
Yu Meng
University of Virginia

yumeng5@virginia.edu

Word Embeddings

Sept 15, 2025

Slido: https://app.sli.do/event/1Bb81igx8eeAatCaEvtUTG

mailto:yumeng5@virginia.edu
https://app.sli.do/event/1Bb81igx8eeAatCaEvtUTG


Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
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(Recap) Why Care About Word Semantics?

• Understanding word meanings helps us build better language models!
• Recall the example from N-gram lectures:

• Sparsity: many valid bigram counts are zero – count-based measures do not account 
for word semantics!

• If we know “cat” is semantically similar to “dog”, then
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(Recap) What Types of Word Semantics Exist in NLP?

• Synonyms: words with similar meanings
§ “happy” & “joyful”

• Antonyms: words with opposite meanings
§ “hot” & “cold”

• Hyponyms & hypernyms: one word is a more specific instance of another
§ “rose” is a hyponym of “flower”
§ “flower” is a hypernym of “rose”

• Polysemy: A single word having multiple related meanings
§ “mouse” can mean small rodents or the device that controls a cursor

• The study of these aspects of word meanings is called lexical semantics in linguistics
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(Recap) Polysemy & Senses

• Polysemy: a single word has multiple related meanings
§ “Light”: “This bag is light” / “Turn on the light” / “She made a light comment”

• Sense: a particular meaning or interpretation of a word in a given context
• Word relations (e.g., synonyms, antonyms, hypernyms/hyponyms) are defined 

between word senses!

• Word sense disambiguation (WSD): determine which sense of a word is being used in 
a specific context
§ She went to the bank to deposit money
§ She lives by the river bank

• WSD can be challenging especially when the context is short/insufficient
§ Is the query “mouse info” looking for a pet or a tool?
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(Recap) Word Similarity

• Most words may not have many perfect synonyms, but usually have lots of similar
words
§ “cat” is not a synonym of “dog”, but they are similar in meaning

• We’ll introduce word embeddings to automatically learn word similarity next week!

Word similarity (on a scale from 0 to 10)
manually annotated by humans

Figure source: https://web.stanford.edu/~jurafsky/slp3/5.pdf 6/71
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(Recap) Word Relatedness & Semantic Field 

• Word relatedness: the meaning of words can be related in ways other than similarity
§ Functional relationship: “doctor” and “hospital” – doctors work in hospitals
§ Thematic relationship: “bread” and “butter” – often used together in the context of food
§ Conceptual relationship: “teacher” and “chalkboard” – both part of the educational context

• Semantic field: a set of words which cover a particular semantic domain and bear 
structured relations with each other
§ Semantic field of “houses”: door, roof, kitchen, family, bed…
§ Semantic field of “restaurants”: waiter, menu, plate, food, chef…
§ Semantic field of “hospitals”: surgeon, nurse, anesthetic, scalpel…

7/71



(Recap) Connotation

• Subjective/cultural/emotional associations that words carry beyond their literal 
meanings
§ Youthful (positive) vs. childish (negative)
§ Confident (positive) vs. arrogant (negative)
§ Economical (positive) vs. cheap (negative)

• Connotation can be described via three dimensions:
§ Valence: the pleasantness of the stimulus
§ Arousal: the intensity of emotion provoked by the stimulus
§ Dominance: the degree of control exerted by the stimulus

8/71



(Recap) Connotation

• Valence: the pleasantness of the stimulus
§ High: “happy” / “satisfied”; low: “unhappy” / “annoyed”

• Arousal: the intensity of emotion provoked by the stimulus
§ High: “excited”; low: “calm”

• Dominance: the degree of control exerted by the stimulus
§ High: “controlling”; low: “influenced”

Earliest work on representing words 
with multi-dimensional vectors!

