

Word Representations & Vector Space Models

Slido: https://app.sli.do/event/o82YTccjg7nq3LoSr4NzPK

Yu Meng

University of Virginia

yumeng5@virginia.edu

Sept 10, 2025

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
- Week 6: Language Modeling with Transformers
- Week 9: Large Language Models (LLMs) & In-context Learning
- Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Reinforcement Learning for LLM Post-Training
- Week 13: LLM Agents + Course Summary
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Why Care About Word Semantics?

- Understanding word meanings helps us build better language models!
- Recall the example from N-gram lectures:

$$p(\text{"cat"}|\text{"the"}) = \frac{2}{3}, \quad p(\text{"mat"}|\text{"the"}) = \frac{1}{3},$$

- Sparsity: many valid bigram counts are zero count-based measures do not account for word semantics!
- If we know "cat" is semantically similar to "dog", then $p(\text{"dog"}|\text{"the"}) \approx p(\text{"cat"}|\text{"the"})$

(Recap) What Types of Word Semantics Exist in NLP?

- Synonyms: words with similar meanings
 - "happy" & "joyful"
- Antonyms: words with opposite meanings
 - "hot" & "cold"
- Hyponyms & hypernyms: one word is a more specific instance of another
 - "rose" is a hyponym of "flower"
 - "flower" is a hypernym of "rose"
- Polysemy: A single word having multiple related meanings
 - "mouse" can mean small rodents or the device that controls a cursor
- The study of these aspects of word meanings is called **lexical semantics** in linguistics

(Recap) Lemmas

- Lemma: the base or canonical form of a word, from which other forms can be derived
 - "run" "runs" "ran" and "running" all share the lemma "run"
 - "better" and "best" share the lemma "good"
- Lemmatization: reducing words to their lemma
 - Allows models to recognize that different forms of a word carry the same meaning
 - An important pre-processing step in early NLP models
 - Contemporary LLMs (sort of) perform lemmatization through tokenization (later lectures!)

(Recap) Synonyms

- Word that have the same meaning in some or all contexts
- Two words are synonyms if they can be substituted for each other
- Perfect synonym is very rare!
 - Typically, words are slightly different in notions of politeness, connotation, genre/style...
 - "Child" vs. "kid": "child" is often more formal/neutral; "kid" is more informal/casual
 - "Slim" vs. "skinny": "slim" is often more positive in connotation than "skinny"
 - "Big" vs. "Large": "big sister" is a common phrase but "large sister" is not

(Recap) Antonyms

- Words that have opposite meanings
- Gradable antonyms: exist on the ends of a spectrum or scale
 - "Hot" vs. "cold"
 - "Tall" vs. "short"
- Complementary antonyms: the presence of one directly excludes the other
 - "Alive" vs. "dead"
 - "True" vs. "false"
- Relational antonyms: express a relationship between two dependent entities
 - "Teacher" vs. "student"
 - "Buyer" vs. "seller"

(Recap) Hyponyms & Hypernyms

- Describe hierarchical relationships between words based on specificity and generality
- Hypernym is a word that is more general/broader in meaning and can encompass a variety of more specific words
- **Hyponym** is a word that is more specific in meaning and falls under a broader category
- "Vehicle" is a hypernym for "car" "bicycle" "airplane" "boat" etc.
- "Car" "bicycle" "airplane" "boat" are hyponyms of "vehicle"
- Hypernym/hyponym relationship is usually transitive
 - A is a hypernym of B; B is a hypernym of C => A is a hypernym of C

(Recap) Polysemy & Senses

- Polysemy: a single word has multiple related meanings
 - "Light": "This bag is light" / "Turn on the light" / "She made a light comment"
- Sense: a particular meaning or interpretation of a word in a given context
- Word relations (e.g., synonyms, antonyms, hypernyms/hyponyms) are defined between word senses!
- Word sense disambiguation (WSD): determine which sense of a word is being used in a specific context
 - She went to the bank to deposit money
 - She lives by the river bank
- WSD can be challenging especially when the context is short/insufficient
 - Is the query "mouse info" looking for a pet or a tool?

