

# **N-gram Language Models**

Slido: <a href="https://app.sli.do/event/hDue3QD7sPMvd7C783JZNC">https://app.sli.do/event/hDue3QD7sPMvd7C783JZNC</a>

#### Yu Meng

University of Virginia

yumeng5@virginia.edu

Sept 3, 2025

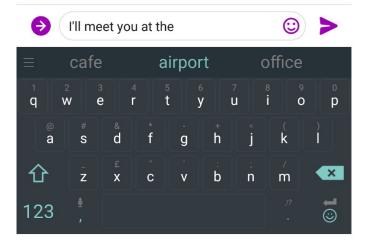
#### **Overview of Course Contents**

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
- Week 6: Language Modeling with Transformers
- Week 9: Large Language Models (LLMs) & In-context Learning
- Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Reinforcement Learning for LLM Post-Training
- Week 13: LLM Agents + Course Summary
- Week 15 (after Thanksgiving): Project Presentations



### (Recap) Overview: Language Modeling

- The core problem in NLP is language modeling
- Goal: Assigning probability to a sequence of words
- For text understanding: p("The cat is on the mat") >> p("Truck the earth on")
- For text generation:  $p(w \mid \text{"The cat is on the"}) \rightarrow \text{"mat"}$



Autocomplete empowered by language modeling



#### (Recap) Language Models = Universal NLP Task Solvers

- Every NLP task can be converted into a text-to-text task!
  - Sentiment analysis: The movie's closing scene is attractive; it was \_\_\_\_ (good)
  - Machine translation: "Hello world" in French is \_\_\_\_ (Bonjour le monde)
  - Question answering: Which city is UVA located in? \_\_\_\_ (Charlottesville)
  - ...
- All these tasks can be formulated as a language modeling problem!

### (Recap) Language Modeling: Probability Decomposition

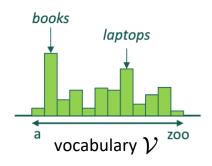
- Given a text sequence  $\boldsymbol{x} = [x_1, x_2, \dots, x_n]$ , how can we model  $p(\boldsymbol{x})$ ?
- Autoregressive assumption: the probability of each word only depends on its previous tokens

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots p(x_n|x_1,\ldots,x_{n-1}) = \prod_{i=1}^n p(x_i|x_1,\ldots,x_{i-1})$$

- How to guarantee the probability distributions are valid?
  - Non-negative

$$p(x_i = w | x_1, \dots, x_{i-1}) \ge 0, \quad \forall w \in \mathcal{V}$$

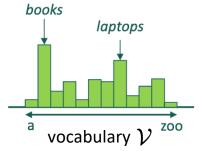
• Summed to 1:  $\sum_{w \in \mathcal{V}} p(x_i = w | x_1, \dots, x_{i-1}) = 1$ 



• The goal of language modeling is to learn the distribution  $p(x_i = w | x_1, \dots, x_{i-1})$  !

### (Recap) Language Models Are Generative Models

- Suppose we have a language model that gives us the estimate of  $p(w|x_1,\ldots,x_{i-1})$ , we can generate the next tokens one-by-one!
- Sampling:  $x_i \sim p(w|x_1,\ldots,x_{i-1})$
- Or greedily:  $x_i \leftarrow \arg\max_w p(w|x_1, \dots, x_{i-1})$
- But how do we know when to stop generation?
- Use a special symbol [EOS] (end-of-sequence) to denote stopping



# **UNIVERSITY** of VIRGINIA

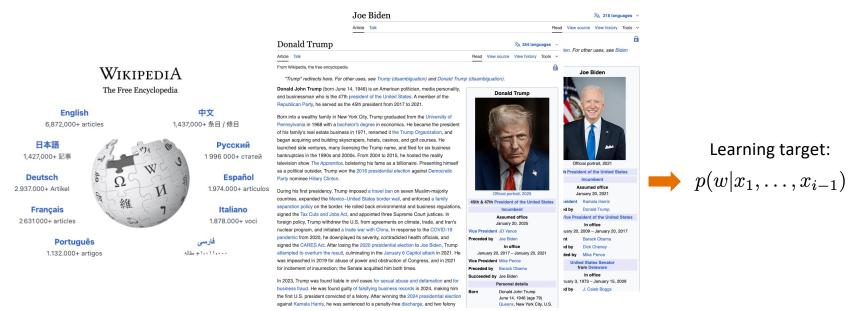
### (Recap) Example: Language Models for Generation

