

N-gram Language Models

Slido: https://app.sli.do/event/hDue3QD7sPMvd7C783JZNC

Yu Meng

University of Virginia

yumeng5@virginia.edu

Sept 3, 2025

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
- Week 6: Language Modeling with Transformers
- Week 9: Large Language Models (LLMs) & In-context Learning
- Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Reinforcement Learning for LLM Post-Training
- Week 13: LLM Agents + Course Summary
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Overview: Language Modeling

- The core problem in NLP is language modeling
- Goal: Assigning probability to a sequence of words
- For text understanding: p("The cat is on the mat") >> p("Truck the earth on")
- For text generation: $p(w \mid \text{"The cat is on the"}) \rightarrow \text{"mat"}$

Autocomplete empowered by language modeling

(Recap) Language Models = Universal NLP Task Solvers

- Every NLP task can be converted into a text-to-text task!
 - Sentiment analysis: The movie's closing scene is attractive; it was ____ (good)
 - Machine translation: "Hello world" in French is ____ (Bonjour le monde)
 - Question answering: Which city is UVA located in? ____ (Charlottesville)
 - ...
- All these tasks can be formulated as a language modeling problem!

(Recap) Language Modeling: Probability Decomposition

- Given a text sequence $\boldsymbol{x} = [x_1, x_2, \dots, x_n]$, how can we model $p(\boldsymbol{x})$?
- Autoregressive assumption: the probability of each word only depends on its previous tokens

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots p(x_n|x_1,\ldots,x_{n-1}) = \prod_{i=1}^n p(x_i|x_1,\ldots,x_{i-1})$$

- How to guarantee the probability distributions are valid?
 - Non-negative

$$p(x_i = w | x_1, \dots, x_{i-1}) \ge 0, \quad \forall w \in \mathcal{V}$$

• Summed to 1: $\sum_{w \in \mathcal{V}} p(x_i = w | x_1, \dots, x_{i-1}) = 1$

• The goal of language modeling is to learn the distribution $p(x_i = w | x_1, \dots, x_{i-1})$!

(Recap) Language Models Are Generative Models

- Suppose we have a language model that gives us the estimate of $p(w|x_1,\ldots,x_{i-1})$, we can generate the next tokens one-by-one!
- Sampling: $x_i \sim p(w|x_1,\ldots,x_{i-1})$
- Or greedily: $x_i \leftarrow \arg\max_w p(w|x_1, \dots, x_{i-1})$
- But how do we know when to stop generation?
- Use a special symbol [EOS] (end-of-sequence) to denote stopping

UNIVERSITY of VIRGINIA

(Recap) Example: Language Models for Generation

- Recursively sample $x_i \sim p(w|x_1,\ldots,x_{i-1})$ until we generate [EOS]
- Generate the first word: "the" $\leftarrow x_1 \sim p(w|BOS|)$ beginning-of-sequence
- Generate the second word: "cat" $\leftarrow x_2 \sim p(w|\text{"the"})$
- Generate the third word: "is" $\leftarrow x_3 \sim p(w|$ "the cat")
- Generate the fourth word: "on" $\leftarrow x_4 \sim p(w|$ "the cat is")
- Generate the fifth word: "the" $\leftarrow x_5 \sim p(w|$ "the cat is on")
- Generate the sixth word: "mat" $\leftarrow x_6 \sim p(w|$ "the cat is on the")
- Generate the seventh word: [EOS] $\leftarrow x_7 \sim p(w|\text{"the cat is on the mat"})$
- Generation finished!

(Recap) How to Obtain A Language Model?

Learn the probability distribution $p(w|x_1,\ldots,x_{i-1})$ from a training corpus!

Text corpora contain rich distributional statistics!

- Language models started to be built with statistical methods
 - Sparsity
 - Poor generalization

Weeks 2-3

Before 2000s

Statistical language models (e.g., n-gram language models)

- The introduction of neural networks into language models mitigated sparsity and improved generalization
 - Neural networks for language models were small-scale and inefficient for a long time
 - Task-specific architecture designs required for different NLP tasks
 - These language models were trained on individual NLP tasks as task-specific solvers

- Transformer became the dominant architecture for language modeling; scaling up model sizes and (pretraining) data enabled significant generalization ability
 - Transformer demonstrated striking scalability and efficiency in sequence modeling
 - One pretrained model checkpoint fine-tuned to become strong task-specific models
 - Task-specific fine-tuning was still necessary

- Generalist large language models (LLMs) became the universal task solvers and replaced task-specific language models
 - Real-world NLP applications are usually multifaceted (require composite task abilities)
 - Tasks are not clearly defined and may overlap
 - Single-task models struggle to handle complex tasks

(Recap) N-gram Language Model: Simplified Assumption

Challenge of language modeling: hard to keep track of all previous tokens!

$$p(m{x}) = \prod_{i=1}^n p(x_i | x_1, \dots, x_{i-1})$$
 Can we model long contexts at all? Yes, but not for now!)

