
Yu Meng
University of Virginia

yumeng5@virginia.edu

Word Senses and Semantics

Sept 8, 2025

Slido: https://app.sli.do/event/5e2iag4PJwbU6DB3CXQwKb

mailto:yumeng5@virginia.edu
https://app.sli.do/event/5e2iag4PJwbU6DB3CXQwKb

Reminders

• Assignment 1 is due today 11:59pm!
• Assignment 2 is released (due 09/17)

2/72

Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 3/72

(Recap) Language Models = Universal NLP Task Solvers

• Every NLP task can be converted into a text-to-text task!
§ Sentiment analysis: The movie’s closing scene is attractive; it was ___ (good)
§ Machine translation: “Hello world” in French is ___ (Bonjour le monde)
§ Question answering: Which city is UVA located in? ___ (Charlottesville)
§ …

• All these tasks can be formulated as a language modeling problem!

4/72

(Recap) Language Modeling: Probability Decomposition

• Given a text sequence , how can we model ?
• Autoregressive assumption: the probability of each word only depends on its previous

tokens

• How to guarantee the probability distributions are valid?
§ Non-negative

§ Summed to 1:

• The goal of language modeling is to learn the distribution !
vocabulary

5/72

(Recap) Language Models Are Generative Models

• Suppose we have a language model that gives us the estimate of ,
we can generate the next tokens one-by-one!

• Sampling:

• Or greedily:
• But how do we know when to stop generation?
• Use a special symbol [EOS] (end-of-sequence) to denote stopping vocabulary

6/72

(Recap) How to Obtain A Language Model?

Learn the probability distribution from a training corpus!

Text corpora contain rich distributional statistics!

Learning target:

7/72

(Recap) N-gram Language Model: Simplified Assumption

• Challenge of language modeling: hard to keep track of all previous tokens!

• Instead of keeping track of all previous tokens, assume the probability of a word is only
dependent on the previous N−1 words

Long context!
(Can we model long contexts at all?

Yes, but not for now!)

N-gram assumption

Should N be larger or smaller?

8/72

(Recap) How to Learn N-grams?

• Probabilities can be estimated by frequencies (maximum likelihood estimation)!

• Unigram:

• Bigram:

• Trigram:

How many times (counts) the
sequences occur in the corpus

9/72

• Learned unigram probabilities:

• Is unigram reliable for estimating the sequence likelihood?

• Why? Unigram ignores the relationships between words!

(Recap) Unigram Issues: No Word Correlations

For simplicity, omitting [BOS] & [EOS] in the calculation

10/72

(Recap) Bigram Issues: Sparsity

• Learned bigram probabilities:

• Does bigram address the issue of unigram?

• But…

For simplicity, omitting [EOS] in the calculation

Sparsity: Valid bigrams having zero probability due to no occurrence in the training corpus
11/72

(Recap) Bigram Issues: Sparsity

Bigram counts can be mostly zero even for larger corpora!

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Berkeley Restaurant Project Corpus
(>9K sentences)

First word

Second word

Lots of zero entries!

12/72

https://web.stanford.edu/~jurafsky/slp3/3.pdf

(Recap) Learning Trigrams

• Consider the following mini-corpus:

• Trigram estimated from the mini-corpus

… there are more trigrams!

Treating “The” & “the” as
one word

Sparsity grows compared to bigram!
13/72

(Recap) N-gram Properties

• As N becomes larger
§ Better modeling of word correlations (incorporating more contexts)
§ Sparsity increases

• The number of possible N-grams (parameters) grows exponentially with N!
§ Suppose vocabulary size = 10K words
§ Possible unigrams = 10K
§ Possible bigrams = (10K)^2 = 100M
§ Possible trigrams = (10K)^3 = 1T
§ …

14/72

(Recap) N-gram Sparsity

With a larger N, the context becomes more specific, and the chances of encountering any
particular N-gram in the training data are lower

Figure source: https://lm-class.org/lectures/05%20-%20language%20models.pdf

Bigram counts Trigram counts 4-gram counts

15/72

https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf
https://lm-class.org/lectures/05%20-%20language%20models.pdf

(Recap) Overcoming Sparsity in N-gram Language Models

• Unseen N-grams in the training corpus always lead to a zero probability
• The entire sequence will have a zero probability if any of the term is zero!

• Can we fix zero-probability N-grams?

All terms must be non-zero

16/72

(Recap) Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Original counts

Smoothed counts

17/72

https://web.stanford.edu/~jurafsky/slp3/3.pdf

(Recap) Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

• Probability of N-grams under add-k smoothing

• How to choose k? Use a validation set!

Original (no smoothing):

Add-one smoothing:

Add-k smoothing:

18/72

(Recap) Smoothing via Language Model Interpolation

• Intuition: Combine the advantages of different N-grams
§ Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
§ Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse

• Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams,
bigrams, trigrams)

• How to pick ? Use a validation set!

Unigram Bigram N-gram

Interpolation weights sum to 1

19/72

(Recap) Smoothing via Backoff

• Start with the highest-order N-gram available
• If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
• Continue backing off to lower-order N-grams until we reach a non-zero N-gram

• Is it possible that even after backing off to unigram, the probability is still zero?

𝛼 (<1): discount factor that adjusts the
lower-order probability

(N-1)-gram probability

20/72

(Recap) Out-of-vocabulary Words

• Unigrams will have a zero probability for words not occurring in the training data!
• Simple remedy: reserve a special token [UNK] for unknown/unseen words
• During testing, convert unknown words to [UNK] -> use [UNK]’s probability

• How to estimate the probability of [UNK]?
• During training, replace all rare words with [UNK], and estimate its probability as if it is

a normal word
• How to determine rare words? Threshold based on counts in the training corpus
• Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K

will be converted to [UNK] in training

21/72

(Recap) How to Evaluate Language Models?

• What language models should be considered “good”?
§ A perfect language model should be able to correctly predict every word in a corpus
§ We hope the language model can assign a high probability to the next word
§ Better language model = “less surprised” by the next word

• Just use the next word probability assigned by a language model as the metric!
• Does the choice of the evaluation corpus matter?

22/72

(Recap) Perplexity

• Perplexity (abbreviation: PPL) is an intrinsic evaluation metric for language models
• PPL = the per-word inverse probability on a test sequence

• A lower PPL = a better language model (less surprised/confused by the next word)

Unigram Bigram Trigram

Perplexity can be used to evaluate general language models (e.g., large language models) too 23/72

• Computation of PPL in the raw probability scale can cause numerical instability

• PPL is usually computed in the log-scale in practice

Perplexity: Log-Scale Computation

Multiplication of many
small probability values!

Example: (1/10) ^ 100 = 10^-100 -> risks of underflow (round to 0)

Log probabilities are numerically stable
Example: log(1/10) = -2.3

24/72

Perplexity: Important Intrinsic Metric

PPL is an important metric to benchmark the development of language models

Figure source: https://paperswithcode.com/sota/language-modelling-on-wikitext-2 25/72

https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2
https://paperswithcode.com/sota/language-modelling-on-wikitext-2

Intrinsic vs. Extrinsic Evaluation

• Intrinsic metrics (e.g., perplexity) directly measure the quality of language modeling
per se, independent of any application

• Extrinsic metrics (e.g., accuracy) measure the language model’s performance for
specific tasks/applications (e.g., classification, translation)

• Intrinsic evaluations are good during the development to iterate quickly and
understand specific properties of the model

• Extrinsic evaluations are essential to validate that the model improves the
performance of an application in a real-world scenario

• Both intrinsic and extrinsic evaluations are commonly used to evaluation language
models (they may not be always positively correlated!)

26/72

Extrinsic Evaluations for SOTA Language Models

Math reasoning, question answering, general knowledge understanding…

Figure source: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard 27/72

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Summary: Language Modeling

• Language modeling is the core problem in NLP
• Every NLP task can be formulated as language modeling
• (Autoregressive) language models can be used to generate texts

• Language model distributions are estimated (trained) on a training corpus

28/72

Summary: N-gram Language Models

• N-gram language models simplifies the (general) language modeling assumption: the
probability of a word is only dependent on the previous N−1 words

• Lower-order N-grams (small N) capture less context information/word correlations

• Higher-order N-grams (bigger N) suffer from more sparsity and huge parameter space
• Smoothing techniques can be used to address sparsity in N-gram language models

§ Add-one smoothing
§ Add-k smoothing
§ Language model interpolation
§ Backoff

29/72

Summary: Language Model Evaluation

• Training/validation/test split required before training & evaluating language models
• Perplexity measures how “confused” the language model is about the next word
• Lower perplexity on the test set = better language model

• Perplexity is the commonly used intrinsic evaluation metric for language modeling
• Perplexity is practically computed in the log scale
• Both intrinsic and extrinsic evaluations are important

30/72

Agenda

• Introduction to Word Senses & Semantics
• Classic Word Representations
• Vector Space Model Basics

31/72

Why Care About Word Semantics?

• Understanding word meanings helps us build better language models!
• Recall the example from N-gram lectures:

• Sparsity: many valid bigram counts are zero – count-based measures do not account
for word semantics!

• If we know “cat” is semantically similar to “dog”, then

32/72

What Types of Word Semantics Exist in NLP?

• Synonyms: words with similar meanings
§ “happy” & “joyful”

• Antonyms: words with opposite meanings
§ “hot” & “cold”

• Hyponyms & hypernyms: one word is a more specific instance of another
§ “rose” is a hyponym of “flower”
§ “flower” is a hypernym of “rose”

• Polysemy: A single word having multiple related meanings
§ “mouse” can mean small rodents or the device that controls a cursor

• The study of these aspects of word meanings is called lexical semantics in linguistics

33/72

Lemmas

• Lemma: the base or canonical form of a word, from which other forms can be derived
§ “run” “runs” “ran” and “running” all share the lemma “run”
§ “better” and “best” share the lemma “good”

• Lemmatization: reducing words to their lemma
§ Allows models to recognize that different forms of a word carry the same meaning
§ An important pre-processing step in early NLP models
§ Contemporary LLMs (sort of) perform lemmatization through tokenization (later lectures!)

34/72

Synonyms

• Word that have the same meaning in some or all contexts
• Two words are synonyms if they can be substituted for each other
• Perfect synonym is very rare!

§ Typically, words are slightly different in notions of politeness, connotation, genre/style…
§ “Child” vs. “kid”: “child” is often more formal/neutral; “kid” is more informal/casual
§ “Slim” vs. “skinny”: “slim” is often more positive in connotation than “skinny”
§ “Big” vs. “Large”: “big sister” is a common phrase but “large sister” is not

35/72

Antonyms

• Words that have opposite meanings
• Gradable antonyms: exist on the ends of a spectrum or scale

§ “Hot” vs. “cold”
§ “Tall” vs. “short”

• Complementary antonyms: the presence of one directly excludes the other
§ “Alive” vs. “dead”
§ “True” vs. “false”

• Relational antonyms: express a relationship between two dependent entities
§ “Teacher” vs. “student”
§ “Buyer” vs. “seller”

36/72

Hyponyms & Hypernyms

• Describe hierarchical relationships between words based on specificity and generality
• Hypernym is a word that is more general/broader in meaning and can encompass a

variety of more specific words

• Hyponym is a word that is more specific in meaning and falls under a broader category
• “Vehicle” is a hypernym for “car” “bicycle” “airplane” “boat” etc.
• “Car” “bicycle” “airplane” “boat” are hyponyms of “vehicle”
• Hypernym/hyponym relationship is usually transitive

§ A is a hypernym of B; B is a hypernym of C => A is a hypernym of C

37/72

Polysemy & Senses

• Polysemy: a single word has multiple related meanings
§ “Light”: “This bag is light” / “Turn on the light” / “She made a light comment”

• Sense: a particular meaning or interpretation of a word in a given context
• Word relations (e.g., synonyms, antonyms, hypernyms/hyponyms) are defined

between word senses!

• Word sense disambiguation (WSD): determine which sense of a word is being used in
a specific context
§ She went to the bank to deposit money
§ She lives by the river bank

• WSD can be challenging especially when the context is short/insufficient
§ Is the query “mouse info” looking for a pet or a tool?

38/72

Word Sense Disambiguation

WSD can be an interesting/challenging test case even for the strong (multimodal) LLMs

Example source: https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf

Image generated by Nano Banana
under the user prompt: “generate

an image of a baseball player caring
for his bat in the cave where he lives

with all the other bats”

39/72

https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf

Word Similarity

• Most words may not have many perfect synonyms, but usually have lots of similar
words
§ “cat” is not a synonym of “dog”, but they are similar in meaning

• We’ll introduce word embeddings to automatically learn word similarity next week!

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

Word similarity (on a scale from 0 to 10)
manually annotated by humans

40/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Word Relatedness & Semantic Field

• Word relatedness: the meaning of words can be related in ways other than similarity
§ Functional relationship: “doctor” and “hospital” – doctors work in hospitals
§ Thematic relationship: “bread” and “butter” – often used together in the context of food
§ Conceptual relationship: “teacher” and “chalkboard” – both part of the educational context

• Semantic field: a set of words which cover a particular semantic domain and bear
structured relations with each other
§ Semantic field of “houses”: door, roof, kitchen, family, bed…
§ Semantic field of “restaurants”: waiter, menu, plate, food, chef…
§ Semantic field of “hospitals”: surgeon, nurse, anesthetic, scalpel…

41/72

Connotation

• Subjective/cultural/emotional associations that words carry beyond their literal
meanings
§ Youthful (positive) vs. childish (negative)
§ Confident (positive) vs. arrogant (negative)
§ Economical (positive) vs. cheap (negative)

• Connotation can be described via three dimensions:
§ Valence: the pleasantness of the stimulus
§ Arousal: the intensity of emotion provoked by the stimulus
§ Dominance: the degree of control exerted by the stimulus

42/72

Connotation

• Valence: the pleasantness of the stimulus
§ High: “happy” / “satisfied”; low: “unhappy” / “annoyed”

• Arousal: the intensity of emotion provoked by the stimulus
§ High: “excited”; low: “calm”

• Dominance: the degree of control exerted by the stimulus
§ High: “controlling”; low: “influenced”

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

Earliest work on representing words
with multi-dimensional vectors!

43/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Agenda

• Introduction to Word Senses & Semantics
• Classic Word Representations
• Vector Space Model Basics

44/72

WordNet

• Word semantics is complex (multiple senses, various relations)!
• How did people represent word senses and relations in early NLP developments?
• WordNet: A manually curated large lexical database

• Three separate databases: one each for nouns, verbs and adjectives/adverbs
• Each database contains a set of lemmas, each one annotated with a set of senses
• Synset (synonym set): The set of near-synonyms for a sense
• Word relations (hypernym, hyponym, antonym) defined between synsets

WordNet: https://wordnet.princeton.edu/ 45/72

https://wordnet.princeton.edu/

WordNet Relations

Figure source: https://web.stanford.edu/~jurafsky/slp3/G.pdf

Noun relations

Verb relations

46/72

https://web.stanford.edu/~jurafsky/slp3/G.pdf

WordNet as a Graph

Figure source: https://academic.oup.com/edited-volume/42643/chapter/358151233 47/72

https://academic.oup.com/edited-volume/42643/chapter/358151233
https://academic.oup.com/edited-volume/42643/chapter/358151233
https://academic.oup.com/edited-volume/42643/chapter/358151233

WordNet Demo

WordNet web browser: http://wordnetweb.princeton.edu/perl/webwn

Figure source: https://lm-class.org/lectures/04%20-
%20word%20embeddings.pdf

48/72

http://wordnetweb.princeton.edu/perl/webwn
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf
https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf

WordNet for Word Sense Disambiguation

• All words WSD task: map all input words (nouns/verbs/adjectives/adverbs) to
WordNet senses

• Strong baseline: map to the first sense in WordNet (most frequent)

• Modern approaches: sequence modeling architectures (later lectures!)

Figure source: https://web.stanford.edu/~jurafsky/slp3/G.pdf 49/72

https://web.stanford.edu/~jurafsky/slp3/G.pdf

WordNet Limitations

• Require significant efforts to construct and maintain/update
§ Hard to keep up with rapidly evolving language usage

• Limited coverage of domain-specific terms & low-resource language
§ No coverage of specialized, domain-specific terms (e.g., medical, legal, or technical)

• Only support individual words and their meanings
§ Do not account for idiomatic expressions, phrasal verbs, or collocations

A more automatic, scalable, and contextualized word
semantic learning approach is needed!

50/72

Agenda

• Introduction to Word Senses & Semantics
• Classic Word Representations
• Vector Space Model Basics

51/72

Motivation: Representing Texts with Vectors

• Word similarity computation is important for understanding semantics

• How to represent words numerically? Using multi-dimensional vectors!

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

Word similarity (on a scale from 0 to 10)
manually annotated by humans Word semantics can be multi-faceted

52/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Vector Semantics

• Represent a word as a point in a multi-dimensional semantic space
• A desirable vector semantic space: words with similar meanings are nearby in space

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

2D visualization of a desirable high-dimensional vector semantic space

53/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Vector Space Basics

• Vector notation: an N-dimensional vector
• Vector dot product/inner product:

• Vector length/norm:

• Cosine similarity between vectors:

Other (less commonly-used) vector norms:
Manhattan norm, p-norm, infinity norm…

54/72

Vector Space Basics: Example

• Consider two 4-dimensional vectors
• Vector dot product/inner product:

• Vector length/norm:

• Cosine similarity between vectors:

55/72

Vector Similarity

• Cosine similarity is the most commonly used metric for similarity measurement
§ Symmetric:
§ Not influenced by vector length
§ Has a normalized range: [-1, 1]
§ Intuitive geometric interpretation

Figure source: https://www.learndatasci.com/glossary/cosine-similarity/

Cosine function values
under different angles

56/72

https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/

How to Represent Words as Vectors?

• Given a vocabulary
• Most straightforward way to represent words as vectors: use their indices
• One-hot vector: only one high value (1) and the remaining values are low (0)

• Each word is identified by a unique dimension

57/72

Represent Sequences by Word Occurrences

• Consider the mini-corpus with three documents

• Straightforward way of representing documents: look at which words are present

Document vector similarity

58/72

Term-Document Matrix

• With larger text collections, word frequencies in documents entail rich information
• Consider the four plays by Shakespeare and obtain the word frequency statistics
• Look at 4 manually-picked words: “battle” “good” “fool” “wit”

• Document vector representation with word frequencies:

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

There are many more words!

59/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Document Similarity

• Document vector representation with word frequencies:

• “fool” and “wit” occur much more frequently in 𝑑! and 𝑑" than 𝑑# and 𝑑$
• 𝑑! and 𝑑" are comedies
• Word frequencies in documents do reflect the semantic similarity between documents!

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 60/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Words Represented with Documents

• “Battle”: “the kind of word that occurs in Julius Caesar and Henry V (history plays)”
• “Fool”: “the kind of word that occurs in comedies”

• Represent words using their co-occurrence counts with documents:

61/72

Words Represented with Documents

Document co-occurrence statistics provide coarse-grained contexts

Previously:

62/72

Fine-Grained Contexts: Word-Word Matrix

Instead of using documents as contexts for words, we can also use words as contexts

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

center word4 words to the left 4 words to the right

63/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Fine-Grained Contexts: Word-Word Matrix

Count how many times words occur in a ±4 word window around the center word

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

center word

context word

Counts derived from the Wikipedia corpus

64/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Word Similarity Based on Word Co-occurrence

• Word-word matrix with ±4 word window

• “digital” and “information” both co-occur with “computer” and “data” frequently
• “cherry” and “strawberry” both co-occur with “pie” and “sugar” frequently

• Word co-occurrence statistics reflect word semantic similarity!
• Issues? Sparsity!

65/72

Is Raw Frequency A Good Representation?

• On the one hand, high frequency can imply semantic similarity
• On the other hand, there are words with universally high frequencies

• Can we reweight the raw frequencies so that distinctively high frequency terms are
highlighted?

66/72

Term Frequency (TF)

• A word appearing 100 times in a document doesn’t make it 100 times more likely to
be relevant to the meaning of the document

• Instead of using the raw counts, we squash the counts with log scale

67/72

Document Frequency (DF)

• Motivation: Give a higher weight to words that occur only in a few documents
§ Terms that are limited to a few documents are more discriminative
§ Terms that occur frequently across the entire collection aren’t as helpful

• Document frequency (DF): count how many documents a word occurs in

• DF is NOT defined to be the total count of a word across all documents (collection
frequency)!

Evaluates to 1 if 𝑤 occurs in 𝑑!
otherwise evaluates to 0

12 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf
tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 68/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

Inverse Document Frequency (IDF)

• We want to emphasize discriminative words (with low DF)
• Inverse document frequency (IDF): total number of documents (N) divided by DF, in

log scale

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

DF & IDF statistics in the
Shakespeare corpus

69/72

https://web.stanford.edu/~jurafsky/slp3/6.pdf

TF-IDF Weighting

The TF-IDF weighted value characterizes the “salience” of a term in a document

Raw counts

TF-IDF weighted

70/72

How to Define Documents?

• The concrete definition of documents is usually open to different design choices
§ Wikipedia article/page
§ Shakespeare play
§ Book chapter/section
§ Paragraph/sentence
§ …

• Larger documents provide broader context; smaller ones provide focused insights
• Depends on the analysis need: interested in global trends across documents (e.g.,

news articles) vs. more local patterns (e.g., specific sections of a legal document)?

71/72

Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