- Recursively sample  $x_i \sim p(w|x_1,\ldots,x_{i-1})$  until we generate [EOS]
- Generate the first word: "the"  $\leftarrow x_1 \sim p(w|BOS|)$  beginning-of-sequence
- Generate the second word: "cat"  $\leftarrow x_2 \sim p(w|\text{"the"})$
- Generate the third word: "is"  $\leftarrow x_3 \sim p(w|$  "the cat")
- Generate the fourth word: "on"  $\leftarrow x_4 \sim p(w|$  "the cat is")
- Generate the fifth word: "the"  $\leftarrow x_5 \sim p(w|$  "the cat is on")
- Generate the sixth word: "mat"  $\leftarrow x_6 \sim p(w|$  "the cat is on the")
- Generate the seventh word: [EOS]  $\leftarrow x_7 \sim p(w|\text{"the cat is on the mat"})$
- Generation finished!



### (Recap) How to Obtain A Language Model?

Learn the probability distribution  $p(w|x_1,\ldots,x_{i-1})$  from a training corpus!



Text corpora contain rich distributional statistics!



- Language models started to be built with statistical methods
  - Sparsity
  - Poor generalization

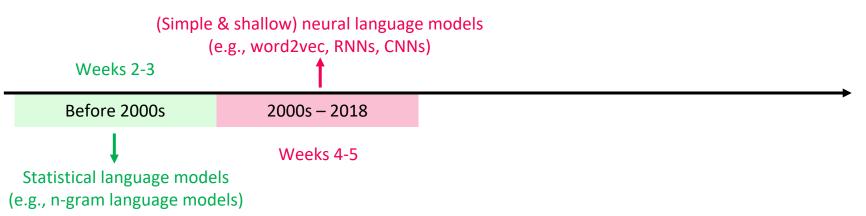
Weeks 2-3

Before 2000s

Statistical language models (e.g., n-gram language models)

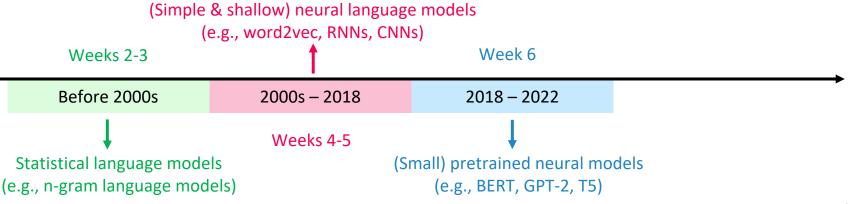


- The introduction of neural networks into language models mitigated sparsity and improved generalization
  - Neural networks for language models were small-scale and inefficient for a long time
  - Task-specific architecture designs required for different NLP tasks
  - These language models were trained on individual NLP tasks as task-specific solvers



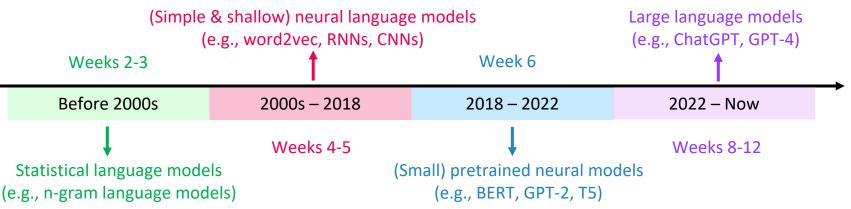


- Transformer became the dominant architecture for language modeling; scaling up model sizes and (pretraining) data enabled significant generalization ability
  - Transformer demonstrated striking scalability and efficiency in sequence modeling
  - One pretrained model checkpoint fine-tuned to become strong task-specific models
  - Task-specific fine-tuning was still necessary





- Generalist large language models (LLMs) became the universal task solvers and replaced task-specific language models
  - Real-world NLP applications are usually multifaceted (require composite task abilities)
  - Tasks are not clearly defined and may overlap
  - Single-task models struggle to handle complex tasks



### (Recap) N-gram Language Model: Simplified Assumption

Challenge of language modeling: hard to keep track of all previous tokens!

$$p(m{x}) = \prod_{i=1}^n p(x_i | x_1, \dots, x_{i-1})$$
 Can we model long contexts at all? Yes, but not for now!)

 Instead of keeping track of all previous tokens, assume the probability of a word is only dependent on the previous N-1 words

$$p(m{x}) = \prod_{i=1}^n p(x_i|x_1,\dots,x_{i-1}) pprox \prod_{i=1}^n p(x_i|x_{i-N+1},\dots,x_{i-1})$$
 N-gram assumption

Should N be larger or smaller?

### (Recap) N-gram Language Model: Simplified Assumption

- Unigram LM (N=1): each word's probability does not depend on previous words
- Bigram LM (N=2): each word's probability is based on the previous word
- Trigram LM (N=3): each word's probability is based on the previous two words
- •
- Example: p("The cat is on the mat") For simplicity, omitting [BOS] & [EOS] in these examples
- Unigram: = p("The") p("cat") p("is") p("on") p("the") p("mat")
- Bigram: = p("The") p("cat" | "The") p("is" | "cat") p("on" | "is") p("the" | "on") p("mat" | "the")
- Trigram: = p("The") p("cat" | "The") p("is" | "The cat") p("on" | "cat is") p("the" | "is on") p("mat" | "on the")
- •

### (Recap) How to Learn N-grams?

Probabilities can be estimated by frequencies (maximum likelihood estimation)!

$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})} \quad \text{How many times (counts) the sequences occur in the corpus}$$

- Unigram:  $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$
- Bigram:  $p(x_i|x_{i-1}) = \frac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$
- Trigram:  $p(x_i|x_{i-2},x_{i-1}) = \frac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$



### (Recap) Practice: Learning Unigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS][BOS] I have a cat and a mat [EOS][BOS] I like the cat [EOS]

Treating "The" & "the" as one word

• Unigram estimated from the mini-corpus  $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$ 

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("I") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

#### (Recap) Unigram Issues: No Word Correlations

Learned unigram probabilities:

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("T") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

Is unigram reliable for estimating the sequence likelihood?

For simplicity, omitting [BOS] & [EOS] in the calculation

$$p(\text{"the the the"}) = p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \approx 0.0003$$
  
 $p(\text{"I have a cat"}) = p(\text{"I"}) \times p(\text{"have"}) \times p(\text{"a"}) \times p(\text{"cat"}) \approx 0.00004$ 

Why? Unigram ignores the relationships between words!

### **Practice: Learning Bigrams**

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

Bigram estimated from the mini-corpus  $p(x_i|x_{i-1}) = \dfrac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$ 

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

... there are more bigrams!

# UNIVERSITY of VIRGINIA

#### **Bigram Issues: Sparsity**

Learned unigram probabilities:

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

Does bigram address the issue of unigram?

For simplicity, omitting [EOS] in the calculation

$$p(\text{``the the the the''}) = p(\text{``the''}|[BOS]) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) = 0$$
$$p(\text{``I have a cat''}) = p(\text{``I''}|[BOS]) \times p(\text{``have''}|\text{``I''}) \times p(\text{``a''}|\text{``have''}) \times p(\text{``cat''}|\text{``a''}) \approx 0.17$$

• But...  $p(\text{``a cat''}) = p(\text{``a''}|[BOS]) \times p(\text{``cat''}|\text{``a''}) = 0$ 

**Sparsity**: Valid bigrams having zero probability due to no occurrence in the training corpus



### **Bigram Issues: Sparsity**

Bigram counts can be mostly zero even for larger corpora!

Berkeley Restaurant Project Corpus (>9K sentences)

can you tell me about any good cantonese restaurants close by tell me about chez panisse i'm looking for a good place to eat breakfast when is caffe venezia open during the day

#### Second word

First word

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

Lots of zero entries!

### **Practice: Learning Trigrams**

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

Trigram estimated from the mini-corpus  $p(x_i|x_{i-2},x_{i-1})=rac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$ 

$$\begin{split} p(\text{``like''}|[\text{BOS}],\text{``I''}) &= \frac{1}{2}, \quad p(\text{``have''}|[\text{BOS}],\text{``I''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``mat''}) = 1, \\ p(\text{``is''}|\text{``the''},\text{``cat''}) &= \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``cat''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``a''},\text{``mat''}) = 1, \\ p(\text{``the''}|\text{``I''},\text{``like''}) &= 1, \quad p(\text{``a''}|\text{``I''},\text{``have''}) = 1, \quad p(\text{``mat''}|\text{``on''},\text{``the''}) = 1 \end{split}$$

**Sparsity** grows compared to bigram!

... there are more trigrams!

### **N-gram Properties**

- As N becomes larger
  - Better modeling of word correlations (incorporating more contexts)
  - Sparsity increases
- The number of possible N-grams (parameters) grows exponentially with N!
  - Suppose vocabulary size = 10K words
  - Possible unigrams = 10K
  - Possible bigrams =  $(10K)^2 = 100M$
  - Possible trigrams = (10K)^3 = 1T
  - ..



### **N-gram Sparsity**

With a larger N, the context becomes more specific, and the chances of encountering any particular N-gram in the training data are lower

198015222 the first 194623024 the same 168504105 the following 158562063 the world

14112454 the door

23135851162 the \*

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

3785230 close the \*

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

0 please close the first

13951 please close the \*

Bigram counts

**Trigram counts** 

4-gram counts

### **Agenda**

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

### **Overcoming Sparsity in N-gram Language Models**

- Unseen N-grams in the training corpus always lead to a zero probability
- The entire sequence will have a zero probability if any of the term is zero!

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_1, \dots, x_{i-1}) \approx \prod_{i=1}^{n} p(x_i|x_{i-N+1}, \dots, x_{i-1})$$

All terms must be non-zero

Can we fix zero-probability N-grams?

### **Smoothing**

- Intuition: guarantee all N-grams have non-zero probabilities regardless of their counts in the training corpus
- Smoothing techniques:
  - Add-one smoothing (Laplace smoothing)
  - Add-k smoothing
  - Language model interpolation
  - Backoff
  - ..



### **Add-one Smoothing (Laplace Smoothing)**

Add one to all the N-gram counts!

**Original counts** 

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

**Smoothed counts** 

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |

Figure source: <a href="https://web.stanford.edu/~jurafsky/slp3/3.pdf">https://web.stanford.edu/~jurafsky/slp3/3.pdf</a>



### **Add-one Smoothing (Laplace Smoothing)**

Original (no smoothing): 
$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})}$$

Probability of N-grams under add-one smoothing

Issues? Over-smoothing: too much probability mass to unseen N-grams



### Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

Original (no smoothing): 
$$p(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i)}{\#(x_{i-N+1},\dots,x_{i-1})}$$
 Add-one smoothing: 
$$p_{\text{Add-1}}(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i) + 1}{\#(x_{i-N+1},\dots,x_{i-1}) + |\mathcal{V}|}$$

Probability of N-grams under add-k smoothing

Add-
$$k$$
 smoothing:  $p_{\mathrm{Add-}k}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)+k}{\#(x_{i-N+1},\ldots,x_{i-1})+k|\mathcal{V}|}$ 

How to choose k? Use a validation set!

#### **Smoothing via Language Model Interpolation**

- Intuition: Combine the advantages of different N-grams
  - Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
  - Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse
- Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams, bigrams, trigrams)

$$p_{\text{Interpolate}}(x_i|x_{i-N+1},\dots,x_{i-1}) = \lambda_1 p(x_i) + \lambda_2 p(x_i|x_{i-1}) + \dots + \lambda_N p(x_i|x_{i-N+1},\dots,x_{i-1})$$
 Unigram Bigram N-gram 
$$\sum_{n=1}^N \lambda_n = 1 \quad \text{Interpolation weights sum to 1}$$

• How to pick  $\lambda_n$ ? Use a validation set!

### **Smoothing via Backoff**

- Start with the highest-order N-gram available
- If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
- Continue backing off to lower-order N-grams until we reach a non-zero N-gram

$$p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \begin{cases} p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) & \text{If } \#(x_{i-N+1},\ldots,x_{i-1},x_i) > 0 \\ \alpha \cdot p_{\text{Backoff}}(x_i|x_{i-N+2},\ldots,x_{i-1}) & \text{Otherwise} \end{cases}$$
 
$$\alpha \text{ (<1): discount factor that adjusts the lower-order probability}} \qquad \text{(N-1)-gram probability}$$

Is it possible that even after backing off to unigram, the probability is still zero?

### **Out-of-vocabulary Words**

- Unigrams will have a zero probability for words not occurring in the training data!
- Simple remedy: reserve a special token [UNK] for unknown/unseen words
- During testing, convert unknown words to [UNK] -> use [UNK]'s probability
- How to estimate the probability of [UNK]?
- During training, replace all rare words with [UNK], and estimate its probability as if it is a normal word
- How to determine rare words? Threshold based on counts in the training corpus
- Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K
  will be converted to [UNK] in training

### **Agenda**

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models



#### **How to Evaluate Language Models?**

- What language models should be considered "good"?
  - A perfect language model should be able to correctly predict every word in a corpus
  - We hope the language model can assign a high probability to the next word
  - Better language model = "less surprised" by the next word
- Just use the next word probability assigned by a language model as the metric!
- Does the choice of the evaluation corpus matter?

### **Training/Validation/Test Corpus**

- Training corpus/set: The text data we train our models on
- Does it make sense to evaluate language model probability on the training corpus?
- If we evaluate on the training corpus, we will get misleadingly high probabilities for next word prediction -> train-test data leakage
- **Test corpus/set**: A held-out set of data without overlapping with the training set
- We should always evaluate the model performance using the test corpus which measures the model's generalization ability to unseen data!
- Test sets should NOT be used to evaluate language models many times for tuning hyperparameters/design choices -> indirectly learn from test set characteristics
- Validation/development corpus/set (optional): Tuning hyperparameters & making design choices before evaluating on the test set



### **Training/Validation/Test Split**

- If we have a fixed amount of data, how should we split into train/valid/test sets?
- We want the training set to be as large as possible
- But the validation/test sets should be also reasonably large to yield reliable evaluation results
- The test set should reflect the data/task we aim to apply language models to

### **Perplexity**

- Perplexity (abbreviation: PPL) is an intrinsic evaluation metric for language models
- PPL = the per-word inverse probability on a test sequence  $m{x}_{\text{test}} = [x_1, x_2, \dots, x_n]$

$$\mathrm{PPL}(\boldsymbol{x}_{\mathrm{test}}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}}$$

A lower PPL = a better language model (less surprised/confused by the next word)

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i)}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-1})}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-2}, x_{i-1})}}$$

Unigram Bigram Trigram

Perplexity can be used to evaluate general language models (e.g., large language models) too

### **Perplexity: Log-Scale Computation**

Computation of PPL in the raw probability scale can cause numerical instability

$$ext{PPL}(m{x}_{ ext{test}}) = \sqrt[n]{\prod_{i=1}^n rac{1}{p(x_i|x_{i-N+1},\dots,x_{i-1})}}$$
 Multiplication of many small probability values!