 Instead of keeping track of all previous tokens, assume the probability of a word is only dependent on the previous N-1 words

$$p(m{x}) = \prod_{i=1}^n p(x_i|x_1,\dots,x_{i-1}) pprox \prod_{i=1}^n p(x_i|x_{i-N+1},\dots,x_{i-1})$$
 N-gram assumption

Should N be larger or smaller?

(Recap) N-gram Language Model: Simplified Assumption

- Unigram LM (N=1): each word's probability does not depend on previous words
- Bigram LM (N=2): each word's probability is based on the previous word
- Trigram LM (N=3): each word's probability is based on the previous two words
- •
- Example: p("The cat is on the mat") For simplicity, omitting [BOS] & [EOS] in these examples
- Unigram: = p("The") p("cat") p("is") p("on") p("the") p("mat")
- Bigram: = p("The") p("cat" | "The") p("is" | "cat") p("on" | "is") p("the" | "on") p("mat" | "the")
- Trigram: = p("The") p("cat" | "The") p("is" | "The cat") p("on" | "cat is") p("the" | "is on") p("mat" | "on the")
- •

(Recap) How to Learn N-grams?

Probabilities can be estimated by frequencies (maximum likelihood estimation)!

$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})} \quad \text{How many times (counts) the sequences occur in the corpus}$$

- Unigram: $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$
- Bigram: $p(x_i|x_{i-1}) = \frac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$
- Trigram: $p(x_i|x_{i-2},x_{i-1}) = \frac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$

(Recap) Practice: Learning Unigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS][BOS] I have a cat and a mat [EOS][BOS] I like the cat [EOS]

Treating "The" & "the" as one word

• Unigram estimated from the mini-corpus $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("I") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

(Recap) Unigram Issues: No Word Correlations

Learned unigram probabilities:

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("T") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

Is unigram reliable for estimating the sequence likelihood?

For simplicity, omitting [BOS] & [EOS] in the calculation

$$p(\text{"the the the"}) = p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \approx 0.0003$$

 $p(\text{"I have a cat"}) = p(\text{"I"}) \times p(\text{"have"}) \times p(\text{"a"}) \times p(\text{"cat"}) \approx 0.00004$

Why? Unigram ignores the relationships between words!

Practice: Learning Bigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

Bigram estimated from the mini-corpus $p(x_i|x_{i-1}) = \dfrac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

... there are more bigrams!

UNIVERSITY of VIRGINIA

Bigram Issues: Sparsity

Learned unigram probabilities:

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

Does bigram address the issue of unigram?

For simplicity, omitting [EOS] in the calculation

$$p(\text{``the the the the''}) = p(\text{``the''}|[BOS]) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) = 0$$
$$p(\text{``I have a cat''}) = p(\text{``I''}|[BOS]) \times p(\text{``have''}|\text{``I''}) \times p(\text{``a''}|\text{``have''}) \times p(\text{``cat''}|\text{``a''}) \approx 0.17$$

• But... $p(\text{``a cat''}) = p(\text{``a''}|[BOS]) \times p(\text{``cat''}|\text{``a''}) = 0$

Sparsity: Valid bigrams having zero probability due to no occurrence in the training corpus

Bigram Issues: Sparsity

Bigram counts can be mostly zero even for larger corpora!

Berkeley Restaurant Project Corpus (>9K sentences)

can you tell me about any good cantonese restaurants close by tell me about chez panisse i'm looking for a good place to eat breakfast when is caffe venezia open during the day

Second word

First word

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Lots of zero entries!

Practice: Learning Trigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

Trigram estimated from the mini-corpus $p(x_i|x_{i-2},x_{i-1})=rac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$

$$\begin{split} p(\text{``like''}|[\text{BOS}],\text{``I''}) &= \frac{1}{2}, \quad p(\text{``have''}|[\text{BOS}],\text{``I''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``mat''}) = 1, \\ p(\text{``is''}|\text{``the''},\text{``cat''}) &= \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``cat''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``a''},\text{``mat''}) = 1, \\ p(\text{``the''}|\text{``I''},\text{``like''}) &= 1, \quad p(\text{``a''}|\text{``I''},\text{``have''}) = 1, \quad p(\text{``mat''}|\text{``on''},\text{``the''}) = 1 \end{split}$$

Sparsity grows compared to bigram!

... there are more trigrams!

