance is awful ❌
● Scales quadratically with sequence length ❌



Previous Solutions: Window Attention

If we are already at the context length of the transformer, discard the earliest cached 
KV tokens to make way for new ones. 

Context Length

Discard to make room



Previous Solutions: Window Attention

Results:
● Scaling: Linear ✅
● Once we begin losing initial tokens, performance degrades substantially ❌

○ Reason: We’ll get there!



Previous Solution: Sliding Window w/ Recomputation

For each new token, re-compute all tokens’ KVs! 
No caching at all!

Results
● Good performance ✅
● Quadratic scaling with new tokens ❌

○ Seriously, no caching is really inefficient



There’s a better solution! But first, attention sinks!

Observe the average attention logits in Llama-2-7b over 256 sentences, each of 
length 16

For later layers, notice how the initial token consistently has the highest values.



Even when the initial token is semantically insignificant

We can replace the first four tokens with line break tokens, and the attention sink 
phenomenon persists

Full understanding of this table requires some context covered later; the 
important thing here is that the attention sink phenomenon remains true 

even when four line break tokens are inserted at the front



So what’s going on?

● Even when there isn’t a strong match between the query and any key, the 
softmax operation ensures attention scores must sum to one.

● So the model just sends all of that “extra” attention to the attention sink!

Pour excess 

attention here

Image: https://www.americanstandard-us.com/pedestal-bathroom-sinks/townsend-8-inch-widespread-pedestal-sink-top-and-leg-combination/white-0328800020

https://www.americanstandard-us.com/pedestal-bathroom-sinks/townsend-8-inch-widespread-pedestal-sink-top-and-leg-combination/white-0328800020


Why the initial token as attention sink?

Simple; it’s visible to every token due to the autoregressive nature of decoders.

Making it an easy candidate to act as the sink.



Recall Window Attention: Why does it fail?

Removal of attention sink causes a significant shift in the distribution of attention 
scores; the sink is now gone, so we have to pour the excess attention elsewhere.

With attention sink

Attention sink removed

Initial token logit,       , is far 
greater than other logits



A Solution: StreamingLLM

If the removal of initial tokens causes window attention to fail, then let’s just keep 
those tokens to continue acting as attention sinks!

Preserve the attention sink!



Comparing Length Extrapolation Methods

Graphs Show Log Perplexity vs Input Length

● Dense Attention
○ Fails when input length exceeds pre-trained length

● Window Attention
○ Fails when input length exceeds KV Cache Size (ie. initial token is discarded)

● Sliding Window w/ Recomputation
○ Maintains good performance throughout

● StreamingLLM
○ Nearly identical performance to Sliding Window w/ Recomputation



Pre-Training with Attention Sinks

The beauty of StreamingLLM is that it can be applied to pre-trained language models 
without further fine-tuning.

But we can also pre-train an LLM from scratch with a trainable “Sink Token” as the 
initial token.

Trainable Sink Token as initial token



A Different Solution: Softmax-off-by-One (Zero-Sink)

By adding a 1 into the denominator of the softmax function, the attention scores no 
longer need to sum to 1

This is conceptually equivalent to using a token with all-zero Key and Value features.
Hence, it is also called “Zero-Sink”



How many tokens as attention sinks?

● “Initial token” was a slight simplification; models may use the first few tokens as 
attention sinks.

● Here, we see three 160-million parameter language models pre-trained from 
scratch. One is a vanilla model (no modifications), one uses Softmax-off-by-One 
(Zero Sink), and one was pre-trained with a trainable Sink Token.

● Model is then tested on sequences beyond its context length on PG19 dataset 
via rolling Window Attention method using between 0-4 initial tokens as attention 
sinks:



Vanilla vs Zero-Sink vs Learnable Sink

● Vanilla: Having first 2 initial tokens as sink results in lower perplexity than just 1
● Zero Sink: Having first 4 initial tokens as sink results in lowest perplexity
● Learnable Sink: Perplexity does not decrease further when using more than 1 

initial tokens as attention sink



Attention Visualization

Model pre-trained with Sink Token utilizes it far more clearly and in earlier layers



StreamingLLM: Position Encoding

SteamingLLM focuses on positions within the rolling cache instead of those in the text

1

1 2

1 2 3

1 2 3

1 2 3

1 2 3



Compatible with Any Relative Positional Encoding Scheme

RoPE
Because each iteration the position of each token within the cache will decrease 
(except attention sink tokens), StreamingLLM caches KVs before the RoPE rotary 
transformation is applied. Thus, the rotary transformation corresponding to a different 
position can be applied to the KVs later on.