Example:  $(1/10) ^ 100 = 10^{-100} -> risks of underflow (round to 0)$ 

PPL is usually computed in the log-scale in practice •

$$PPL(\boldsymbol{x}_{test}) = \exp\left(\log\left(\sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}}\right)\right) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log p(x_i|x_{i-N+1}, \dots, x_{i-1})\right)$$

Log probabilities are numerically stable

Example: log(1/10) = -2.3



### **Perplexity: Important Intrinsic Metric**

PPL is an important metric to benchmark the development of language models

#### Language Modelling on WikiText-2



Figure source: <a href="https://paperswithcode.com/sota/language-modelling-on-wikitext-2">https://paperswithcode.com/sota/language-modelling-on-wikitext-2</a>

#### Intrinsic vs. Extrinsic Evaluation

- Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling per se, independent of any application
- Extrinsic metrics (e.g., accuracy) measure the language model's performance for specific tasks/applications (e.g., classification, translation)
- Intrinsic evaluations are good during the development to iterate quickly and understand specific properties of the model
- Extrinsic evaluations are essential to validate that the model improves the performance of an application in a real-world scenario
- Both intrinsic and extrinsic evaluations are commonly used to evaluation language models (they may not be always positively correlated!)



#### **Extrinsic Evaluations for SOTA Language Models**

Math reasoning, question answering, general knowledge understanding...

#### Open LLM Leaderboard

| Model                                  | ВВН ▲ | MATH Lvl 5 | GPQA A | MUSR A | MMLU-PRO |
|----------------------------------------|-------|------------|--------|--------|----------|
| MaziyarPanahi/calme-2.1-rys-78b        | 59.47 | 36.4       | 19.24  | 19     | 49.38    |
| MaziyarPanahi/calme-2.2-rys-78b        | 59.27 | 37.92      | 20.92  | 16.83  | 48.73    |
| MaziyarPanahi/calme-2.1-qwen2-72b      | 57.33 | 36.03      | 17.45  | 20.15  | 49.05    |
| MaziyarPanahi/calme-2.2-qwen2-72b      | 56.8  | 41.16      | 16.55  | 16.52  | 49.27    |
| Qwen/Qwen2-72B-Instruct                | 57.48 | 35.12      | 16.33  | 17.17  | 48.92    |
| alpindale/magnum-72b-v1                | 57.65 | 35.27      | 18.79  | 15.62  | 49.64    |
| meta-llama/Meta-Llama-3.1-70B-Instruct | 55.93 | 28.02      | 14.21  | 17.69  | 47.88    |
| abacusai/Smaug-Owen2-72B-Instruct      | 56.27 | 35.35      | 14.88  | 15.18  | 46.56    |
| MaziyarPanahi/calme-2.2-llama3-70b     | 48.57 | 22.96      | 12.19  | 15.3   | 46.74    |
| NousResearch/Hermes-3-Llama-3.1-70B    | 53.77 | 13.75      | 14.88  | 23.43  | 41.41    |
| tenyx/Llama3-TenyxChat-70B             | 49.62 | 22.66      | 6.82   | 12.52  | 46.78    |

41/45



### **Summary: Language Modeling**

- Language modeling is the core problem in NLP
- Every NLP task can be formulated as language modeling
- (Autoregressive) language models can be used to generate texts
- Language model distributions are estimated (trained) on a training corpus

### **Summary: N-gram Language Models**

- N-gram language models simplifies the (general) language modeling assumption: the probability of a word is only dependent on the previous N-1 words
- Lower-order N-grams (small N) capture less context information/word correlations
- Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
- Smoothing techniques can be used to address sparsity in N-gram language models
  - Add-one smoothing
  - Add-k smoothing
  - Language model interpolation
  - Backoff



#### **Summary: Language Model Evaluation**

- Training/validation/test split required before training & evaluating language models
- Perplexity measures how "confused" the language model is about the next word
- Lower perplexity on the test set = better language model
- Perplexity is the commonly used intrinsic evaluation metric for language modeling
- Perplexity is practically computed in the log scale
- Both intrinsic and extrinsic evaluations are important



# **Thank You!**

Yu Meng

University of Virginia

yumeng5@virginia.edu