(Recap) Word Sense Disambiguation

WSD can be an interesting/challenging test case even for the strong (multimodal) LLMs

Image generated by Nano Banana under the user prompt: "generate an image of a baseball player caring for his bat in the cave where he lives with all the other bats"

10/52

(Recap) Word Similarity

- Most words may not have many perfect synonyms, but usually have lots of similar words
 - "cat" is not a synonym of "dog", but they are similar in meaning

vanish	disappear	9.8
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

Word similarity (on a scale from 0 to 10) manually annotated by humans

We'll introduce word embeddings to automatically learn word similarity next week!

(Recap) Word Relatedness & Semantic Field

- Word relatedness: the meaning of words can be related in ways other than similarity
 - Functional relationship: "doctor" and "hospital" doctors work in hospitals
 - Thematic relationship: "bread" and "butter" often used together in the context of food
 - Conceptual relationship: "teacher" and "chalkboard" both part of the educational context
- **Semantic field**: a set of words which cover a particular semantic domain and bear structured relations with each other
 - Semantic field of "houses": door, roof, kitchen, family, bed...
 - Semantic field of "restaurants": waiter, menu, plate, food, chef...
 - Semantic field of "hospitals": surgeon, nurse, anesthetic, scalpel...

(Recap) Connotation

- Subjective/cultural/emotional associations that words carry beyond their literal meanings
 - Youthful (positive) vs. childish (negative)
 - Confident (positive) vs. arrogant (negative)
 - Economical (positive) vs. cheap (negative)
- Connotation can be described via three dimensions:
 - Valence: the pleasantness of the stimulus
 - Arousal: the intensity of emotion provoked by the stimulus
 - Dominance: the degree of control exerted by the stimulus

(Recap) Connotation

- Valence: the pleasantness of the stimulus
 - High: "happy" / "satisfied"; low: "unhappy" / "annoyed"
- Arousal: the intensity of emotion provoked by the stimulus
 - High: "excited"; low: "calm"
- Dominance: the degree of control exerted by the stimulus
 - High: "controlling"; low: "influenced"

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

Earliest work on representing words with multi-dimensional vectors!

(Recap) WordNet

- Word semantics is complex (multiple senses, various relations)!
- How did people represent word senses and relations in early NLP developments?
- WordNet: A manually curated large lexical database
- Three separate databases: one each for nouns, verbs and adjectives/adverbs
- Each database contains a set of lemmas, each one annotated with a set of senses
- Synset (synonym set): The set of near-synonyms for a sense
- Word relations (hypernym, hyponym, antonym) defined between synsets

(Recap) WordNet Relations

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$breakfast^1 ightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 ightarrow lunch^1$
Instance Hypernym	Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Instance Hyponym	Has-Instance	From concepts to their instances	$composer^1 \rightarrow Bach^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 ightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follower^1$
Derivation		Lemmas w/same morphological root	$destruction^1 \iff destro$

Noun relations

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From events to subordinate event	$walk^1 o stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 ightarrow sleep^1$
Antonym	Semantic opposition between lemmas	$increase^1 \iff decrease^1$

Verb relations

(Recap) WordNet as a Graph

(Recap) WordNet Demo

Category	Unique Strings
Noun	117798
Verb	11529
Adjective	22479
Adverb	4481

Figure source: https://lm-class.org/lectures/04%20-%20word%20embeddings.pdf

Word to search for: light Search WordNet
Display Options: (Select option to change) Change Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"
Noun
 S: (n) light, visible light, visible radiation ((physics) electromagnetic radiation that can produce a visual sensation) "the light was filtered through a soft glass window" direct hyponym full hyponym domain category direct hypernym inherited hypernym sister term part holonym derivationally related form S: (n) light, light source (any device serving as a source of illumination) "he stopped the car and turned off the lights" S: (n) light (a particular perspective or aspect of a situation) "although he saw it in a different light, he still did not understand" S: (n) light (a particular perspective or aspect of a situation) "although he saw it in a different light, he still did not understand" S: (n) light (a particular perspective or aspect of a situation) "although he saw it in a different light, he still did not understand" S: (n) light (an illuminated area) "he stepped into the light" direct hypernym inherited hypernym sister term derivationally related form S: (n) light, illumination (a condition of spiritual awareness; divine illumination) "follow God's light" S: (n) light, lightness (the visual effect of illumination on objects or scenes as created in pictures) "he could paint the lightest light and the darkest dark"
 S: (n) light (a person regarded very fondly) "the light of my life" S: (n) light, lighting (having abundant light or illumination) "they played as long as it was light"; "as long as the lighting was good"
 S: (n) light (mental understanding as an enlightening experience) "he finally saw the light"; "can you shed light on this problem?" S: (n) sparkle, twinkle, spark, light (merriment expressed by a brightness or
gleam or animation of countenance) "he had a sparkle in his eye"; "there's a perpetual twinkle in his eyes" • S: (n) light (public awareness) "it brought the scandal to light"
2. (ii) ingite (public awareness) it brought the scandar to light

(Recap) WordNet for Word Sense Disambiguation

- All words WSD task: map all input words (nouns/verbs/adjectives/adverbs) to WordNet senses
- Strong baseline: map to the first sense in WordNet (most frequent)
- Modern approaches: sequence modeling architectures (later lectures!)

(Recap) WordNet Limitations

- Require significant efforts to construct and maintain/update
 - Hard to keep up with rapidly evolving language usage
- Limited coverage of domain-specific terms & low-resource language
 - No coverage of specialized, domain-specific terms (e.g., medical, legal, or technical)
- Only support individual words and their meanings
 - Do not account for idiomatic expressions, phrasal verbs, or collocations

A more automatic, scalable, and contextualized word semantic learning approach is needed!

Agenda

- Introduction to Word Senses & Semantics
- Classic Word Representations
- Vector Space Model Basics

Motivation: Representing Texts with Vectors

Word similarity computation is important for understanding semantics

Word similarity (on a scale from 0 to 10) manually annotated by humans

vanish	disappear	9.8
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

Word semantics can be multi-faceted

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

How to represent words numerically? Using multi-dimensional vectors!

Vector Semantics

- Represent a word as a point in a multi-dimensional semantic space
- A desirable vector semantic space: words with similar meanings are nearby in space

```
not good
                                                         bad
to
      by
                                                dislike
                                                              worst
                                               incredibly bad
that
       now
                     are
               you
 than
         with
                                        incredibly good
                            very good
                    amazing
                                       fantastic
                                                wonderful
                 terrific
                                    nice
                                   good
```

2D visualization of a desirable high-dimensional vector semantic space

University of Virginia

Vector Space Basics

- Vector notation: an N-dimensional vector $oldsymbol{v} = [v_1, v_2, \dots, v_N] \in \mathbb{R}^N$
- Vector dot product/inner product:

dot product
$$(\boldsymbol{v}, \boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{i=1}^N v_i w_i$$

Vector length/norm:

$$|oldsymbol{v}| = \sqrt{oldsymbol{v} \cdot oldsymbol{v}} = \sqrt{\sum_{i=1}^N v_i^2}$$

 $|m{v}| = \sqrt{m{v} \cdot m{v}} = \sqrt{\sum_{i=1}^N v_i^2}$ Other (less commonly-used) vector norms: Manhattan norm, p-norm, infinity norm...

Cosine similarity between vectors:

$$\cos(\boldsymbol{v}, \boldsymbol{w}) = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}||\boldsymbol{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Vector Space Basics: Example

- Consider two 4-dimensional vectors $\,m{v}=[1,0,1,0]\in\mathbb{R}^4\,$ $\,m{w}=[0,1,1,0]\in\mathbb{R}^4\,$
- Vector dot product/inner product:

$$oldsymbol{v} \cdot oldsymbol{w} = \sum_{i=1}^N v_i w_i = 1$$

Vector length/norm:

$$|m{v}| = \sqrt{\sum_{i=1}^N v_i^2} = \sqrt{2} \quad |m{w}| = \sqrt{\sum_{i=1}^N w_i^2} = \sqrt{2}$$

Cosine similarity between vectors:

$$\cos(oldsymbol{v},oldsymbol{w}) = rac{oldsymbol{v}\cdotoldsymbol{w}}{|oldsymbol{v}||oldsymbol{w}|} = rac{1}{2}$$

Vector Similarity

- Cosine similarity is the most commonly used metric for similarity measurement
 - Symmetric: $cos(\boldsymbol{v}, \boldsymbol{w}) = cos(\boldsymbol{w}, \boldsymbol{v})$
 - Not influenced by vector length
 - Has a normalized range: [-1, 1]
 - Intuitive geometric interpretation

Cosine function values under different angles

How to Represent Words as Vectors?

- Given a vocabulary $\mathcal{V} = \{ \mathrm{good}, \mathrm{feel}, \mathrm{I}, \mathrm{sad}, \mathrm{cats}, \mathrm{have} \}$
- Most straightforward way to represent words as vectors: use their indices
- One-hot vector: only one high value (1) and the remaining values are low (0)
- Each word is identified by a unique dimension

$$egin{aligned} oldsymbol{v}_{
m good} &= [1,0,0,0,0,0] \ oldsymbol{v}_{
m feel} &= [0,1,0,0,0,0] \ oldsymbol{v}_{
m I} &= [0,0,1,0,0,0] \ oldsymbol{v}_{
m sad} &= [0,0,0,1,0,0] \ oldsymbol{v}_{
m cats} &= [0,0,0,0,1,0] \ oldsymbol{v}_{
m have} &= [0,0,0,0,0,1] \end{aligned}$$

Represent Sequences by Word Occurrences

Consider the mini-corpus with three documents

$$d_1$$
 = "I feel good"
 d_2 = "I feel sad"
 d_3 = "I have cats"

$$egin{aligned} oldsymbol{v}_{
m good} &= [1,0,0,0,0,0] \ oldsymbol{v}_{
m feel} &= [0,1,0,0,0,0] \ oldsymbol{v}_{
m I} &= [0,0,1,0,0,0] \ oldsymbol{v}_{
m sad} &= [0,0,0,1,0,0] \ oldsymbol{v}_{
m cats} &= [0,0,0,0,1,0] \ oldsymbol{v}_{
m have} &= [0,0,0,0,0,1] \end{aligned}$$

• Straightforward way of representing documents: look at which words are present

$$egin{aligned} oldsymbol{v}_{d_1} &= [1,1,1,0,0,0] \ oldsymbol{v}_{d_2} &= [0,1,1,1,0,0] \ oldsymbol{v}_{d_3} &= [0,0,1,0,1,1] \end{aligned}$$

Document vector similarity

$$egin{aligned} \cos(m{v}_{d_1},m{v}_{d_2}) &= rac{2}{3} \ \cos(m{v}_{d_1},m{v}_{d_3}) &= rac{1}{3} \ \cos(m{v}_{d_2},m{v}_{d_3}) &= rac{1}{3} \end{aligned}$$

Term-Document Matrix

- With larger text collections, word frequencies in documents entail rich information
- Consider the four plays by Shakespeare and obtain the word frequency statistics
- Look at 4 manually-picked words: "battle" "good" "fool" "wit"

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

There are many more words!

Document vector representation with word frequencies:

$$oldsymbol{v}_{d_1} = [1, 114, 36, 20] \ oldsymbol{v}_{d_2} = [0, 80, 58, 15] \ oldsymbol{v}_{d_3} = [7, 62, 1, 2] \ oldsymbol{v}_{d_4} = [13, 89, 4, 3]$$

Document Similarity

Document vector representation with word frequencies:

$$oldsymbol{v}_{d_1} = [1, 114, 36, 20] \quad oldsymbol{v}_{d_2} = [0, 80, 58, 15] \quad oldsymbol{v}_{d_3} = [7, 62, 1, 2] \quad oldsymbol{v}_{d_4} = [13, 89, 4, 3]$$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

- "fool" and "wit" occur much more frequently in d_1 and d_2 than d_3 and d_4
- d_1 and d_2 are comedies $\cos(oldsymbol{v}_{d_1},oldsymbol{v}_{d_2})=0.95$ $\cos(oldsymbol{v}_{d_2},oldsymbol{v}_{d_3})=0.81$
- Word frequencies in documents do reflect the semantic similarity between documents!

Words Represented with Documents

- "Battle": "the kind of word that occurs in Julius Caesar and Henry V (history plays)"
- "Fool": "the kind of word that occurs in comedies"

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good fool	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Represent words using their co-occurrence counts with documents:

$$egin{aligned} m{v}_{
m battle} &= [1, 0, 7, 13] \ m{v}_{
m good} &= [114, 80, 62, 89] \ m{v}_{
m fool} &= [36, 58, 1, 4] \ m{v}_{
m wit} &= [20, 15, 2, 3] \end{aligned}$$

Words Represented with Documents

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

$$m{v}_{
m battle} = [1,0,7,13] \ m{v}_{
m battle} = [1,0,0,0] \ m{v}_{
m good} = [114,80,62,89] \ m{v}_{
m fool} = [36,58,1,4] \ m{v}_{
m wit} = [20,15,2,3] \ m{v}_{
m wit} = [20,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m ool} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m ool} = [0,0,0,1] \ m{v}_{
m wit} = [0,0,0,1] \ m{v}_{
m ool} = [0,0,0,0] \ m{v}_{
m ool} = [0,0,0] \ m{v}_{
m ool} = [0,0] \ m{v}_{
m ool} =$$

Document co-occurrence statistics provide coarse-grained contexts

Fine-Grained Contexts: Word-Word Matrix

Instead of using documents as contexts for words, we can also use words as contexts

4 words to the left center word

4 words to the right

is traditionally followed by cherry often mixed, such as **strawberry** computer peripherals and personal digital a computer. This includes **information** available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually

Fine-Grained Contexts: Word-Word Matrix

Count how many times words occur in a ±4 word window around the center word context word

center word

	aardvark		computer	data	result	pie	sugar	
cherry	0	•••	2	8	9	442	25	•••
strawberry	0	•••	0	0	1	60	19	•••
digital	0		1670	1683	85	5	4	•••
information	0	•••	3325	3982	378	5	13	•••

Counts derived from the Wikipedia corpus

Word Similarity Based on Word Co-occurrence

Word-word matrix with ±4 word window

	aardvark		computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	•••
strawberry	0		0	0	1	60	19	•••
digital	0		1670	1683	85	5	4	•••
information	0		3325	3982	378	5	13	•••

- "digital" and "information" both co-occur with "computer" and "data" frequently
- "cherry" and "strawberry" both co-occur with "pie" and "sugar" frequently
- Word co-occurrence statistics reflect word semantic similarity!
- Issues? Sparsity!

Is Raw Frequency A Good Representation?

- On the one hand, high frequency can imply semantic similarity
- On the other hand, there are words with universally high frequencies

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good fool	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

 Can we reweight the raw frequencies so that distinctively high frequency terms are highlighted?

Term Frequency (TF)

- A word appearing 100 times in a document doesn't make it 100 times more likely to be relevant to the meaning of the document
- Instead of using the raw counts, we squash the counts with log scale

$$TF(w,d) = \begin{cases} 1 + \log_{10} \operatorname{count}(w,d) & \operatorname{count}(w,d) > 0\\ 0 & \text{otherwise} \end{cases}$$

Document Frequency (DF)

- Motivation: Give a higher weight to words that occur only in a few documents
 - Terms that are limited to a few documents are more discriminative
 - Terms that occur frequently across the entire collection aren't as helpful
- Document frequency (DF): count how many documents a word occurs in

$$\mathrm{DF}(w) = \sum_{i=1}^N \mathbb{1}(w \in d_i)$$
 Evaluates to 1 if w occurs in d_i otherwise evaluates to 0

DF is NOT defined to be the total count of a word across all documents (collection frequency)!

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

Inverse Document Frequency (IDF)

We want to emphasize discriminative words (with low DF)

Inverse document frequency (IDF): total number of documents (N) divided by DF, in

log scale

$$IDF(w) = \log_{10} \left(\frac{N}{DF(w)} \right)$$

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

DF & IDF statistics in the Shakespeare corpus

TF-IDF Weighting

The TF-IDF weighted value characterizes the "salience" of a term in a document

$$TF-IDF(w, d) = TF(w, d) \times IDF(w)$$

TF-IDF weighted

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.246	0	0.454	0.520
good	0	0	0	0
fool	0.030	0.033	0.0012	0.0019
wit	0.085	0.081	0.048	0.054

$$\cos(\boldsymbol{v}_{d_2}, \boldsymbol{v}_{d_3}) = 0.10 \quad \cos(\boldsymbol{v}_{d_3}, \boldsymbol{v}_{d_4}) = 0.99$$

Raw counts

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

$$\cos(\boldsymbol{v}_{d_2}, \boldsymbol{v}_{d_3}) = 0.81 \quad \cos(\boldsymbol{v}_{d_3}, \boldsymbol{v}_{d_4}) = 0.99$$

MIVERSITY VIRGINIA

How to Define Documents?

- The concrete definition of documents is usually open to different design choices
 - Wikipedia article/page
 - Shakespeare play
 - Book chapter/section
 - Paragraph/sentence
 - · ...
- Larger documents provide broader context; smaller ones provide focused insights
- Depends on the analysis need: interested in global trends across documents (e.g., news articles) vs. more local patterns (e.g., specific sections of a legal document)?