ALiBi
In ALiBi, the bias is applied to the attention scores directly - so we can cache KVs 
without worry.



Experiments

● Perplexity of Common Models Implementing StreamingLLM On Super-Long 
Texts

● Sink Token Pre-Training Results
● Comparison of Methods on Instruction-Tuned Models



Perplexity of Common Models Implementing StreamingLLM On Super-Long Texts

Graphs Show Log Perplexity vs Input Length

Text length of 4 million tokens.
From concatenated test set of PG19 (100 books).

As we can see, performance remains consistent. Fluctuations attributed to transitions between 
books



Sink Token Pre-Training Results

Compare two 160m parameter models, one pre-trained w/ Sink Token and one not 
(vanilla)

Convergence
Pre-training loss curves nearly 

identical

Accuracy (%)
Zero-shot performance across multiple benchmarks. Sink 

token pre-training does not harm accuracy



Comparison of Methods on Instruction-Tuned Models

Accuracy (%) on ARC-[Easy, Challenge] datasets. Questions concatenated and streamed

StreamingLLM has comparable performance with one-shot sample-by-sample

OOM = Out of Memory



StreamEval

A dataset inspired by LongEval
● LongEval had a single query over a long sequence of text
● StreamEval has a query every 10 lines
● Each query’s answer is 20 lines prior

○ Reflects real-world scenarios where questions pertain to recent information



Efficiency

Using Sliding Window w/ Recomputation as baseline, StreamingLLM possesses 
similar memory footprint while achieving up to 22.2x speedup per token



Limitation - Increasing Cache Sizes Does Not Always Improve

● Increasing cache size does not consistently yield a decrease in perplexity across 
all models for StreamingLLM.

● Perplexities in table evaluated on concatenated PG19 dataset with 400k tokens.
● Indicates potential difficulties with proper utilization of long text

○ Just because there’s a bunch of text doesn’t mean the LLM can use it well!



SparseGPT: Massive Language Models 
Can be Accurately Pruned in One-Shot

Elias Frantar and Dan Alistarh
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Motivation: The What Behind Pruning

The democratization and usability of LLM’s warrants research to reduce the 
computational cost of the model without sacrificing much on performance

Current research areas include:  

DescriptionTechnique

● Removing neural connections to create smaller sparse models
● Two Scopes: Structured and Unstructured 
●

1 Pruning

● Reducing precision of parameters to save cost with less space   
● Weight Quantization → saves memory, but not faster 
● Activation Quantization → faster, but calibration required 

2 Quantization

● A student model learns to predict outputs of teacher model  
● It’s more efficient for student to learn the teacher’s distribution

3 Knowledge 
Distillation



Motivation: The Why Behind Pruning

Generally, LLMs are very overparameterized

● Pruning = cutting down these connections containing unused or 
relatively “unimportant” parameters 

● We expect this to result in faster inference and training time and 
lesser capacity for storage 

● Obviously pruning comes at the expense of performance and 
generalizability 
○ So we prune to optimize both cost and performance 

Pruning has been well documented a method for deploying smaller, more efficient 
models since Le-Cun’s 1990 paper.



Background: The Intuition Behind Pruning

There are generally three scopes of pruning methods: 

1.      Structured Pruning
a. Systematically removing groups of connections (weights), significantly reducing the size of the model 

and saving on compute
b. However, may come at a bigger cost of performance, and limits “maximum sparsity”



Background: The Intuition Behind Pruning

There are generally three scopes of pruning methods: 

2.     Unstructured Pruning
a. Systematically removing individual connections (weights) based on a certain criteria
b. Might be less abruptly changing the size of the model, but more granular, meaning that it’s more apt to 

approaching maximum sparsity
c. e.g Magnitude based pruning; let x = pruning factor, set least x% of weights to 0!



Background: The Intuition Behind Pruning

There are generally three scopes of pruning methods: 

3.     Semi-Structured Pruning
a. Attempts to balance the benefits of the previous types of pruning
b. Removes a group of connections (weights) that are not as large scale as structured pruning, but still 

more substantial than the individual weights removed in unstructured pruning
c. Usually presented with a ratio K:N, where for every block of N weights, K are pruned!