Figure source: https://web.stanford.edu/~jurafsky/slp3/5.pdf 9/71
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(Recap) WordNet

• Word semantics is complex (multiple senses, various relations)!
• How did people represent word senses and relations in early NLP developments?
• WordNet: A manually curated large lexical database

• Three separate databases: one each for nouns, verbs and adjectives/adverbs
• Each database contains a set of lemmas, each one annotated with a set of senses
• Synset (synonym set): The set of near-synonyms for a sense
• Word relations (hypernym, hyponym, antonym) defined between synsets

WordNet: https://wordnet.princeton.edu/ 10/71
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(Recap) WordNet Relations

Noun relations

Verb relations
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(Recap) WordNet as a Graph

Figure source: https://academic.oup.com/edited-volume/42643/chapter/358151233 12/71
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(Recap) WordNet Limitations

• Require significant efforts to construct and maintain/update
§ Hard to keep up with rapidly evolving language usage

• Limited coverage of domain-specific terms & low-resource language
§ No coverage of specialized, domain-specific terms (e.g., medical, legal, or technical)

• Only support individual words and their meanings
§ Do not account for idiomatic expressions, phrasal verbs, or collocations

A more automatic, scalable, and contextualized word
semantic learning approach is needed!
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(Recap) Motivation: Representing Texts with Vectors

• Word similarity computation is important for understanding semantics

• How to represent words numerically? Using multi-dimensional vectors!

Figure source: https://web.stanford.edu/~jurafsky/slp3/5.pdf

Word similarity (on a scale from 0 to 10)
manually annotated by humans Word semantics can be multi-faceted
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(Recap) Vector Semantics

• Represent a word as a point in a multi-dimensional semantic space
• A desirable vector semantic space: words with similar meanings are nearby in space

2D visualization of a desirable high-dimensional vector semantic space
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(Recap) Vector Space Basics

• Vector notation: an N-dimensional vector
• Vector dot product/inner product: 

• Vector length/norm:

• Cosine similarity between vectors: 

Other (less commonly-used) vector norms:
Manhattan norm, p-norm, infinity norm…
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(Recap) Vector Similarity

• Cosine similarity is the most commonly used metric for similarity measurement
§ Symmetric:
§ Not influenced by vector length
§ Has a normalized range: [-1, 1]
§ Intuitive geometric interpretation

Figure source: https://www.learndatasci.com/glossary/cosine-similarity/

Cosine function values
under different angles
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(Recap) How to Represent Words as Vectors?

• Given a vocabulary 
• Most straightforward way to represent words as vectors: use their indices
• One-hot vector: only one high value (1) and the remaining values are low (0)

• Each word is identified by a unique dimension

18/71



(Recap) Represent Sequences by Word Occurrences

• Consider the mini-corpus with three documents

• Straightforward way of representing documents: look at which words are present

Document vector similarity
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(Recap) Document Similarity

• Document vector representation with word frequencies:

• “fool” and “wit” occur much more frequently in 𝑑! and 𝑑" than 𝑑# and 𝑑$
• 𝑑! and 𝑑" are comedies
• Word frequencies in documents do reflect the semantic similarity between documents!
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(Recap) Words Represented with Documents

• “Battle”: “the kind of word that occurs in Julius Caesar and Henry V (history plays)”
• “Fool”: “the kind of word that occurs in comedies”

• Represent words using their co-occurrence counts with documents:
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(Recap) Words Represented with Documents

Document co-occurrence statistics provide coarse-grained contexts

Previously:
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(Recap) Fine-Grained Contexts: Word-Word Matrix

Instead of using documents as contexts for words, we can also use words as contexts

center word4 words to the left 4 words to the right
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(Recap) Fine-Grained Contexts: Word-Word Matrix

Count how many times words occur in a ±4 word window around the center word

center word

context word

Counts derived from the Wikipedia corpus

24/71



(Recap) Word Similarity Based on Word Co-occurrence

• Word-word matrix with ±4 word window

• “digital” and “information” both co-occur with “computer” and “data” frequently
• “cherry” and “strawberry” both co-occur with “pie” and “sugar” frequently

• Word co-occurrence statistics reflect word semantic similarity!
• Issues? Sparsity!
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(Recap) Is Raw Frequency A Good Representation?