Probability-Based Weighting

- TF-IDF weighting scheme is based on heuristics
- Can we weigh the raw counts with probabilistic approaches?
- Intuition: the association between two words can be reflected by how much they cooccur more than by chance

context word

summed counts

center word

	computer	data	result	pie	sugar	count(w)
cherry	\sim 2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

summed counts

Word Association Based on Probability

- When two words co-occur by chance, we expect their probabilities to satisfy the independence assumption: $p(w_1,w_2)=p(w_1)p(w_2)$
- When $p(w_1,w_2)>p(w_1)p(w_2)$, two words co-occur more often than would be expected by chance
- How to develop a probabilistic metric to characterize this association?

MIVERSITY VIRGINIA

Pointwise Mutual Information (PMI)

 PMI compares the probability of two words co-occurring with the probabilities of the words occurring independently

$$\mathrm{PMI} = \log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)} = \log_2 \frac{\#(w_1, w_2) \cdot N}{\#(w_1)\#(w_2)} \quad \text{N: Total word counts}$$

- PMI = 0: Two words co-occur as expected by chance => no particular association
- PMI > 0: Two words co-occur more often than by chance => the higher the PMI, the stronger the association between the words
- PMI < 0: Two words co-occur less often than expected by chance => negative associations; not much actionable insight
- Positive PMI (PPMI): replaces all negative PMI values with zero

PPMI =
$$\max \left(\log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}, 0 \right)$$

PPMI Example

Raw counts

	computer	data	result	pie	sugar
cherry	2	8	9	442	25
strawberry	0	0	1	60	19
digital	1670	1683	85	5	4
information	3325	3982	378	5	13

PPMI-weighted matrix

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

Issue: biased toward infrequent events (rare words tend to have very high PMI values)

PPMI with Power Smoothing

Power smoothing: Manually boost low probabilities by raising to a power α

$$PPMI = \max\left(\log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}, 0\right)$$

Original:
$$p(w) = \frac{\#(w)}{\sum_{w' \in \mathcal{V}} \#(w')}$$

Power smoothed:
$$p_{\alpha}(w) = \frac{\#(w)^{\alpha}}{\sum_{w' \in \mathcal{V}} \#(w')^{\alpha}}$$

PPMI with Add-k Smoothing

Another way of increasing the counts of rare occurrences is to apply add-k smoothing

	computer	data	result	pie	sugar
cherry	2	8	9	442	25
strawberry	0	0	1	60	19
digital	1670	1683	85	5	4
information	3325	3982	378	5	13

Add a constant k to all counts

• The larger the *k* (*k* can be larger than 1), the more we boost the probability of rare occurrences

MIVERSITY VIRGINIA

TF-IDF vs. PMI Weighting

- TF-IDF
 - Measures the importance of a word in a document relative to other documents (corpus)
 - Context granularity: document level
 - Based on heuristics
 - High TF-IDF = frequent in a document but infrequent across the corpus
- PMI:
 - Measures the strength of association between two words
 - Context granularity: word pair level (usually based on local context windows)
 - Based on probability assumptions
 - High PMI = words co-occur more often than expected by chance, a strong association

Summary: Word Semantics & Senses

- Understanding word semantics & senses help us build better language models!
- Word semantics is complex
 - Polysemy: a single word having multiple meanings
 - Multi-faceted: word meanings entail various aspects (e.g., valence, arousal, dominance)
- Many types of word relations: synonyms, antonyms, hyponyms & hypernyms...
- Word relations are usually not binarized (e.g., perfect synonyms are rare); word similarity is usually a more flexible measure

Summary: Classic Word Representations

- Large-scale lexical databases (WordNet) were constructed in early NLP developments
- WordNet consists of manually curated synsets linked by relation edges
- WordNet can be used as a database for word sense disambiguation
- WordNet has significant limitations:
 - Require significant efforts to construct and maintain/update
 - Limited coverage of domain-specific terms & low-resource language
 - Only support individual words and their meanings

Summary: Vector Space Models

- Vector semantic space: use vector representations to reflect word semantics
- Cosine similarity is the most-commonly used metric for vector similarity
- Word-document & word-word co-occurrence statistics provide valuable semantic information – count-based vector representations work decently well
- Raw counts are not good representations (e.g., biased to universally frequent terms)
- TF-IDF highlights the important words in a document relative to other documents
- PMI measures the strength of association between two words based on probabilistic (independence) assumptions

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu