

#### **Word Senses and Semantics**

Slido: https://app.sli.do/event/5e2iag4PJwbU6DB3CXQwKb

#### Yu Meng

University of Virginia

yumeng5@virginia.edu

Sept 8, 2025

# **UNIVERSITY** of VIRGINIA

#### **Reminders**

- Assignment 1 is due today 11:59pm!
- Assignment 2 is released (due 09/17)

## MIVERSITY VIRGINIA

#### **Overview of Course Contents**

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
- Week 6: Language Modeling with Transformers
- Week 9: Large Language Models (LLMs) & In-context Learning
- Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Reinforcement Learning for LLM Post-Training
- Week 13: LLM Agents + Course Summary
- Week 15 (after Thanksgiving): Project Presentations



#### (Recap) Language Models = Universal NLP Task Solvers

- Every NLP task can be converted into a text-to-text task!
  - Sentiment analysis: The movie's closing scene is attractive; it was \_\_\_\_ (good)
  - Machine translation: "Hello world" in French is \_\_\_\_ (Bonjour le monde)
  - Question answering: Which city is UVA located in? \_\_\_\_ (Charlottesville)
  - ...
- All these tasks can be formulated as a language modeling problem!

## (Recap) Language Modeling: Probability Decomposition

- Given a text sequence  $\boldsymbol{x} = [x_1, x_2, \dots, x_n]$ , how can we model  $p(\boldsymbol{x})$ ?
- Autoregressive assumption: the probability of each word only depends on its previous tokens

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots p(x_n|x_1,\ldots,x_{n-1}) = \prod_{i=1}^n p(x_i|x_1,\ldots,x_{i-1})$$

- How to guarantee the probability distributions are valid?
  - Non-negative

$$p(x_i = w | x_1, \dots, x_{i-1}) \ge 0, \quad \forall w \in \mathcal{V}$$

• Summed to 1:  $\sum_{w \in \mathcal{V}} p(x_i = w | x_1, \dots, x_{i-1}) = 1$ 



• The goal of language modeling is to learn the distribution  $p(x_i = w | x_1, \dots, x_{i-1})$  !



## (Recap) Language Models Are Generative Models

- Suppose we have a language model that gives us the estimate of  $p(w|x_1,\ldots,x_{i-1})$ , we can generate the next tokens one-by-one!
- Sampling:  $x_i \sim p(w|x_1,\ldots,x_{i-1})$
- Or greedily:  $x_i \leftarrow \arg\max_w p(w|x_1, \dots, x_{i-1})$
- But how do we know when to stop generation?
- Use a special symbol [EOS] (end-of-sequence) to denote stopping





## (Recap) How to Obtain A Language Model?

Learn the probability distribution  $p(w|x_1,\ldots,x_{i-1})$  from a training corpus!



Text corpora contain rich distributional statistics!

## (Recap) N-gram Language Model: Simplified Assumption

Challenge of language modeling: hard to keep track of all previous tokens!

$$p(m{x}) = \prod_{i=1}^n p(x_i | x_1, \dots, x_{i-1})$$
 Can we model long contexts at all? Yes, but not for now!)

 Instead of keeping track of all previous tokens, assume the probability of a word is only dependent on the previous N-1 words

$$p(m{x}) = \prod_{i=1}^n p(x_i|x_1,\dots,x_{i-1})$$
  $pprox \prod_{i=1}^n p(x_i|x_{i-N+1},\dots,x_{i-1})$  N-gram assumption

Should N be larger or smaller?

## (Recap) How to Learn N-grams?

• Probabilities can be estimated by frequencies (maximum likelihood estimation)!

$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})} \quad \text{How many times (counts) the sequences occur in the corpus}$$

- Unigram:  $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$
- Bigram:  $p(x_i|x_{i-1}) = \frac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$
- Trigram:  $p(x_i|x_{i-2},x_{i-1}) = \frac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$

#### (Recap) Unigram Issues: No Word Correlations

Learned unigram probabilities:

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("T") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

Is unigram reliable for estimating the sequence likelihood?

For simplicity, omitting [BOS] & [EOS] in the calculation

$$p(\text{"the the the"}) = p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \approx 0.0003$$
$$p(\text{"I have a cat"}) = p(\text{"I"}) \times p(\text{"have"}) \times p(\text{"a"}) \times p(\text{"cat"}) \approx 0.00004$$

Why? Unigram ignores the relationships between words!

## **UNIVERSITY** VIRGINIA

## (Recap) Bigram Issues: Sparsity

Learned bigram probabilities:

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

Does bigram address the issue of unigram?

For simplicity, omitting [EOS] in the calculation

$$p(\text{``the the the the''}) = p(\text{``the''}|[BOS]) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) = 0$$

$$p(\text{``I have a cat''}) = p(\text{``I''}|[BOS]) \times p(\text{``have''}|\text{``I''}) \times p(\text{``a''}|\text{``have''}) \times p(\text{``cat''}|\text{``a''}) \approx 0.17$$

• But...  $p(\text{``a cat''}) = p(\text{``a''}|[BOS]) \times p(\text{``cat''}|\text{``a''}) = 0$ 

**Sparsity**: Valid bigrams having zero probability due to no occurrence in the training corpus



## (Recap) Bigram Issues: Sparsity

Bigram counts can be mostly zero even for larger corpora!

Berkeley Restaurant Project Corpus (>9K sentences)

can you tell me about any good cantonese restaurants close by tell me about chez panisse i'm looking for a good place to eat breakfast when is caffe venezia open during the day

#### Second word

First word

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

Lots of zero entries!

## (Recap) Learning Trigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

Trigram estimated from the mini-corpus  $p(x_i|x_{i-2},x_{i-1})=rac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$ 

$$\begin{split} p(\text{``like''}|[\text{BOS}],\text{``I''}) &= \frac{1}{2}, \quad p(\text{``have''}|[\text{BOS}],\text{``I''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``mat''}) = 1, \\ p(\text{``is''}|\text{``the''},\text{``cat''}) &= \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``cat''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``a''},\text{``mat''}) = 1, \\ p(\text{``the''}|\text{``I''},\text{``like''}) &= 1, \quad p(\text{``a''}|\text{``I''},\text{``have''}) = 1, \quad p(\text{``mat''}|\text{``on''},\text{``the''}) = 1 \end{split}$$

**Sparsity** grows compared to bigram!

... there are more trigrams!

## MIVERSITY VIRGINIA

## (Recap) N-gram Properties

- As N becomes larger
  - Better modeling of word correlations (incorporating more contexts)
  - Sparsity increases
- The number of possible N-grams (parameters) grows exponentially with N!
  - Suppose vocabulary size = 10K words
  - Possible unigrams = 10K
  - Possible bigrams = (10K)^2 = 100M
  - Possible trigrams = (10K)^3 = 1T
  - ..



## (Recap) N-gram Sparsity

With a larger N, the context becomes more specific, and the chances of encountering any particular N-gram in the training data are lower

198015222 the first 194623024 the same 168504105 the following 158562063 the world

...

14112454 the door

-----

23135851162 the \*

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

-----

3785230 close the \*

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

| - - -

0 please close the first

-----

13951 please close the \*

Bigram counts

**Trigram counts** 

4-gram counts



## (Recap) Overcoming Sparsity in N-gram Language Models

- Unseen N-grams in the training corpus always lead to a zero probability
- The entire sequence will have a zero probability if any of the term is zero!

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_1, \dots, x_{i-1}) \approx \prod_{i=1}^{n} p(x_i|x_{i-N+1}, \dots, x_{i-1})$$

All terms must be non-zero

Can we fix zero-probability N-grams?



## (Recap) Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

**Original counts** 

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

Smoothed counts

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |

Figure source: <a href="https://web.stanford.edu/~jurafsky/slp3/3.pdf">https://web.stanford.edu/~jurafsky/slp3/3.pdf</a>



## (Recap) Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

Original (no smoothing): 
$$p(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i)}{\#(x_{i-N+1},\dots,x_{i-1})}$$
 Add-one smoothing: 
$$p_{\mathrm{Add-1}}(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i)+1}{\#(x_{i-N+1},\dots,x_{i-1})+|\mathcal{V}|}$$

Probability of N-grams under add-k smoothing

Add-
$$k$$
 smoothing:  $p_{\mathrm{Add-}k}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)+k}{\#(x_{i-N+1},\ldots,x_{i-1})+k|\mathcal{V}|}$ 

How to choose k? Use a validation set!

## (Recap) Smoothing via Language Model Interpolation

- Intuition: Combine the advantages of different N-grams
  - Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
  - Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse
- Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams, bigrams, trigrams)

$$p_{ ext{Interpolate}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \lambda_1 p(x_i) + \lambda_2 p(x_i|x_{i-1}) + \cdots + \lambda_N p(x_i|x_{i-N+1},\ldots,x_{i-1})$$
 Unigram Bigram N-gram 
$$\sum_{i=1}^N \lambda_n = 1 \qquad \text{Interpolation weights sum to 1}$$

• How to pick  $\lambda_n$ ? Use a validation set!

## (Recap) Smoothing via Backoff

- Start with the highest-order N-gram available
- If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
- Continue backing off to lower-order N-grams until we reach a non-zero N-gram

$$p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \begin{cases} p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) & \text{If } \#(x_{i-N+1},\ldots,x_{i-1},x_i) > 0 \\ \alpha \cdot p_{\text{Backoff}}(x_i|x_{i-N+2},\ldots,x_{i-1}) & \text{Otherwise} \end{cases}$$
 
$$\alpha \text{ (<1): discount factor that adjusts the lower-order probability}} \qquad \text{(N-1)-gram probability}$$

Is it possible that even after backing off to unigram, the probability is still zero?

## **UNIVERSITY** VIRGINIA

## (Recap) Out-of-vocabulary Words

- Unigrams will have a zero probability for words not occurring in the training data!
- Simple remedy: reserve a special token [UNK] for unknown/unseen words
- During testing, convert unknown words to [UNK] -> use [UNK]'s probability
- How to estimate the probability of [UNK]?
- During training, replace all rare words with [UNK], and estimate its probability as if it is a normal word
- How to determine rare words? Threshold based on counts in the training corpus
- Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K
   will be converted to [UNK] in training



## (Recap) How to Evaluate Language Models?

- What language models should be considered "good"?
  - A perfect language model should be able to correctly predict every word in a corpus
  - We hope the language model can assign a high probability to the next word
  - Better language model = "less surprised" by the next word
- Just use the next word probability assigned by a language model as the metric!
- Does the choice of the evaluation corpus matter?



## (Recap) Perplexity

- Perplexity (abbreviation: PPL) is an **intrinsic** evaluation metric for language models
- PPL = the per-word inverse probability on a test sequence  $m{x}_{ ext{test}} = [x_1, x_2, \dots, x_n]$

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}}$$

A lower PPL = a better language model (less surprised/confused by the next word)

$$PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i)}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-1})}} \qquad PPL(\boldsymbol{x}_{test}) = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-2}, x_{i-1})}}$$

Unigram Bigram Trigram

## **Perplexity: Log-Scale Computation**

Computation of PPL in the raw probability scale can cause numerical instability

$$ext{PPL}(m{x}_{ ext{test}}) = \sqrt[n]{\prod_{i=1}^n rac{1}{p(x_i|x_{i-N+1},\dots,x_{i-1})}}$$
 Multiplication of many small probability values!

Example:  $(1/10) ^ 100 = 10^{-100} -> risks of underflow (round to 0)$ 

PPL is usually computed in the log-scale in practice

$$PPL(\boldsymbol{x}_{test}) = \exp\left(\log\left(\sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(x_i|x_{i-N+1}, \dots, x_{i-1})}}\right)\right) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log p(x_i|x_{i-N+1}, \dots, x_{i-1})\right)$$

Log probabilities are numerically stable

Example: log(1/10) = -2.3



## **Perplexity: Important Intrinsic Metric**

PPL is an important metric to benchmark the development of language models

#### Language Modelling on WikiText-2



## **UNIVERSITY** VIRGINIA

#### Intrinsic vs. Extrinsic Evaluation

- Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling per se, independent of any application
- **Extrinsic metrics** (e.g., accuracy) measure the language model's performance for specific tasks/applications (e.g., classification, translation)
- Intrinsic evaluations are good during the development to iterate quickly and understand specific properties of the model
- Extrinsic evaluations are essential to validate that the model improves the performance of an application in a real-world scenario
- Both intrinsic and extrinsic evaluations are commonly used to evaluation language models (they may not be always positively correlated!)



## **Extrinsic Evaluations for SOTA Language Models**

Math reasoning, question answering, general knowledge understanding...

#### Open LLM Leaderboard

| Model                                  | ВВН ▲ | MATH Lvl 5 | GPQA 🔺 | MUSR A | MMLU-PRO |
|----------------------------------------|-------|------------|--------|--------|----------|
| MaziyarPanahi/calme-2.1-rys-78b        | 59.47 | 36.4       | 19.24  | 19     | 49.38    |
| MaziyarPanahi/calme-2.2-rys-78b        | 59.27 | 37.92      | 20.92  | 16.83  | 48.73    |
| MaziyarPanahi/calme-2.1-qwen2-72b      | 57.33 | 36.03      | 17.45  | 20.15  | 49.05    |
| MaziyarPanahi/calme-2.2-qwen2-72b      | 56.8  | 41.16      | 16.55  | 16.52  | 49.27    |
| Qwen/Qwen2-72B-Instruct                | 57.48 | 35.12      | 16.33  | 17.17  | 48.92    |
| alpindale/magnum-72b-v1                | 57.65 | 35.27      | 18.79  | 15.62  | 49.64    |
| meta-llama/Meta-Llama-3.1-70B-Instruct | 55.93 | 28.02      | 14.21  | 17.69  | 47.88    |
| abacusai/Smaug-Qwen2-72B-Instruct      | 56.27 | 35.35      | 14.88  | 15.18  | 46.56    |
| MaziyarPanahi/calme-2.2-llama3-70b     | 48.57 | 22.96      | 12.19  | 15.3   | 46.74    |
| NousResearch/Hermes-3-Llama-3.1-70B    | 53.77 | 13.75      | 14.88  | 23.43  | 41.41    |
| tenyx/Llama3-TenyxChat-70B             | 49.62 | 22.66      | 6.82   | 12.52  | 46.78    |



## **Summary: Language Modeling**

- Language modeling is the core problem in NLP
- Every NLP task can be formulated as language modeling
- (Autoregressive) language models can be used to generate texts
- Language model distributions are estimated (trained) on a training corpus



## **Summary: N-gram Language Models**

- N-gram language models simplifies the (general) language modeling assumption: the probability of a word is only dependent on the previous N-1 words
- Lower-order N-grams (small N) capture less context information/word correlations
- Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
- Smoothing techniques can be used to address sparsity in N-gram language models
  - Add-one smoothing
  - Add-k smoothing
  - Language model interpolation
  - Backoff



### **Summary: Language Model Evaluation**

- Training/validation/test split required before training & evaluating language models
- Perplexity measures how "confused" the language model is about the next word
- Lower perplexity on the test set = better language model
- Perplexity is the commonly used intrinsic evaluation metric for language modeling
- Perplexity is practically computed in the log scale
- Both intrinsic and extrinsic evaluations are important

## **UNIVERSITY VIRGINIA**

## **Agenda**

- Introduction to Word Senses & Semantics
- Classic Word Representations
- Vector Space Model Basics

#### Why Care About Word Semantics?

- Understanding word meanings helps us build better language models!
- Recall the example from N-gram lectures:

```
[BOS] The cat is on the mat [EOS]
[BOS] I have a cat and a mat [EOS]
[BOS] I like the cat [EOS]
```

$$p(\text{"cat"}|\text{"the"}) = \frac{2}{3}, \quad p(\text{"mat"}|\text{"the"}) = \frac{1}{3},$$

- Sparsity: many valid bigram counts are zero count-based measures do not account for word semantics!
- If we know "cat" is semantically similar to "dog", then  $p(\text{"dog"}|\text{"the"}) \approx p(\text{"cat"}|\text{"the"})$

### What Types of Word Semantics Exist in NLP?

- Synonyms: words with similar meanings
  - "happy" & "joyful"
- Antonyms: words with opposite meanings
  - "hot" & "cold"
- Hyponyms & hypernyms: one word is a more specific instance of another
  - "rose" is a hyponym of "flower"
  - "flower" is a hypernym of "rose"
- Polysemy: A single word having multiple related meanings
  - "mouse" can mean small rodents or the device that controls a cursor
- The study of these aspects of word meanings is called lexical semantics in linguistics



#### Lemmas

- Lemma: the base or canonical form of a word, from which other forms can be derived
  - "run" "runs" "ran" and "running" all share the lemma "run"
  - "better" and "best" share the lemma "good"
- Lemmatization: reducing words to their lemma
  - Allows models to recognize that different forms of a word carry the same meaning
  - An important pre-processing step in early NLP models
  - Contemporary LLMs (sort of) perform lemmatization through tokenization (later lectures!)

## UNIVERSITY of VIRGINIA

#### **Synonyms**

- Word that have the same meaning in some or all contexts
- Two words are synonyms if they can be substituted for each other
- Perfect synonym is very rare!
  - Typically, words are slightly different in notions of politeness, connotation, genre/style...
  - "Child" vs. "kid": "child" is often more formal/neutral; "kid" is more informal/casual
  - "Slim" vs. "skinny": "slim" is often more positive in connotation than "skinny"
  - "Big" vs. "Large": "big sister" is a common phrase but "large sister" is not

## UNIVERSITY of VIRGINIA

## **Antonyms**

- Words that have opposite meanings
- Gradable antonyms: exist on the ends of a spectrum or scale
  - "Hot" vs. "cold"
  - "Tall" vs. "short"
- Complementary antonyms: the presence of one directly excludes the other
  - "Alive" vs. "dead"
  - "True" vs. "false"
- Relational antonyms: express a relationship between two dependent entities
  - "Teacher" vs. "student"
  - "Buyer" vs. "seller"

## **UNIVERSITY** VIRGINIA

### **Hyponyms & Hypernyms**

- Describe hierarchical relationships between words based on specificity and generality
- Hypernym is a word that is more general/broader in meaning and can encompass a variety of more specific words
- Hyponym is a word that is more specific in meaning and falls under a broader category
- "Vehicle" is a hypernym for "car" "bicycle" "airplane" "boat" etc.
- "Car" "bicycle" "airplane" "boat" are hyponyms of "vehicle"
- Hypernym/hyponym relationship is usually transitive
  - A is a hypernym of B; B is a hypernym of C => A is a hypernym of C

## **UNIVERSITY** VIRGINIA

### Polysemy & Senses

- Polysemy: a single word has multiple related meanings
  - "Light": "This bag is light" / "Turn on the light" / "She made a light comment"
- Sense: a particular meaning or interpretation of a word in a given context
- Word relations (e.g., synonyms, antonyms, hypernyms/hyponyms) are defined between word senses!
- Word sense disambiguation (WSD): determine which sense of a word is being used in a specific context
  - She went to the bank to deposit money
  - She lives by the river bank
- WSD can be challenging especially when the context is short/insufficient
  - Is the query "mouse info" looking for a pet or a tool?



### **Word Sense Disambiguation**

WSD can be an interesting/challenging test case even for the strong (multimodal) LLMs



Image generated by Nano Banana under the user prompt: "generate an image of a baseball player caring for his bat in the cave where he lives with all the other bats"

39/72



## **Word Similarity**

- Most words may not have many perfect synonyms, but usually have lots of similar words
  - "cat" is not a synonym of "dog", but they are similar in meaning

| vanish | disappear  | 9.8  |
|--------|------------|------|
| belief | impression | 5.95 |
| muscle | bone       | 3.65 |
| modest | flexible   | 0.98 |
| hole   | agreement  | 0.3  |

Word similarity (on a scale from 0 to 10) manually annotated by humans

We'll introduce word embeddings to automatically learn word similarity next week!

#### **Word Relatedness & Semantic Field**

- Word relatedness: the meaning of words can be related in ways other than similarity
  - Functional relationship: "doctor" and "hospital" doctors work in hospitals
  - Thematic relationship: "bread" and "butter" often used together in the context of food
  - Conceptual relationship: "teacher" and "chalkboard" both part of the educational context
- **Semantic field**: a set of words which cover a particular semantic domain and bear structured relations with each other
  - Semantic field of "houses": door, roof, kitchen, family, bed...
  - Semantic field of "restaurants": waiter, menu, plate, food, chef...
  - Semantic field of "hospitals": surgeon, nurse, anesthetic, scalpel...



#### **Connotation**

- Subjective/cultural/emotional associations that words carry beyond their literal meanings
  - Youthful (positive) vs. childish (negative)
  - Confident (positive) vs. arrogant (negative)
  - Economical (positive) vs. cheap (negative)
- Connotation can be described via three dimensions:
  - Valence: the pleasantness of the stimulus
  - Arousal: the intensity of emotion provoked by the stimulus
  - Dominance: the degree of control exerted by the stimulus



#### **Connotation**

- Valence: the pleasantness of the stimulus
  - High: "happy" / "satisfied"; low: "unhappy" / "annoyed"
- Arousal: the intensity of emotion provoked by the stimulus
  - High: "excited"; low: "calm"
- Dominance: the degree of control exerted by the stimulus
  - High: "controlling"; low: "influenced"

|            | Valence | Arousal | Dominance |
|------------|---------|---------|-----------|
| courageous | 8.05    | 5.5     | 7.38      |
| music      | 7.67    | 5.57    | 6.5       |
| heartbreak | 2.45    | 5.65    | 3.58      |
| cub        | 6.71    | 3.95    | 4.24      |

Earliest work on representing words with multi-dimensional vectors!

## **UNIVERSITY VIRGINIA**

## **Agenda**

- Introduction to Word Senses & Semantics
- Classic Word Representations
- Vector Space Model Basics



#### WordNet

- Word semantics is complex (multiple senses, various relations)!
- How did people represent word senses and relations in early NLP developments?
- WordNet: A manually curated large lexical database
- Three separate databases: one each for nouns, verbs and adjectives/adverbs
- Each database contains a set of lemmas, each one annotated with a set of senses
- Synset (synonym set): The set of near-synonyms for a sense
- Word relations (hypernym, hyponym, antonym) defined between synsets



#### **WordNet Relations**

| Relation          | Also Called   | Definition                         | Example                         |
|-------------------|---------------|------------------------------------|---------------------------------|
| Hypernym          | Superordinate | From concepts to superordinates    | $breakfast^1  ightarrow meal^1$ |
| Hyponym           | Subordinate   | From concepts to subtypes          | $meal^1  ightarrow lunch^1$     |
| Instance Hypernym | Instance      | From instances to their concepts   | $Austen^1 \rightarrow author^1$ |
| Instance Hyponym  | Has-Instance  | From concepts to their instances   | $composer^1 \rightarrow Bach^1$ |
| Part Meronym      | Has-Part      | From wholes to parts               | $table^2  ightarrow leg^3$      |
| Part Holonym      | Part-Of       | From parts to wholes               | $course^7 	o meal^1$            |
| Antonym           |               | Semantic opposition between lemmas |                                 |
| Derivation        |               | Lemmas w/same morphological root   | $destruction^1 \iff destro$     |

#### Noun relations

| Relation | Definition                                            | Example                      |
|----------|-------------------------------------------------------|------------------------------|
| Hypernym | From events to superordinate events                   | $fly^9 \rightarrow travel^5$ |
| Troponym | From events to subordinate event                      | $walk^1 	o stroll^1$         |
| Entails  | From verbs (events) to the verbs (events) they entail | $snore^1  ightarrow sleep^1$ |
| Antonym  | Semantic opposition between lemmas                    | $increase^1 \iff decrease^1$ |

Verb relations



## WordNet as a Graph





#### **WordNet Demo**

| Category  | Unique Strings |
|-----------|----------------|
| Noun      | 117798         |
| Verb      | 11529          |
| Adjective | 22479          |
| Adverb    | 4481           |

Figure source: <a href="https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf">https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf</a>

| Word to search for: light Search WordNet                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display Options: (Select option to change) V Change                                                                                                                                                                                                                            |
| Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations                                                                                                                                                                                             |
| Display options for sense: (gloss) "an example sentence"                                                                                                                                                                                                                       |
| Noun                                                                                                                                                                                                                                                                           |
| S: (n) light, visible light, visible radiation ((physics) electromagnetic radiation that can produce a visual sensation) "the light was filtered through a soft glass window" direct hyponym   full hyponym domain category direct hypernym   inherited hypernym   sister term |
| • part holonym                                                                                                                                                                                                                                                                 |
| o <u>derivationally related form</u>                                                                                                                                                                                                                                           |
| <ul> <li>S: (n) light, light source (any device serving as a source of illumination) "he<br/>stopped the car and turned off the lights"</li> </ul>                                                                                                                             |
| • S: (n) light (a particular perspective or aspect of a situation) "although he                                                                                                                                                                                                |
| saw it in a different light, he still did not understand"                                                                                                                                                                                                                      |
| <ul> <li>S: (n) <u>luminosity</u>, <u>brightness</u>, <u>brightness level</u>, <u>luminance</u>, <u>luminousness</u>,<br/><u>light</u> (the quality of being luminous; emitting or reflecting light) "its</li> </ul>                                                           |
| luminosity is measured relative to that of our sun"                                                                                                                                                                                                                            |
| <ul> <li>S: (n) light (an illuminated area) "he stepped into the light"</li> </ul>                                                                                                                                                                                             |
| <ul> <li>direct hypernym   inherited hypernym   sister term</li> </ul>                                                                                                                                                                                                         |
| <ul> <li>derivationally related form</li> <li>S: (n) light, illumination (a condition of spiritual awareness; divine</li> </ul>                                                                                                                                                |
| illumination) "follow God's light"                                                                                                                                                                                                                                             |
| <ul> <li>S: (n) light, lightness (the visual effect of illumination on objects or scenes as created in pictures) "he could paint the lightest light and the darkest dark"</li> <li>S: (n) light (a person regarded very fondly) "the light of my life"</li> </ul>              |
| • <u>S: (n) light, lighting (having abundant light or illumination)</u> "they played as                                                                                                                                                                                        |
| <ul> <li>long as it was light"; "as long as the lighting was good"</li> <li>S: (n) light (mental understanding as an enlightening experience) "he finally</li> </ul>                                                                                                           |
| saw the light"; "can you shed light on this problem?"                                                                                                                                                                                                                          |
| <ul> <li>S: (n) sparkle, twinkle, spark, light (merriment expressed by a brightness or<br/>gleam or animation of countenance) "he had a sparkle in his eye"; "there's a<br/>perpetual twinkle in his eyes"</li> </ul>                                                          |
| <ul> <li>S: (n) light (public awareness) "it brought the scandal to light"</li> <li>S: (n) Inner Light, Light, Light Within, Christ Within (a divine presence)</li> </ul>                                                                                                      |
| • 3. (ii) inner Liunt, <b>Liunt</b> , Liunt Within, Christ Within (a divine bresence                                                                                                                                                                                           |



### **WordNet for Word Sense Disambiguation**

- All words WSD task: map all input words (nouns/verbs/adjectives/adverbs) to WordNet senses
- Strong baseline: map to the first sense in WordNet (most frequent)
- Modern approaches: sequence modeling architectures (later lectures!)





#### **WordNet Limitations**

- Require significant efforts to construct and maintain/update
  - Hard to keep up with rapidly evolving language usage
- Limited coverage of domain-specific terms & low-resource language
  - No coverage of specialized, domain-specific terms (e.g., medical, legal, or technical)
- Only support individual words and their meanings
  - Do not account for idiomatic expressions, phrasal verbs, or collocations

A more automatic, scalable, and contextualized word semantic learning approach is needed!

## **UNIVERSITY VIRGINIA**

## **Agenda**

- Introduction to Word Senses & Semantics
- Classic Word Representations
- Vector Space Model Basics



## **Motivation: Representing Texts with Vectors**

Word similarity computation is important for understanding semantics

Word similarity (on a scale from 0 to 10) manually annotated by humans

| vanish | disappear  | 9.8  |
|--------|------------|------|
| belief | impression | 5.95 |
| muscle | bone       | 3.65 |
| modest | flexible   | 0.98 |
| hole   | agreement  | 0.3  |

Word semantics can be multi-faceted

|            | Valence | Arousal | Dominance |
|------------|---------|---------|-----------|
| courageous | 8.05    | 5.5     | 7.38      |
| music      | 7.67    | 5.57    | 6.5       |
| heartbreak | 2.45    | 5.65    | 3.58      |
| cub        | 6.71    | 3.95    | 4.24      |

How to represent words numerically? Using multi-dimensional vectors!



#### **Vector Semantics**

- Represent a word as a point in a multi-dimensional semantic space
- A desirable vector semantic space: words with similar meanings are nearby in space

```
not good
                                                         bad
to
      by
                                                dislike
                                                              worst
                                               incredibly bad
that
       now
                     are
               you
 than
         with
                                        incredibly good
                            very good
                    amazing
                                       fantastic
                                                wonderful
                 terrific
                                    nice
                                   good
```

2D visualization of a desirable high-dimensional vector semantic space

# University of Virginia

#### **Vector Space Basics**

- Vector notation: an N-dimensional vector  $oldsymbol{v} = [v_1, v_2, \dots, v_N] \in \mathbb{R}^N$
- Vector dot product/inner product:

dot product
$$(\boldsymbol{v}, \boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{i=1}^N v_i w_i$$

Vector length/norm:

$$|oldsymbol{v}| = \sqrt{oldsymbol{v} \cdot oldsymbol{v}} = \sqrt{\sum_{i=1}^N v_i^2}$$

 $|m{v}| = \sqrt{m{v} \cdot m{v}} = \sqrt{\sum_{i=1}^N v_i^2}$  Other (less commonly-used) vector norms: Manhattan norm, p-norm, infinity norm...

Cosine similarity between vectors:

$$\cos(\boldsymbol{v}, \boldsymbol{w}) = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}||\boldsymbol{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

# MIVERSITY VIRGINIA

### **Vector Space Basics: Example**

- Consider two 4-dimensional vectors  $\,m{v}=[1,0,1,0]\in\mathbb{R}^4\,$   $\,m{w}=[0,1,1,0]\in\mathbb{R}^4\,$
- Vector dot product/inner product:

$$\boldsymbol{v} \cdot \boldsymbol{w} = \sum_{i=1}^{N} v_i w_i = 1$$

• Vector length/norm:

$$|m{v}| = \sqrt{\sum_{i=1}^N v_i^2} = \sqrt{2} \quad |m{w}| = \sqrt{\sum_{i=1}^N w_i^2} = \sqrt{2}$$

Cosine similarity between vectors:

$$\cos(\boldsymbol{v}, \boldsymbol{w}) = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}||\boldsymbol{w}|} = \frac{1}{2}$$



## **Vector Similarity**

- Cosine similarity is the most commonly used metric for similarity measurement
  - Symmetric:  $cos(\boldsymbol{v}, \boldsymbol{w}) = cos(\boldsymbol{w}, \boldsymbol{v})$
  - Not influenced by vector length
  - Has a normalized range: [-1, 1]
  - Intuitive geometric interpretation



Cosine function values under different angles



#### **How to Represent Words as Vectors?**

- Given a vocabulary  $\mathcal{V} = \{ \text{good}, \text{feel}, \text{I}, \text{sad}, \text{cats}, \text{have} \}$
- Most straightforward way to represent words as vectors: use their indices
- One-hot vector: only one high value (1) and the remaining values are low (0)
- Each word is identified by a unique dimension

$$egin{aligned} oldsymbol{v}_{
m good} &= [1,0,0,0,0,0] \ oldsymbol{v}_{
m feel} &= [0,1,0,0,0,0] \ oldsymbol{v}_{
m I} &= [0,0,1,0,0,0] \ oldsymbol{v}_{
m sad} &= [0,0,0,1,0,0] \ oldsymbol{v}_{
m cats} &= [0,0,0,0,1,0] \ oldsymbol{v}_{
m have} &= [0,0,0,0,0,1] \end{aligned}$$

# MIVERSITY VIRGINIA

### **Represent Sequences by Word Occurrences**

Consider the mini-corpus with three documents

$$d_1$$
 = "I feel good"  
 $d_2$  = "I feel sad"  
 $d_3$  = "I have cats"

$$egin{aligned} oldsymbol{v}_{
m good} &= [1,0,0,0,0,0] \ oldsymbol{v}_{
m feel} &= [0,1,0,0,0,0] \ oldsymbol{v}_{
m I} &= [0,0,1,0,0,0] \ oldsymbol{v}_{
m sad} &= [0,0,0,1,0,0] \ oldsymbol{v}_{
m cats} &= [0,0,0,0,1,0] \ oldsymbol{v}_{
m have} &= [0,0,0,0,0,1] \end{aligned}$$

• Straightforward way of representing documents: look at which words are present

$$egin{aligned} oldsymbol{v}_{d_1} &= [1,1,1,0,0,0] \ oldsymbol{v}_{d_2} &= [0,1,1,1,0,0] \ oldsymbol{v}_{d_3} &= [0,0,1,0,1,1] \end{aligned}$$

Document vector similarity

$$egin{aligned} \cos(m{v}_{d_1},m{v}_{d_2}) &= rac{2}{3} \ \cos(m{v}_{d_1},m{v}_{d_3}) &= rac{1}{3} \ \cos(m{v}_{d_2},m{v}_{d_3}) &= rac{1}{3} \end{aligned}$$

#### **Term-Document Matrix**

- With larger text collections, word frequencies in documents entail rich information
- Consider the four plays by Shakespeare and obtain the word frequency statistics
- Look at 4 manually-picked words: "battle" "good" "fool" "wit"

|              | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------------|----------------|---------------|---------------|---------|
| battle       | 1              | 0             | 7             | 13      |
| good         | 114            | 80            | 62            | 89      |
| good<br>fool | 36             | 58            | 1             | 4       |
| wit          | 20             | 15            | 2             | 3       |

#### There are many more words!

Document vector representation with word frequencies:

$$oldsymbol{v}_{d_1} = [1, 114, 36, 20] \ oldsymbol{v}_{d_2} = [0, 80, 58, 15] \ oldsymbol{v}_{d_3} = [7, 62, 1, 2] \ oldsymbol{v}_{d_4} = [13, 89, 4, 3]$$

## MIVERSITY VIRGINIA

#### **Document Similarity**

Document vector representation with word frequencies:

$$oldsymbol{v}_{d_1} = [1, 114, 36, 20] \quad oldsymbol{v}_{d_2} = [0, 80, 58, 15] \quad oldsymbol{v}_{d_3} = [7, 62, 1, 2] \quad oldsymbol{v}_{d_4} = [13, 89, 4, 3]$$

|              | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------------|----------------|---------------|---------------|---------|
| battle       | 1              | 0             | 7             | 13      |
| good         | 114            | 80            | 62            | 89      |
| good<br>fool | 36             | 58            | 1             | 4       |
| wit          | 20             | 15            | 2             | 3       |

- "fool" and "wit" occur much more frequently in  $d_1$  and  $d_2$  than  $d_3$  and  $d_4$
- $d_1$  and  $d_2$  are comedies  $\cos(oldsymbol{v}_{d_1},oldsymbol{v}_{d_2})=0.95$   $\cos(oldsymbol{v}_{d_2},oldsymbol{v}_{d_3})=0.81$
- Word frequencies in documents do reflect the semantic similarity between documents!



### **Words Represented with Documents**

- "Battle": "the kind of word that occurs in Julius Caesar and Henry V (history plays)"
- "Fool": "the kind of word that occurs in comedies"

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 1              | 0             | 7             | 13      |
| good   | 114            | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

Represent words using their co-occurrence counts with documents:

$$egin{aligned} m{v}_{
m battle} &= [1, 0, 7, 13] \ m{v}_{
m good} &= [114, 80, 62, 89] \ m{v}_{
m fool} &= [36, 58, 1, 4] \ m{v}_{
m wit} &= [20, 15, 2, 3] \end{aligned}$$

### **Words Represented with Documents**

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 1              | 0             | 7             | 13      |
| good   | 114            | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

$$m{v}_{
m battle} = [1,0,7,13] \ m{v}_{
m battle} = [1,0,0,0] \ m{v}_{
m good} = [114,80,62,89] \ m{v}_{
m fool} = [36,58,1,4] \ m{v}_{
m wit} = [20,15,2,3] \ m{v}_{
m wit} = [20,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m ool} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m ool} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m ool} = [0,0,0,0] \ m{v}_{
m ool} = [0,0,0] \ m{v}_{
m ool} = [0,0] \ m{v}_{
m ool} =$$

Document co-occurrence statistics provide coarse-grained contexts



#### **Fine-Grained Contexts: Word-Word Matrix**

Instead of using documents as contexts for words, we can also use words as contexts

4 words to the left center word

4 words to the right

is traditionally followed by **cherry** often mixed, such as **strawberry** computer peripherals and personal digital a computer. This includes **information** available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually



#### **Fine-Grained Contexts: Word-Word Matrix**

Count how many times words occur in a ±4 word window around the center word context word

center word

|             | aardvark |     | computer | data | result | pie | sugar | ••• |
|-------------|----------|-----|----------|------|--------|-----|-------|-----|
| cherry      | 0        |     | 2        | 8    | 9      | 442 | 25    | ••• |
| strawberry  | 0        | ••• | 0        | 0    | 1      | 60  | 19    | ••• |
| digital     | 0        | ••• | 1670     | 1683 | 85     | 5   | 4     | ••• |
| information | 0        | ••• | 3325     | 3982 | 378    | 5   | 13    | ••• |

Counts derived from the Wikipedia corpus



#### **Word Similarity Based on Word Co-occurrence**

Word-word matrix with ±4 word window

|             | aardvark |     | computer | data | result | pie | sugar | ••• |
|-------------|----------|-----|----------|------|--------|-----|-------|-----|
| cherry      | 0        | ••• | 2        | 8    | 9      | 442 | 25    | ••• |
| strawberry  | 0        |     | 0        | 0    | 1      | 60  | 19    | ••• |
| digital     | 0        |     | 1670     | 1683 | 85     | 5   | 4     | ••• |
| information | 0        |     | 3325     | 3982 | 378    | 5   | 13    | ••• |

- "digital" and "information" both co-occur with "computer" and "data" frequently
- "cherry" and "strawberry" both co-occur with "pie" and "sugar" frequently
- Word co-occurrence statistics reflect word semantic similarity!
- Issues? Sparsity!



### Is Raw Frequency A Good Representation?

- On the one hand, high frequency can imply semantic similarity
- On the other hand, there are words with universally high frequencies

|              | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------------|----------------|---------------|---------------|---------|
| battle       | 1              | 0             | 7             | 13      |
| good<br>fool | 114            | 80            | 62            | 89      |
| fool         | 36             | 58            | 1             | 4       |
| wit          | 20             | 15            | 2             | 3       |

 Can we reweight the raw frequencies so that distinctively high frequency terms are highlighted?

### **Term Frequency (TF)**

- A word appearing 100 times in a document doesn't make it 100 times more likely to be relevant to the meaning of the document
- Instead of using the raw counts, we squash the counts with log scale

$$TF(w,d) = \begin{cases} 1 + \log_{10} \operatorname{count}(w,d) & \operatorname{count}(w,d) > 0\\ 0 & \text{otherwise} \end{cases}$$

## **Document Frequency (DF)**

- Motivation: Give a higher weight to words that occur only in a few documents
  - Terms that are limited to a few documents are more discriminative
  - Terms that occur frequently across the entire collection aren't as helpful
- Document frequency (DF): count how many documents a word occurs in

$$\mathrm{DF}(w) = \sum_{i=1}^{N} \mathbb{1}(w \in d_i) \longrightarrow \begin{array}{c} \text{Evaluates to 1 if } w \text{ occurs in } d_i \\ \text{otherwise evaluates to 0} \end{array}$$

DF is NOT defined to be the total count of a word across all documents (collection frequency)!

|        | <b>Collection Frequency</b> | <b>Document Frequency</b> |
|--------|-----------------------------|---------------------------|
| Romeo  | 113                         | 1                         |
| action | 113                         | 31                        |



### **Inverse Document Frequency (IDF)**

We want to emphasize discriminative words (with low DF)

• Inverse document frequency (IDF): total number of documents (N) divided by DF, in

log scale

$$IDF(w) = \log_{10} \left( \frac{N}{DF(w)} \right)$$

| Word     | df | idf   |
|----------|----|-------|
| Romeo    | 1  | 1.57  |
| salad    | 2  | 1.27  |
| Falstaff | 4  | 0.967 |
| forest   | 12 | 0.489 |
| battle   | 21 | 0.246 |
| wit      | 34 | 0.037 |
| fool     | 36 | 0.012 |
| good     | 37 | 0     |
| sweet    | 37 | 0     |

DF & IDF statistics in the Shakespeare corpus



### **TF-IDF Weighting**

The TF-IDF weighted value characterizes the "salience" of a term in a document

$$TF-IDF(w,d) = TF(w,d) \times IDF(w)$$

TF-IDF weighted

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 0.246          | 0             | 0.454         | 0.520   |
| good   | 0              | 0             | 0             | 0       |
| fool   | 0.030          | 0.033         | 0.0012        | 0.0019  |
| wit    | 0.085          | 0.081         | 0.048         | 0.054   |

$$\cos(\boldsymbol{v}_{d_2}, \boldsymbol{v}_{d_3}) = 0.10 \quad \cos(\boldsymbol{v}_{d_3}, \boldsymbol{v}_{d_4}) = 0.99$$

Raw counts

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 1              | 0             | 7             | 13      |
| good   | 114            | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

$$\cos(\boldsymbol{v}_{d_2}, \boldsymbol{v}_{d_3}) = 0.81 \quad \cos(\boldsymbol{v}_{d_3}, \boldsymbol{v}_{d_4}) = 0.99$$

## **UNIVERSITY** VIRGINIA

#### **How to Define Documents?**

- The concrete definition of documents is usually open to different design choices
  - Wikipedia article/page
  - Shakespeare play
  - Book chapter/section
  - Paragraph/sentence
  - · ...
- Larger documents provide broader context; smaller ones provide focused insights
- Depends on the analysis need: interested in global trends across documents (e.g., news articles) vs. more local patterns (e.g., specific sections of a legal document)?



# **Thank You!**

Yu Meng

University of Virginia

yumeng5@virginia.edu