• On the one hand, high frequency can imply semantic similarity
• On the other hand, there are words with universally high frequencies

• Can we reweight the raw frequencies so that distinctively high frequency terms are
highlighted?
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(Recap) Term Frequency (TF)

• A word appearing 100 times in a document doesn’t make it 100 times more likely to 
be relevant to the meaning of the document

• Instead of using the raw counts, we squash the counts with log scale
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(Recap) Document Frequency (DF)

• Motivation: Give a higher weight to words that occur only in a few documents
§ Terms that are limited to a few documents are more discriminative
§ Terms that occur frequently across the entire collection aren’t as helpful

• Document frequency (DF): count how many documents a word occurs in

• DF is NOT defined to be the total count of a word across all documents (collection
frequency)!

Evaluates to 1 if 𝑤 occurs in 𝑑!
otherwise evaluates to 0

12 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf
tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise
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(Recap) Inverse Document Frequency (IDF)

• We want to emphasize discriminative words (with low DF)
• Inverse document frequency (IDF): total number of documents (N) divided by DF, in

log scale

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

DF & IDF statistics in the 
Shakespeare corpus
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(Recap) TF-IDF Weighting

The TF-IDF weighted value characterizes the “salience” of a term in a document

Raw counts

TF-IDF weighted
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(Recap) How to Define Documents?

• The concrete definition of documents is usually open to different design choices
§ Wikipedia article/page
§ Shakespeare play
§ Book chapter/section
§ Paragraph/sentence
§ …

• Larger documents provide broader context; smaller ones provide focused insights
• Depends on the analysis need: interested in global trends across documents (e.g., 

news articles) vs. more local patterns (e.g., specific sections of a legal document)?
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(Recap) Probability-Based Weighting

• TF-IDF weighting scheme is based on heuristics
• Can we weigh the raw counts with probabilistic approaches?
• Intuition: the association between two words can be reflected by how much they co-

occur more than by chance

Raw counts

center word

context word

summed counts

summed counts
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(Recap) Word Association Based on Probability

• In probability theory, when two random variables A & B are independent, we have

• When two words co-occur by chance, we expect their probabilities to satisfy the
independence assumption:

• When , two words co-occur more often than would be 
expected by chance

• How to develop a probabilistic metric to characterize this association?

Joint probability
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(Recap) Pointwise Mutual Information (PMI)

• PMI compares the probability of two words co-occurring with the probabilities of the 
words occurring independently

• PMI = 0: Two words co-occur as expected by chance => no particular association
• PMI > 0: Two words co-occur more often than by chance => the higher the PMI, the 

stronger the association between the words
• PMI < 0: Two words co-occur less often than expected by chance => negative

associations; not much actionable insight
• Positive PMI (PPMI): replaces all negative PMI values with zero

N: Total word counts
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(Recap) PPMI Example

Issue: biased toward infrequent events (rare words tend to have very high PMI values)

PPMI-weighted
matrix

Raw counts
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Power smoothing: Manually boost low probabilities by raising to a power 𝛼

PPMI with Power Smoothing

Original:

Power smoothed:
(𝛼 < 1)

𝛼 = 0.75
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PPMI with Add-k Smoothing

• Another way of increasing the counts of rare occurrences is to apply add-k smoothing

• The larger the k (k can be larger than 1), the more we boost the probability of rare 
occurrences

Add a constant k to all counts
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TF-IDF vs. PMI Weighting

• TF-IDF
§ Measures the importance of a word in a document relative to other documents (corpus)
§ Context granularity: document level
§ Based on heuristics
§ High TF-IDF = frequent in a document but infrequent across the corpus

• PMI:
§ Measures the strength of association between two words
§ Context granularity: word pair level (usually based on local context windows)
§ Based on probability assumptions
§ High PMI = words co-occur more often than expected by chance, a strong association
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Summary: Word Semantics & Senses

• Understanding word semantics & senses help us build better language models!
• Word semantics is complex