N-gram Properties

- As N becomes larger
 - Better modeling of word correlations (incorporating more contexts)
 - Sparsity increases
- The number of possible N-grams (parameters) grows exponentially with N!
 - Suppose vocabulary size = 10K words
 - Possible unigrams = 10K
 - Possible bigrams = $(10K)^2 = 100M$
 - Possible trigrams = (10K)^3 = 1T
 - ..

N-gram Sparsity

With a larger N, the context becomes more specific, and the chances of encountering any particular N-gram in the training data are lower

198015222 the first 194623024 the same 168504105 the following 158562063 the world

14112454 the door

23135851162 the *

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

3785230 close the *

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

0 please close the first

13951 please close the *

Bigram counts

Trigram counts

4-gram counts

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

Overcoming Sparsity in N-gram Language Models

- Unseen N-grams in the training corpus always lead to a zero probability
- The entire sequence will have a zero probability if any of the term is zero!

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_1, \dots, x_{i-1}) \approx \prod_{i=1}^{n} p(x_i|x_{i-N+1}, \dots, x_{i-1})$$

All terms must be non-zero

Can we fix zero-probability N-grams?

Smoothing

- Intuition: guarantee all N-grams have non-zero probabilities regardless of their counts in the training corpus
- Smoothing techniques:
 - Add-one smoothing (Laplace smoothing)
 - Add-k smoothing
 - Language model interpolation
 - Backoff
 - ..

Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

Original counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Smoothed counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Add-one Smoothing (Laplace Smoothing)

Original (no smoothing):
$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})}$$

Probability of N-grams under add-one smoothing

Issues? Over-smoothing: too much probability mass to unseen N-grams

Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

Original (no smoothing):
$$p(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i)}{\#(x_{i-N+1},\dots,x_{i-1})}$$
 Add-one smoothing:
$$p_{\text{Add-1}}(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i) + 1}{\#(x_{i-N+1},\dots,x_{i-1}) + |\mathcal{V}|}$$

Probability of N-grams under add-k smoothing

Add-
$$k$$
 smoothing: $p_{\mathrm{Add-}k}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)+k}{\#(x_{i-N+1},\ldots,x_{i-1})+k|\mathcal{V}|}$

How to choose k? Use a validation set!

Smoothing via Language Model Interpolation

- Intuition: Combine the advantages of different N-grams
 - Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
 - Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse
- Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams, bigrams, trigrams)

$$p_{\text{Interpolate}}(x_i|x_{i-N+1},\dots,x_{i-1}) = \lambda_1 p(x_i) + \lambda_2 p(x_i|x_{i-1}) + \dots + \lambda_N p(x_i|x_{i-N+1},\dots,x_{i-1})$$
 Unigram Bigram N-gram
$$\sum_{n=1}^N \lambda_n = 1 \quad \text{Interpolation weights sum to 1}$$

• How to pick λ_n ? Use a validation set!

Smoothing via Backoff

- Start with the highest-order N-gram available
- If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
- Continue backing off to lower-order N-grams until we reach a non-zero N-gram

$$p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \begin{cases} p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) & \text{If } \#(x_{i-N+1},\ldots,x_{i-1},x_i) > 0 \\ \alpha \cdot p_{\text{Backoff}}(x_i|x_{i-N+2},\ldots,x_{i-1}) & \text{Otherwise} \end{cases}$$

$$\alpha \text{ (<1): discount factor that adjusts the lower-order probability}} \qquad \text{(N-1)-gram probability}$$

Is it possible that even after backing off to unigram, the probability is still zero?

Out-of-vocabulary Words

- Unigrams will have a zero probability for words not occurring in the training data!
- Simple remedy: reserve a special token [UNK] for unknown/unseen words
- During testing, convert unknown words to [UNK] -> use [UNK]'s probability
- How to estimate the probability of [UNK]?
- During training, replace all rare words with [UNK], and estimate its probability as if it is a normal word
- How to determine rare words? Threshold based on counts in the training corpus
- Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K
 will be converted to [UNK] in training

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

How to Evaluate Language Models?

- What language models should be considered "good"?
 - A perfect language model should be able to correctly predict every word in a corpus
 - We hope the language model can assign a high probability to the next word
 - Better language model = "less surprised" by the next word
- Just use the next word probability assigned by a language model as the metric!
- Does the choice of the evaluation corpus matter?

Training/Validation/Test Corpus

- Training corpus/set: The text data we train our models on
- Does it make sense to evaluate language model probability on the training corpus?
- If we evaluate on the training corpus, we will get misleadingly high probabilities for next word prediction -> train-test data leakage
- **Test corpus/set**: A held-out set of data without overlapping with the training set
- We should always evaluate the model performance using the test corpus which measures the model's generalization ability to unseen data!
- Test sets should NOT be used to evaluate language models many times for tuning hyperparameters/design choices -> indirectly learn from test set characteristics
- Validation/development corpus/set (optional): Tuning hyperparameters & making design choices before evaluating on the test set

Training/Validation/Test Split

- If we have a fixed amount of data, how should we split into train/valid/test sets?
- We want the training set to be as large as possible
- But the validation/test sets should be also reasonably large to yield reliable evaluation results
- The test set should reflect the data/task we aim to apply language models to

Perplexity

- Perplexity (abbreviation: PPL) is an intrinsic evaluation metric for language models
- PPL = the per-word inverse probability on a test sequence $m{x}_{\text{test}} = [x_1, x_2, \dots, x_n]$

$$\mathrm{PPL}(\boldsymbol{x}_{\mathrm{test}}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}}$$

A lower PPL = a better language model (less surprised/confused by the next word)

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i)}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-1})}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-2}, x_{i-1})}}$$

Unigram Bigram Trigram

Perplexity can be used to evaluate general language models (e.g., large language models) too

Perplexity: Log-Scale Computation

Computation of PPL in the raw probability scale can cause numerical instability

$$ext{PPL}(m{x}_{ ext{test}}) = \sqrt[n]{\prod_{i=1}^n rac{1}{p(x_i|x_{i-N+1},\dots,x_{i-1})}}$$
 Multiplication of many small probability values!

Example: $(1/10) ^ 100 = 10^{-100} -> risks of underflow (round to 0)$

PPL is usually computed in the log-scale in practice •

$$PPL(\boldsymbol{x}_{test}) = \exp\left(\log\left(\sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}}\right)\right) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log p(x_i|x_{i-N+1}, \dots, x_{i-1})\right)$$

Log probabilities are numerically stable

Example: log(1/10) = -2.3

Perplexity: Important Intrinsic Metric

PPL is an important metric to benchmark the development of language models

Language Modelling on WikiText-2

Figure source: https://paperswithcode.com/sota/language-modelling-on-wikitext-2

Intrinsic vs. Extrinsic Evaluation

- Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling per se, independent of any application
- Extrinsic metrics (e.g., accuracy) measure the language model's performance for specific tasks/applications (e.g., classification, translation)
- Intrinsic evaluations are good during the development to iterate quickly and understand specific properties of the model
- Extrinsic evaluations are essential to validate that the model improves the performance of an application in a real-world scenario
- Both intrinsic and extrinsic evaluations are commonly used to evaluation language models (they may not be always positively correlated!)

Extrinsic Evaluations for SOTA Language Models

Math reasoning, question answering, general knowledge understanding...

Open LLM Leaderboard

Model	ВВН ▲	MATH Lvl 5	GPQA A	MUSR A	MMLU-PRO
MaziyarPanahi/calme-2.1-rys-78b	59.47	36.4	19.24	19	49.38
MaziyarPanahi/calme-2.2-rys-78b	59.27	37.92	20.92	16.83	48.73
MaziyarPanahi/calme-2.1-qwen2-72b	57.33	36.03	17.45	20.15	49.05
MaziyarPanahi/calme-2.2-qwen2-72b	56.8	41.16	16.55	16.52	49.27
Qwen/Qwen2-72B-Instruct	57.48	35.12	16.33	17.17	48.92
alpindale/magnum-72b-v1	57.65	35.27	18.79	15.62	49.64
meta-llama/Meta-Llama-3.1-70B-Instruct	55.93	28.02	14.21	17.69	47.88
abacusai/Smaug-Owen2-72B-Instruct	56.27	35.35	14.88	15.18	46.56
MaziyarPanahi/calme-2.2-llama3-70b	48.57	22.96	12.19	15.3	46.74
NousResearch/Hermes-3-Llama-3.1-70B	53.77	13.75	14.88	23.43	41.41
tenyx/Llama3-TenyxChat-70B	49.62	22.66	6.82	12.52	46.78

41/45

Summary: Language Modeling

- Language modeling is the core problem in NLP
- Every NLP task can be formulated as language modeling
- (Autoregressive) language models can be used to generate texts
- Language model distributions are estimated (trained) on a training corpus

Summary: N-gram Language Models

- N-gram language models simplifies the (general) language modeling assumption: the probability of a word is only dependent on the previous N-1 words
- Lower-order N-grams (small N) capture less context information/word correlations
- Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
- Smoothing techniques can be used to address sparsity in N-gram language models
 - Add-one smoothing
 - Add-k smoothing
 - Language model interpolation
 - Backoff

Summary: Language Model Evaluation

- Training/validation/test split required before training & evaluating language models
- Perplexity measures how "confused" the language model is about the next word
- Lower perplexity on the test set = better language model
- Perplexity is the commonly used intrinsic evaluation metric for language modeling
- Perplexity is practically computed in the log scale
- Both intrinsic and extrinsic evaluations are important

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu