
Yu Meng
University of Virginia

yumeng5@virginia.edu

Introduction to Language Modeling &
N-gram Language Models

Sept 1, 2025

Slido: https://app.sli.do/event/d6rnwQ9XXGMjg1Avr5XW1d

mailto:yumeng5@virginia.edu
https://app.sli.do/event/d6rnwQ9XXGMjg1Avr5XW1d

Announcement: Assignment 1 Out

• Deadline: 09/08 11:59pm
• Released on Canvas

2/78

(Recap) Course Information & Logistics

• Course Website: https://yumeng5.github.io/teaching/2025-fall-cs4770
• Instructor: Yu Meng (yumeng5@virginia.edu)

§ Office hour: After class Mondays & Wednesdays

• TAs:
§ Wei-Lin Chen (wlchen@virginia.edu) Office hour: 5:00pm - 6:00pm every Thursday
§ Zhepei Wei (zhepei.wei@virginia.edu) Office hour: 4:00pm - 5:00pm every Wednesday
§ Xinyu Zhu (xinyuzhu@virginia.edu) Office hour: 2:00pm - 3:00pm every Tuesday
§ All TA office hours are on Zoom (links on the course website)

• Time: Mondays & Wednesdays 2:00pm - 3:15pm
• Location: Mechanical Engr Bldg 205

3/78

https://yumeng5.github.io/teaching/2025-fall-cs4770
https://yumeng5.github.io/teaching/2025-fall-cs4770
https://yumeng5.github.io/teaching/2025-fall-cs4770
https://yumeng5.github.io/teaching/2025-fall-cs4770
https://yumeng5.github.io/teaching/2025-fall-cs4770
mailto:yumeng5@virginia.edu
mailto:yumeng5@virginia.edu
mailto:yumeng5@virginia.edu
mailto:yumeng5@virginia.edu
mailto:yumeng5@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:zhepei.wei@virginia.edu
mailto:zhepei.wei@virginia.edu
mailto:zhepei.wei@virginia.edu
mailto:zhepei.wei@virginia.edu
mailto:zhepei.wei@virginia.edu
mailto:xinyuzhu@virginia.edu
mailto:xinyuzhu@virginia.edu
mailto:xinyuzhu@virginia.edu
mailto:xinyuzhu@virginia.edu
mailto:xinyuzhu@virginia.edu

(Recap) Lecture Zoom Options & Recordings

• We provide Zoom options for attending lectures remotely
• Recordings will be available after the lecture

4/78

(Recap) Q&A Format

• Q&A during lecture: Slido (link shared in each lecture & on the course website)
§ Efficient for a big class
§ Good for quick/short questions
§ Allows asking questions anonymously
§ TAs will answer the questions in real time

• Q&A after lecture: Piazza (accessible via Canvas)
§ Assignments/projects
§ Long questions
§ TAs & instructor will answer the questions on a daily basis

• You are encouraged to answer the questions asked by your classmates (participation
credit)!

5/78

(Recap) Prerequisites

• Prerequisites:
§ Linear algebra (APMA 3080 or equivalent)
§ Data structures and algorithms (CS 3100)

• Highly recommended background:
§ Deep learning & machine learning (CS 4774)
§ Experience with Python (we’ll use PyTorch extensively for assignments)

• This class will move fast & cover lots materials! Make sure you have sufficient
background before taking it!

6/78

(Recap) Grading

• Assignments (60%)
§ Five assignments (with different weights) for the entire semester
§ All assignments are to be completed individually
§ Assignments will be a combination of concept questions + coding questions
§ Submission via Canvas (as LaTeX reports; handwritten submissions not accepted)
§ We’ll provide HPC access for GPU-related assignments/projects (instructions later)

• Late day policy:
§ 7 free days for all assignments; afterwards 20% off grade of the assignment per day late
§ You cannot use > 3 late days (72 hours) per assignment unless given permission in advance
§ DO NOT procrastinate on assignments! The coding questions (esp. the latter part of this

course) take time to implement and run!

• Policy on using LLMs:
§ Collaborative coding with LLMs is allowed, but if you directly copy the answers generated by

LLMs (for either conceptual or coding questions), you’ll get a 0 for that entire assignment

7/78

(Recap) Grading

• Project (35%)
§ Work in teams of 2–3 students
§ Related to NLP
§ Rule of thumb: demonstrate that you are able to apply the knowledge learned from this

course; workload should be more extensive than individual assignments

• Some example project choices:
§ Use word embeddings to analyze sentence semantics (e.g., sentiment analysis)
§ Fine-tune BERT and evaluate its performance for any task you like
§ Benchmark LLMs (either open-weights or proprietary) for challenging tasks
§ Use LLM APIs to create agents for an interesting application (e.g., personal assistants)
§ …

• Checkpoints (No late dates allowed!)
§ (2%) Project proposal Deadline: 09/24
§ (8%) Midterm report Deadline: 10/20
§ (25%) Final project presentation Deadline: 11/30 + final report Deadline: 12/13

8/78

(Recap) Grading

• Participation (5%+; points earned beyond 5% will become extra credit)
§ Guest lecture attendance (6%)
§ End-of-semester teaching feedback (2%)
§ Answering technical questions raised by classmates (5%)

• Guest lecture attendance on Zoom (6%)
§ We will have 2 guest lectures delivered by leading researchers
§ Each guest lecture can give you up to 3% participation credit (2% attendance + 1% asking

questions – more details shared before guest lectures)

• End-of-semester teaching feedback (2%)
§ At the end of the semester, anyone who completes the teaching feedback survey will get 2%

• Answering technical questions raised by classmates (5%)
§ We encourage and appreciate help from students to answer questions posted by classmates
§ Every helpful answer to technical questions will earn 1% (Slido and Piazza both count)
§ If you answer anonymously, we won't be able to track your contributions!
§ The maximum credit you can get in this category is 5%

9/78

(Recap) What is Natural Language Processing (NLP)?

• An interdisciplinary subfield of machine learning and linguistics
• Goal: Enable computers to understand, interpret, and generate human language

Human
Language

Machine
Learning Linguistics

NLP

10/78

(Recap) The History of NLP

Before 1980s

Large language models
(e.g., ChatGPT, GPT-5)

1980s – 2000s 2000s – 2018 2018 – 2022 2022 – Now

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple) neural-network-based
methods

Statistical methods
(e.g., n-gram models, hidden state models)

Linguistic-rule based methods
(e.g., syntactic pattern matching)

11/78

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 12/78

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 13/78

Transformers

Transformer Encoders

Transformer Decoders

14/78

Transformer Overview

Transformer block overview

Figure source: https://jalammar.github.io/illustrated-transformer/ 15/78

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer: Self-Attention Mechanism

Figure source: https://jalammar.github.io/illustrated-transformer/ 16/78

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer: Self-Attention Computation

Figure source: https://jalammar.github.io/illustrated-transformer/ 17/78

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Language Model Pretraining

Figure source: https://lenavoita.github.io/nlp_course/language_modeling.html 18/78

https://lenavoita.github.io/nlp_course/language_modeling.html

Pretraining as Multi-Task Learning

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-
uof9M0yFVd3FA4/edit#slide=id.g28e2e9aa709_0_1

• In my free time, I like to {run, banana} (Grammar)
• I went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)
• The capital of Denmark is {Copenhagen, London} (World knowledge)

• I was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

• The word for “pretty” in Spanish is {bonita, hola} (Translation)
• 3 + 8 + 4 = {15, 11} (Math)
• …

19/78

https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-uof9M0yFVd3FA4/edit
https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-uof9M0yFVd3FA4/edit
https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-uof9M0yFVd3FA4/edit

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 20/78

Large Language Models (LLMs)

Language models are getting larger and larger over time!

2018 2019 2020 2021 2022

BERT
(0.3B)

GPT-2
(1.5B)RoBERTa

(0.3B)

Turing-NLG
(17.2B)

GPT-3
(175B)

PaLM
(540B)MT-NLG

(530B)

Model
Parameter

2023 2025

GPT-4
(???)

GPT-5
(???)

DeepSeek-R1
(671B)

21/78

In-Context Learning

Figure source: https://ai.stanford.edu/blog/in-context-learning/ 22/78

https://ai.stanford.edu/blog/in-context-learning/
https://ai.stanford.edu/blog/in-context-learning/
https://ai.stanford.edu/blog/in-context-learning/
https://ai.stanford.edu/blog/in-context-learning/
https://ai.stanford.edu/blog/in-context-learning/

Chain-of-Thought Reasoning

Figure source: https://arxiv.org/pdf/2201.11903.pdf

Use LLMs to generate intermediate reasoning steps

23/78

https://arxiv.org/pdf/2201.11903.pdf

Advanced Reasoning

Generate & search in a structured thought space

Figure source: https://arxiv.org/pdf/2305.10601.pdf 24/78

https://arxiv.org/pdf/2305.10601.pdf

Emergent Ability of LLMs

Figure source: https://arxiv.org/pdf/2206.07682.pdf

Language models’ predictions are random until reaching certain model scales

25/78

https://arxiv.org/pdf/2206.07682.pdf

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 26/78

Parametric Knowledge

Language models can be prompted for factual question answering

Figure source: https://arxiv.org/pdf/1909.01066.pdf 27/78

https://arxiv.org/pdf/1909.01066.pdf

Retrieval-Augmented Generation (RAG)

Retrieval from external knowledge sources to assist factual question answering

Figure source: https://cs.stanford.edu/~myasu/blog/racm3/ 28/78

https://cs.stanford.edu/~myasu/blog/racm3/

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 29/78

Language Model Alignment

Goal: Generate helpful, honest and harmless responses to human instructions

Figure source: https://openai.com/blog/chatgpt 30/78

https://openai.com/blog/chatgpt

Reinforcement Learning from Human Feedback

Further learning from pairwise data annotated by humans

Figure source: https://openai.com/blog/chatgpt 31/78

https://openai.com/blog/chatgpt

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 32/78

Language Model Agents: Tool Usage

Task execution assisted with external tools

Figure source: https://arxiv.org/pdf/2302.04761.pdf

Question answering system

Calculator

Machine translation system

Wikipedia search

33/78

https://arxiv.org/pdf/2302.04761.pdf

LLMs can be trained for code writing

Coding Language Model

Figure source: https://arxiv.org/pdf/2204.05999.pdf 34/78

https://arxiv.org/pdf/2204.05999.pdf

Coding Agents

Cursor GitHub Copilot

35/78

LLMs can be extended for multimodal instruction following

Multimodality

Figure source: https://arxiv.org/pdf/2304.08485.pdf 36/78

https://arxiv.org/pdf/2304.08485.pdf

Open Problems: Language Model Evaluation

Figure source: https://arxiv.org/pdf/2306.05685.pdf 37/78

https://arxiv.org/pdf/2306.05685.pdf

Open Problems: Privacy

Larger models memorize training data better!

Figure source: https://arxiv.org/pdf/2202.07646.pdf 38/78

https://arxiv.org/pdf/2202.07646.pdf

Open Problems: Safety

Figure source: https://arxiv.org/pdf/2307.15043.pdf 39/78

https://arxiv.org/pdf/2307.15043.pdf

Open Problems: Bias

Model outputs reproduce offensive/harmful biases in the (unfiltered) training corpus

Figure source: https://arxiv.org/pdf/2103.00453.pdf

Original (harmful) model outputs
intentionally masked out

40/78

https://arxiv.org/pdf/2103.00453.pdf

Open Problems: Novel Architectures

State space models (e.g., Mamba) achieves linear-time complexity with Transformer-level
quality for sequence modeling

Figure source: https://arxiv.org/pdf/2312.00752 41/78

https://arxiv.org/pdf/2312.00752

Open Problems: Superalignment

Is it possible to use a weak teacher to supervise a strong student?

Figure source: https://arxiv.org/pdf/2312.09390.pdf 42/78

https://arxiv.org/pdf/2312.09390.pdf

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 43/78

Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models

44/78

Overview: Language Modeling

• The core problem in NLP is language modeling
• Goal: Assigning probability to a sequence of words
• For text understanding: p(“The cat is on the mat”) >> p(“Truck the earth on”)

• For text generation: p(w | “The cat is on the”) -> “mat”

Autocomplete empowered by
language modeling

45/78

Language Model Applications
Chatbots

Code Assistants

Shopping Assistants Generating Math Proofs 46/78

https://chatgpt.com/
https://github.com/features/copilot
https://github.com/features/copilot
https://www.amazon.com/gp/help/customer/display.html?nodeId=Tvh55TTsQ5XQSFc7Pr
https://www.amazon.com/gp/help/customer/display.html?nodeId=Tvh55TTsQ5XQSFc7Pr
https://www.nature.com/articles/s41586-023-06747-5

Language Models = Universal NLP Task Solvers

• Every NLP task can be converted into a text-to-text task!
§ Sentiment analysis: The movie’s closing scene is attractive; it was ___ (good)
§ Machine translation: “Hello world” in French is ___ (Bonjour le monde)
§ Question answering: Which city is UVA located in? ___ (Charlottesville)
§ …

• All these tasks can be formulated as a language modeling problem!

47/78

Language Modeling: Probability Decomposition

• Given a text sequence , how can we model ?
• Autoregressive assumption: the probability of each word only depends on its previous

tokens

• Are there other possible decomposition assumptions?
§ Yes, but they are not considered “conventional” language models
§ We’ll see in word embedding/BERT lectures

48/78

Language Modeling: Probability Decomposition

• Given a text sequence , how can we model ?
• Autoregressive assumption: the probability of each word only depends on its previous

tokens

• How to guarantee the probability distributions are valid?
§ Non-negative

§ Summed to 1:

• The goal of language modeling is to learn the distribution !
vocabulary

49/78

Language Models Are Generative Models

• Suppose we have a language model that gives us the estimate of ,
we can generate the next tokens one-by-one!

• Sampling:

• Or greedily:
• But how do we know when to stop generation?
• Use a special symbol [EOS] (end-of-sequence) to denote stopping vocabulary

50/78

Example: Language Models for Generation

• Recursively sample until we generate [EOS]
• Generate the first word:
• Generate the second word:

• Generate the third word:
• Generate the fourth word:
• Generate the fifth word:
• Generate the sixth word:
• Generate the seventh word:

• Generation finished!

beginning-of-sequence

51/78

How to Obtain A Language Model?

Learn the probability distribution from a training corpus!

Text corpora contain rich distributional statistics!

Learning target:

52/78

History of Language Models

• Language models started to be built with statistical methods
§ Sparsity
§ Poor generalization

Before 2000s

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

53/78

History of Language Models

• The introduction of neural networks into language models mitigated sparsity and
improved generalization
§ Neural networks for language models were small-scale and inefficient for a long time
§ Task-specific architecture designs required for different NLP tasks
§ These language models were trained on individual NLP tasks as task-specific solvers

Before 2000s 2000s – 2018

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

Weeks 4-5

54/78

History of Language Models

• Transformer became the dominant architecture for language modeling; scaling up
model sizes and (pretraining) data enabled significant generalization ability
§ Transformer demonstrated striking scalability and efficiency in sequence modeling
§ One pretrained model checkpoint fine-tuned to become strong task-specific models
§ Task-specific fine-tuning was still necessary

Before 2000s 2000s – 2018 2018 – 2022

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

Weeks 4-5

Week 6

55/78

History of Language Models

• Generalist large language models (LLMs) became the universal task solvers and
replaced task-specific language models
§ Real-world NLP applications are usually multifaceted (require composite task abilities)
§ Tasks are not clearly defined and may overlap
§ Single-task models struggle to handle complex tasks

Large language models
(e.g., ChatGPT, GPT-4)

Before 2000s 2000s – 2018 2018 – 2022 2022 – Now

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)

Weeks 2-3

Weeks 4-5

Week 6

Weeks 8-12

56/78

Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models

57/78

N-gram Language Model: Simplified Assumption

• Challenge of language modeling: hard to keep track of all previous tokens!

• Instead of keeping track of all previous tokens, assume the probability of a word is only
dependent on the previous N−1 words

Long context!
(Can we model long contexts at all?

Yes, but not for now!)

N-gram assumption

Should N be larger or smaller?

58/78

N-gram Language Model: Simplified Assumption

• Unigram LM (N=1): each word’s probability does not depend on previous words
• Bigram LM (N=2): each word’s probability is based on the previous word
• Trigram LM (N=3): each word’s probability is based on the previous two words

• …
• Example: p(“The cat is on the mat”)
• Unigram: = p(“The”) p(“cat”) p(“is”) p(“on”) p(“the”) p(“mat”)
• Bigram: = p(“The”) p(“cat”|“The”) p(“is”|“cat”) p(“on”|“is”) p(“the”|“on”) p(“mat”|“the”)
• Trigram: = p(“The”) p(“cat”|“The”) p(“is”|“The cat”) p(“on”|“cat is”) p(“the”|“is on”)

p(“mat”|“on the”)
• …

For simplicity, omitting [BOS] & [EOS] in these examples

59/78

How to Learn N-grams?

• Probabilities can be estimated by frequencies (maximum likelihood estimation)!

• Unigram:

• Bigram:

• Trigram:

How many times (counts) the
sequences occur in the corpus

60/78

Practice: Learning Unigrams

• Consider the following mini-corpus:

• Unigram estimated from the mini-corpus

Treating “The” & “the” as
one word

61/78

• Learned unigram probabilities:

• Is unigram reliable for estimating the sequence likelihood?

• Why? Unigram ignores the relationships between words!

Unigram Issues: No Word Correlations

For simplicity, omitting [BOS] & [EOS] in the calculation

62/78

Practice: Learning Bigrams

• Consider the following mini-corpus:

• Bigram estimated from the mini-corpus

… there are more bigrams!

Treating “The” & “the” as
one word

63/78

Bigram Issues: Sparsity

• Learned unigram probabilities:

• Does bigram address the issue of unigram?

• But…

For simplicity, omitting [EOS] in the calculation

Sparsity: Valid bigrams having zero probability due to no occurrence in the training corpus
64/78

Bigram Issues: Sparsity

Bigram counts can be mostly zero even for larger corpora!

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Berkeley Restaurant Project Corpus
(>9K sentences)

First word

Second word

65/78

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Practice: Learning Trigrams

• Consider the following mini-corpus:

• Trigram estimated from the mini-corpus

… there are more trigrams!

Treating “The” & “the” as
one word

Sparsity grows compared to bigram!
66/78

N-gram Properties

• As N becomes larger
§ Better modeling of word correlations (incorporating more contexts)
§ Sparsity increases

• The number of possible N-grams (parameters) grows exponentially with N!
§ Suppose vocabulary size = 10K words
§ Possible unigrams = 10K
§ Possible bigrams = (10K)^2 = 100M
§ Possible trigrams = (10K)^3 = 1T
§ …

67/78

N-gram Sparsity

With a larger N, the context becomes more specific, and the chances of encountering any
particular N-gram in the training data are lower

Figure source: https://lm-class.org/lectures/05%20-%20language%20models.pdf

Bigram counts Trigram counts 4-gram counts

68/78

https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf

Agenda

• Introduction to Language Models
• N-gram Language Models
• Smoothing in N-gram Language Models

• Evaluation of Language Models

69/78

Overcoming Sparsity in N-gram Language Models

• Unseen N-grams in the training corpus always lead to a zero probability
• The entire sequence will have a zero probability if any of the term is zero!

• Can we fix zero-probability N-grams?

All terms must be non-zero

70/78

Smoothing

• Intuition: guarantee all N-grams have non-zero probabilities regardless of their counts
in the training corpus

• Smoothing techniques:
§ Add-one smoothing (Laplace smoothing)
§ Add-k smoothing
§ Language model interpolation
§ Backoff
§ …

71/78

Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Original counts

Smoothed counts

72/78

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Add-one Smoothing (Laplace Smoothing)

• Probability of N-grams under add-one smoothing

• Issues? Over-smoothing: too much probability mass to unseen N-grams

Original (no smoothing):

Add-one smoothing:

Vocabulary size

73/78

Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

• Probability of N-grams under add-k smoothing

• How to choose k? Use a validation set!

Original (no smoothing):

Add-one smoothing:

Add-k smoothing:

74/78

Smoothing via Language Model Interpolation

• Intuition: Combine the advantages of different N-grams
§ Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
§ Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse

• Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams,
bigrams, trigrams)

• How to pick ? Use a validation set!

Unigram Bigram N-gram

Interpolation weights sum to 1

75/78

Smoothing via Backoff

• Start with the highest-order N-gram available
• If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
• Continue backing off to lower-order N-grams until we reach a non-zero N-gram

• Is it possible that even after backing off to unigram, the probability is still zero?

𝛼 (<1): discount factor that adjusts the
lower-order probability

(N-1)-gram probability

76/78

Out-of-vocabulary Words

• Unigrams will have a zero probability for words not occurring in the training data!
• Simple remedy: reserve a special token [UNK] for unknown/unseen words
• During testing, convert unknown words to [UNK] -> use [UNK]’s probability

• How to estimate the probability of [UNK]?
• During training, replace all rare words with [UNK], and estimate its probability as if it is

a normal word
• How to determine rare words? Threshold based on counts in the training corpus
• Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K

will be converted to [UNK] in training

77/78

Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