§ Polysemy: a single word having multiple meanings
§ Multi-faceted: word meanings entail various aspects (e.g., valence, arousal, dominance)

• Many types of word relations: synonyms, antonyms, hyponyms & hypernyms…
• Word relations are usually not binarized (e.g., perfect synonyms are rare); word

similarity is usually a more flexible measure
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Summary: Classic Word Representations

• Large-scale lexical databases (WordNet) were constructed in early NLP developments
• WordNet consists of manually curated synsets linked by relation edges
• WordNet can be used as a database for word sense disambiguation

• WordNet has significant limitations:
§ Require significant efforts to construct and maintain/update
§ Limited coverage of domain-specific terms & low-resource language
§ Only support individual words and their meanings
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Summary: Vector Space Models

• Vector semantic space: use vector representations to reflect word semantics
• Cosine similarity is the most-commonly used metric for vector similarity
• Word-document & word-word co-occurrence statistics provide valuable semantic

information – count-based vector representations work decently well
• Raw counts are not good representations (e.g., biased to universally frequent terms)
• TF-IDF highlights the important words in a document relative to other documents 
• PMI measures the strength of association between two words based on probabilistic

(independence) assumptions
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Agenda

• Sparse vs. Dense Vectors
• Word Embeddings: Overview
• Word2Vec Training

• Word Embedding Properties & Evaluation
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Count-based Vector Limitations

• Count-based vectors are sparse (lots of zeros)
§ Zero values in the vectors do not carry any semantics

• Count-based vectors are long (many dimensions)
§ Vector dimension = vocabulary size (usually > 10K)
§ “Curse of dimensionality”: metrics (e.g. cosine) become less meaningful in high dimensions

Many more words!
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Dense Vectors

• More efficient & effective vector representations?
• Dense vectors!

§ Most/all dimensions in the vectors are non-zero
§ Usually floating-point numbers; each dimension could be either positive or negative
§ Dimension much smaller than sparse vectors (i.e., << 10K)

• Also called “distributed representations”
§ The information is distributed across multiple units/dimensions
§ Each unit/dimension participates in representing multiple pieces of information
§ Analogous to human brains: the brain stores and processes information in a distributed 

manner: instead of having a single neuron/region represent a concept, information is 
represented across a network of neurons
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Dense Vector Example

• One dimension might (partly) contribute to distinguishing animals (“cat” “dog”) from 
vehicles (“car” “truck”)

• One dimension might (partly) capture some aspect of size

• Another might (partly) represent formality or emotional tone
• …
• Each of these dimensions is not exclusively responsible for any single concept, but 

together, they combine to form a rich and nuanced representation of words!

Only showing two decimal places
(typically they are floating point numbers!)

45/71



Dense Vectors Pros & Cons

• (+) Compactness: Represent a large number of concepts using fewer resources (richer
semantic information per dimension); easier to use as features to neural networks

• (+) Robustness: Information is spread across many dimensions => more robust to the 
randomness/noise in individual units

• (+) Scalability & Generalization: Efficiently handle large-scale data and generalize to
various applications

• (-) Lack of Interpretability: (Unlike sparse vectors) difficult to assign a clear meaning to 
individual dimensions, making model interpretation challenging
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Agenda

• Sparse vs. Dense Vectors
• Word Embeddings: Overview
• Word2Vec Training

• Word Embedding Properties & Evaluation
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Distributional Hypothesis

• Words that occur in similar contexts tend to have similar meanings
• A word’s meaning is largely defined by the company it keeps (its context)
• Example: suppose we don’t know the meaning of “Ong choy” but see the following:

§ Ong choy is delicious sautéed with garlic
§ Ong choy is superb over rice
§ … ong choy leaves with salty sauces

• And we’ve seen the following contexts:
§ … spinach sautéed with garlic over rice
§ … chard stems and leaves are delicious
§ … collard greens and other salty leafy greens

• Ong choy = water spinach!