Background: Additional Notes on Pruning

● One-shot pruning
○ The removal of connections (weights) happen in one pass (they happen at once) 
○ This is independent of the scope of pruning (that is to say each of the three can occur in one shot)

● For an attention matrix, the process of pruning is very similar
○ Filling in 0’s in the matrix doesn’t mean it’s a no-op, it won’t prevent the operation from occurring
○ Therefore, we’ll need a sparse Matmul algorithm to ignore these!

7 9 1 7 9
8 3 4 2 1
7 1 1 6 4
7 4 3 7 5
7 5 2 7 1

7 0 1 7 9
8 0 4 2 1
0 0 0 0 0
7 0 3 7 5
7 0 2 7 1

7 9 0 7 9
8 3 4 2 0
7 0 0 6 4
7 4 3 7 5
7 5 2 7 0

Attention Matrix (before pruning) Structured PruningUnstructured Pruning

7 1 7 9
8 4 2 1
7 3 7 5
7 2 7 1

Sparse Matmul designed to skip 0’s
(Row 3, Col 2 are thus omitted)

(This is also an example of 
Magnitude Based Pruning)



Background: Post Training Pruning

Post Training Pruning: 
● Pruning a well-trained and well-optimized model (usually with calibration data) 

without the need for any retraining afterwards
○ While post-training quantization is well documented, it has been shown to work with pruning too
○ This is practical, as having to retrain LLMs can be very resource consuming

Training Pruning Fine 
Tuning Training Pruning Fine 

Tuning

One-Shot Pruning Iterative Pruning



Background: Layer Wise Pruning

● Selectively removing weights, considering one layer at a time
○ Justification: some layers may have more “unimportant” weights

● How do we know if our pruning is optimal (balances sparsity and accuracy)?
○ Layer-wise pruning → “layer-wise” subproblems → then recombining the compressed layers 
○ Then we can find L2 error between outputs before and after pruning 
○ (Hubara et al., 2021a) specifically defined this as the following optimization problem:

Find the values of Ml and Ŵl 
that minimize the following:

For a layer l,  let Ml be the sparsity mask and Ŵl be the possibly updated weights

The original inputs to l times 
the original weights for l

Element wise multiply Ml and Ŵl. 
Re-multiply by Xl for new output

After subtracting outputs, 
we find the L2 Norm



Background: Layer-wise Pruning Problem

● One thing to note is that optimizing the mask and the weights jointly is np-hard
○ This is why similar works approach this problem with approximations

● One work-around: split problem into mask selection and weight reconstruction
○ “Once a mask is fixed, optimizing the remaining unpruned weights is a linear squared error problem”

● Noble Past Efforts 
○ Ada Prune as introduced by (Hubara et al., 2021a)

■ featured magnitude based pruning for mask selection and SGD for weight reconstruction 
○ Iterative AdaPrune as previously introduced by the authors of this paper
○ OBC as introduced by (Frantar et al., 2022b)



Background: Difficulty of Scaling to 100B parameters

● Difficulty of Scaling to 100+ Billion Parameters
○ The existing work only has the ability to compress models ranging in the several 100’s of millions 

of parameters (and to do this they may even take up to a couple hours) 
○ This does not scale well for GPT family models whose sizes sit comfortably around 175 Billion 

parameters

● Reminder: We wanted a way to compress GPT family LLMs
○ Existing top performing GPT models have a lot of demand for deployment, but are too large

■ 175 Billion Parameters → 320 GB in FP16 format → needs at least 5 A100 GPUs!
■ If only there was a way…

GPT3
175B

BLOOM
176B

T5
11B

OPT
175B



Introduction: Sparse-GPT

 SparseGPT: A new pruning method
● “GPT family models can be pruned to at least 50% sparsity”

○ One-shot 
○ No retraining, so this is “post training pruning” 
○ Minimal loss of accuracy (perplexity, 0-shot accuracy)

● Effectiveness shown on open source LLM’s (OPT-175B, BLOOM-176B,)
○ <4.5 hours to compress 
○ 60% unstructured sparsity 
○ >100 billion weights ignored at inference



Introduction: Prior Work

● Researchers claim that before Sparse-GPT almost all work on compressing 
GPT family models have been in quantization

● Most of the effective pruning methods explored are not post-train pruning!
○ The very few effective one-shot pruning methods don’t scale well to 175B parameters

■ E.g: Ada Prune as introduced by (Hubara et al., 2021a)

● Thus, the researchers comfortably claim that there is no work showing success 
with pruning LLM’s on the scale of 100B parameters



Introduction: Sparse GPT at a glance

● “First accurate one shot pruning method for models 10-100+ billion parameters”
○ Takes only a couple of hours for the largest models, and can be used alongside quantization
○ Larger the model → the more compressible it is



The Row Hessian Challenge

● In order to explain the Sparse GPT’s algorithm, we must first understand how 
the authors approach the layer-wise pruning problem discussed 
○ Surely, they intend to fix the sparse mask first and then proceed layer by layer
○ However, now they must address the subproblem of weight reconstruction 

● Let’s consider the sparse reconstruction problem for a matrix
○ S                                                          , t     this is very similar to the previous equation!

○ wi
Mi represents the optimal weight values for a fixed mask in layer i

○ XMi is a subset of inputs whose weights are not pruned 
○ wMi is a subset of weights corresponding to XMi
○ (XMiX

T
Mi)

-1 is the inverse Hessian, (HMi)
-1 , shows impact of pruning weight on loss function

○ HMi is applied to a product of the values and inputs XMi(wMiXMi)
T



The Row Hessian Challenge

● Notice how each layer ‘i’ demands a recalculation of the hessian, (XMiX
T

Mi)
-1, HMi 

○ As it turns out this calculation is very computationally heavy and demanding
○ Without finding a way to hasten this process, achieving a feasible algorithm is difficult
○ This forms the basis for what’s called the Row Hessian Challenge

● Why does this recalculating need to occur? 
○ Because each row needs a unique hessian, why? 
○ Because each row has a unique mask

■ and we know that (HMi)
-1≠(H-1)Mi

○ Why can’t we fix 1 row-mask for all rows? 
■ compromises model accuracy



Solving The Row Hessian Challenge

● Enter: the Sparse GPT algorithm
○ We need a way to reuse Hessians row-wise while still enabling distinct pruning masks!
○ We proceed by column; distinct layer-wise masks, but reuse the same hessian across rows 
○ Moving through each column, the algorithm takes an iterative approach, stopping at a target sparsity



Solving The Row Hessian Challenge

● Hessian Synchronization
○ Each column gets its own hessian inverse matrix (created via gaussian elimination of 1 row and column)
○ After a mask prunes weights in a column, (HUi)

-1 is used to update all weights to the right of the pruned
○ This is to minimize the pruning error (remember (HUi)

-1 contains relevant information about loss)

● Computational Complexity
○ As it turns out, this new approach is efficient enough to support an effective algorithm! 



Algorithm: Adaptive Mask Selection

● Problems with fixed mask selection
○ The weight updates during reconstruction can give insight 

into creating a new mask 
○ Research shows that using this capitalizing on this 

information has better results 

● Problems with a column-wise heuristic
○ (e.g, choosing p% optimal weights in each column   to 

prune, that way overall sparsity is capped at p%)
○ However, we want non-uniform selection! 

● Solution: Iterative Blocking
○ Mask preset blockwise, (Bs = 128 columns) 
○ Mask generated using error formula & diagonals of hessian 
○ Then the next block’s weights are updated → repeat!
○ Non-uniform selection!

works for semi-structured pruning, 
n:m format! Let Bs = m, and choose 

the n weights with lowest error



Algorithm: Full Algorithm Pseudocode 

● Build the pruning mask (0’s or 1’s)

● Store the block quantization errors

● Calculate the inverse Hessians 
○ They use Cholesky Decomposition



Algorithm: Full Algorithm Pseudocode 

● The nested loop controls a lot of the algorithm

● Outer loop iterates through blocks

● Inner loop iterates through a block’s columns 



Algorithm: Full Algorithm Pseudocode 

● Checks if current column is start of new block

● If so, then updates the pruning mask for the 
next block of columns

● The pruning mask has the top (1-p)% weights 
set to 1 and rest 0 (for p% sparsity) 
○ Selects weights by importance, according to 

the inverse hessian



Algorithm: Full Algorithm Pseudocode 

● Find the pruning error for each of the columns 
and store it in the E matrix 

● Freeze the weights that were pruned in the E 
matrix, so they can’t contribute to error

● Update the weights of the block using the 
inverse hessian 

- (updates columns to the right of the current)



Algorithm: Full Algorithm Pseudocode 

● Updates the remaining weights in all the other 
blocks, using the accumulated pruning errors

- (Once again, adjusted by inverse hessian)

● Finally, we multiply the mask by the weights to 
prune, setting specified weights to 0



Experiments

Pytorch to make Sparse-GPT, Huggingface for models and datasets, and an 80GB NVIDIA A100

Models, Datasets, Evaluation
● OPT family and 176B Bloom
● mainly perplexity, some ZeroShot accuracy

○ Raw-WikiText2
○ Penn Treebank (PTB)
○ Subset of C4 validation data
○ Lambada
○ ARC (Easy and Challenge) 
○ PIQA 
○ StoryCloze

● relative sparse v.s dense accuracy 

Baselines
● Standard magnitude pruning (layer-wise) 
● AdaPrune for models up to 1 billion 

parameters
○ Memory-optimized version
○ Tuned hyper-parameters → 3× speedup 

with no impact on solution quality 



Results: Pruning V.S Model Size

● Takeaway: “Larger models are easier to sparsify”

● Magnitude based pruning approaches have sinking accuracies
○ Accurate pruning approaches are a must as size increases

●  Sparse-GPT shows best perplexity loss, even at large sizes 
○ AdaPrune shows improvement over magnitude pruning, but not comparable with Sparse-GPT



Results: Pruning V.S Model Size



Results: Sparsity Scaling for 100B+ parameters

Takeaway: Sparse-GPT can remove 100 billion weights on LLMs w/o much loss
 
● Magnitude based pruning falls apart once again at high sparsity 
● SparseOPTs at higher sparsity perform similarly to a magnitude based pruning approach at lower sparsity
● OPT-175B and BLOOM-176B can achieve up to 60% sparsity w/o much perplexity loss



Results: Zero Shot Experiments

Takeaway: Sparse-GPT retains accuracy on zero-shot tasks  
 
● Magnitude based pruning sticks to the expected theme 
● Sparse-GPT models stay close to original accuracy (around 70%)
● Researchers point out that the “numbers are more noisy” as 2:4 performs better than dense on Lambada 

○ However, these unexpected results average out across tasks



Results: Joint Sparsification and Quantization

Takeaway: Sparse-GPT can be combined with Quantization approaches!
 
● We compare 50% + 4bit models with their memory equivalent, 3bit GPTQ, to see if there’s a benefit
● Sparse GPT 50% + 4bit models are more accurate than 3 bit GPTQ models for >= 2.7B params 



Results: Sensitivity and Partial N:M sparsity

Takeaway: “Sparse-GPT can generate models (increasing 2:4 sparsity) in 1 pruning 
pass”

 
● Later layers in Sparse-GPT are more sensitive than earlier ones 
● As it turns out, skipping leaving last third of the model alone returns the best accuracy
● Combining the first n modified layers with the total-n original, Sparse-GPT demonstrates partial N:M sparsity



Discussion: What can we learn?

Sparse-GPT:

● Novel post training pruning method

● Contribution to NLP: Showing that large (GPT) family models can be compressed in 
one-shot, no retraining necessary, and with not much loss in accuracy
○ They substantiate these claims by measuring perplexity and zero-shot accuracy

● Further insights 
○ Show that LLMs can reach 50-60% sparsity while holding on to accuracy, even dropping 100B+ weights

■ Relative accuracy drop lowers as model size increases….this is big!  
○ Larger models are easier to parametrize
○ Accuracy on 0-shot tasks
○ Can be combined with other compression methods 



Limitations + Future Work 

There are a couple of open questions and motivations that prompt further research

Why are larger models easier to sparsify?
● One obvious speculation is overparameterization
● Nonetheless, the researchers claim that a study on this observation would be a good next direction 

Sparse-GPT was mostly evaluated on perplexity, or accuracy on downstream tasks
● How would it fare for open-ended text generation tasks

Sparsity acceleration is a promising and practical approach for future research
● Researchers took preliminary steps to show efficacy of sparse model acceleration, but stress that more 

work is needed  



Questions!