Example source: https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf 48/71
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Word Embeddings: General Idea

• Learn dense vector representations of words based on distributional hypothesis
• Semantically similar words (based on context similarity) will have similar vector

representations

• Embedding: a mapping that takes elements from one space and represents them in a 
different space

2D visualization of a word embedding space
Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 49/71
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Learning Word Embeddings

• Assume a large text collection (e.g., Wikipedia)
• Hope to learn similar word embeddings for words occurring in similar contexts
• Construct a prediction task: use a center word’s embedding to predict its contexts!

• Intuition: If two words have similar embeddings, they will predict similar contexts, 
thus being semantically similar!

sautéed

garlic

rice

salty

leaves

sautéed

garlic

rice

salty

leaves

… …

Predicted contexts Predicted contexts
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Word Embedding Is Self-Supervised Learning

• Self-supervised learning: a model learns to predict parts of its input from other parts 
of the same input

• Self-supervised learning vs. supervised learning:
§ Self-supervised learning: no human-labeled data – the model learns from unlabeled data by 

generating supervision through the structure of the data itself
§ Supervised learning: use human-labeled data – the model learns from human annotated 

input-label pairs

Input: Ong choy is superb over rice
superb

over

rice

Prediction task:

is

Ong choy
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Word Embedding as Input Features

Word embeddings are commonly used as input features to language models

Transformer: https://arxiv.org/pdf/1706.03762

RNN Language Model:
https://web.stanford.edu/class/cs224n/sli
des/cs224n-spr2024-lecture05-rnnlm.pdf 52/71
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Agenda

• Sparse vs. Dense Vectors
• Word Embeddings: Overview
• Word2Vec Training

• Word Embedding Properties & Evaluation
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Word2Vec Overview

• The earliest & most well-known word embedding learning method (published in 2013)
• Two variants: Skip-gram and CBOW (Continuous Bag-of-Words)
• We will mainly cover Skip-gram in this lecture

Word2Vec paper: https://arxiv.org/pdf/1301.3781 54/71
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Word2Vec Setting

• Input: a corpus 𝐷 – the larger, the better!
• Training data: word-context pairs (𝑤, 𝑐) where 𝑤 is a center word, and 𝑐 is a context 

word
§ Each word in the corpus can act as center word
§ Context words = neighboring words of the center word in a local context window (±𝑙 words)

• Parameters to learn: 𝜽 = {𝒗𝒘, 𝒗𝒄} – each word has two vectors (center word
representation & context word representation)

• The center word representations 𝒗𝒘 are usually used as the final word embeddings
• Number of parameters to store: 𝑑×|𝑉|

§ 𝑑 is the embedding dimension; usually 100-300
§ |𝑉| is the vocabulary size; usually > 10K
§ Sparse vector representations will have 𝑉 " parameters!
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Word2Vec Training Data Example

• Input sentence: “there is a cat on the mat”
• Suppose context window size = 2
• Word-context pairs as training data:

§ (there, is), (there, a)
§ (is, there), (is, a), (is, cat)
§ (a, there), (a, is), (a, cat), (a, on)
§ (cat, is), (cat, a), (cat, on), (cat, the)
§ (on, a), (on, cat), (on, the), (on, mat)
§ (the, cat), (the, on), (the, mat)
§ (mat, on), (mat, the)

• “Skip-gram”: skipping over some context words to predict the others!
• Training data completely derived from the raw corpus (no human labels!)

there is a cat on the mat
there is a cat on the mat
there is a cat on the mat
there is a cat on the mat
there is a cat on the mat
there is a cat on the mat
there is a cat on the mat
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Word2Vec Objective (Skip-gram)

• Intuition: predict the contexts words using the center word (semantically similar
center words will predict similar contexts words)

• Objective: using the parameters 𝜽 = {𝒗𝒘, 𝒗𝒄} to maximize the probability of
predicting the context word 𝑐 using the center word 𝑤

• How to parametrize the probability?

Probability expressed as a function
of the model parameters
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Word2Vec Probability Parametrization

• Word2Vec objective:

• Assume the log probability (i.e., logit) is proportional to vector dot product

• Rationale: a larger vector dot product can indicate a higher vector similarity
• Why not use cosine similarity?

§ Cosine similarity is a non-linear function; more complicated to optimize than dot product
§ With advanced optimization techniques, optimizing cosine similarity is more beneficial

(Meng et al.)

Spherical Text Embedding: https://arxiv.org/pdf/1911.01196 58/71
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Word2Vec Parameterized Objective

• Word2Vec objective:

• Assume the log probability (i.e., logit) is proportional to vector dot product

• The final probability distribution is given by the softmax function:

• Word2Vec objective (log-scale):
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Word2Vec Negative Sampling

• Challenges with the original objective:

• Randomly sample a few negative terms from the vocabulary to form a negative set 𝑁
• How to sample negatives? Based on the (power-smoothed) unigram distribution

Sum over the entire vocabulary – expensive!

Rare words get a bit boost in
sampling probability
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Word2Vec Negative Sampling

• Formulate a binary classification task; predict whether (𝑤, 𝑐) is a real context pair:

• Maximize the binary classification probability for real context pairs, and minimize for
negative (random) pairs

Real context pair Negative context pair
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Word2Vec Optimization

• How to optimize the following objective?

• Stochastic gradient descent (SGD)!
• First, initialize parameters 𝜽 = {𝒗𝒘, 𝒗𝒄} with random 𝑑-dimensional vectors
• In each step: update parameters in the direction of the gradient of the objective

(weighted by the learning rate)

Learning rate Loss function

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs2.pdf 62/71
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Word2Vec Hyperparameters

• Word embedding dimension 𝑑 (usually 100-300)
§ Larger 𝑑 provides richer vector semantics
§ Extremely large 𝑑 suffers from inefficiency and curse of dimensionality

• Local context window size 𝑙 (usually 5-10)
§ Smaller 𝑙 learns from immediately nearby words – more syntactic information
§ Bigger 𝑙 learns from longer-ranged contexts – more semantic/topical information

• Number of negative samples 𝑘 (usually 5-10)
§ Larger 𝑘 usually makes training more stable but also more costly

• Learning rate 𝜂 (usually 0.02-0.05)
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Agenda

• Sparse vs. Dense Vectors
• Word Embeddings: Overview
• Word2Vec Training

• Word Embedding Properties & Evaluation
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Word Similarity

• Measure word similarity with cosine similarity between embeddings
• Higher cosine similarity = more semantically close
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Word Similarity Evaluation

• An intrinsic word embedding evaluation
• Measure how well word vector similarity correlates with human judgments
• Example dataset: WordSim353 (353 word pairs with their similarity scores assessed by

humans)

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs2.pdf 66/71
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Correlation Metric

Spearman rank correlation: measure the correlation between two rank variables

Rank by human

<latexit sha1_base64="70hE6NO6sQoYkyVR7OjwEsGlU4Q="></latexit>

r =
Cov[R[X], R[Y ]]

�R[X]�R[Y ]

Covariance

Standard deviations
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Word Analogy

• Word embeddings reflect intuitive semantic and syntactic analogy
• Example: man : woman :: king : ?
• General case: find the word such that a : b :: c : ?

• Find the word that maximizes the cosine similarity
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Word Analogy Evaluation

• Word analogy is another intrinsic word embedding evaluation
• Encompass various types of word relationships
• Usually use accuracy as the metric

Figure source: https://arxiv.org/pdf/1301.3781 69/71
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Extrinsic Evaluation of Word Embeddings

• Word embeddings can be used as input features to task-specific NLP models
• Example 1: Text classification (topic/sentiment classification)

§ Sentence/document embeddings are obtained by applying sequence modeling architectures
on top of word embeddings

§ Classification accuracy is used as the extrinsic metric

• Example 2: Named entity recognition (NER)
§ Find and classify entity names (e.g., person, organization, location) in text
§ Concatenated word embeddings can be used to represent spans of words (entities)
§ Precision/recall/F1 are used as the extrinsic metrics

• Word embedding demo

70/71



Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

