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Overview of Course Contents

* Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
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Reminder

* Project proposal is due today (no late days allowed)!
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(Recap) Word Similarity

Measure word similarity with cosine similarity between embeddings cos(Vy, , Va, )

Higher cosine similarity = more semantically close
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(Recap) Word Similarity Evaluation

* Anintrinsic word embedding evaluation
* Measure how well word vector similarity correlates with human judgments

 Example dataset: WordSim353 (353 word pairs with their similarity scores assessed by
humans)

tiger cat 7.35
book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CcD 1.31
stock jaguar 0.92

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs?2.pdf
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(Recap) Correlation Metric

Spearman rank correlation: measure the correlation between two rank variables

Word1  Word 2 Human (mean) |
tiger cat 7.35
book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CcD 1.31
stock jaguar 0.92

Rank by human
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(Recap) Word Analogy

*  Word embeddings reflect intuitive semantic and syntactic analogy
e Example: man : woman :: king : ? Vqueen ~ Uwoman — Uman + Uking

e General case: find the word suchthata:b::c:?

A

*  Find the word that maximizes the cosine similarity

w = arg max cos(vp — Vg + Ve, Uy ) "\
w/ €V O “~.~* woman
_ (Vb — Vo + V) - Vu king e % @
= arg max N g
w' eV |Vp — Vg + Ve||Vy]| O
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Usually use accuracy as the metric

(Recap) Word Analogy Evaluation

Encompass various types of word relationships

Word analogy is another intrinsic word embedding evaluation

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia | Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

Figure source: https://arxiv.org/pdf/1301.3781
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(Recap) Extrinsic Evaluation of Word Embeddings

*  Word embeddings can be used as input features to task-specific NLP models

* Example 1: Text classification (topic/sentiment classification)

. Sentence/document embeddings are obtained by applying sequence modeling architectures
on top of word embeddings
. Classification accuracy is used as the extrinsic metric

 Example 2: Named entity recognition (NER)
. Find and classify entity names (e.g., person, organization, location) in text
. Concatenated word embeddings can be used to represent spans of words (entities)
. Precision/recall/F1 are used as the extrinsic metrics

*  Word embedding demo

9/52
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(Recap) Sequence Modeling: Overview

* Use deep learning methods to understand, process, and generate text sequences

* Goals:
. Learn context-dependent representations
. Capture long-range dependencies
. Handle complex relationships among large text units

* Sequence modeling architectures are based on deep neural networks (DNNs)!

. Language exhibits hierarchical structures (e.g., letters form words, words form phrases,
phrases form sentences)

. DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level
patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence
meanings) in higher layers

. Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of
words and sequences
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(Recap) Sequence Modeling Architectures

Qutput
Probabilities
ultiole lavere!
ultiple layers! i |
Multiple layers!
RO R RO RO (Gase Nom) |
. (o) "(o]. "[o] . (@ =
hidden states
) _ (t—1) ) | W, || WL |@| Wi |@® Forward
h(o) =0 (Wih =) 4 Wee® 1 b)) : ® ° ® - &}N )
. P . I orm '4\
h\Y) is the initial hidden state () () (] —(Add & Norm ) Multi:Head
Tx/ ﬁr{x/ ij ij Feed Attention
P RAG ,JH © ,_L © P DA Forward 7 7 Nx
. o o ° °
word embeddings e : e? : e®)| © e® : R Add & Norm
e® = Ex® ° ° : ° L Add & Norm J Masked
T, Multi-Head Multi-Head
Attention Attention
e T = Ts P
words / one-hot vectors the  students opened their ] J =,
z® ¢ RIVI Sy z® x®) @ Positional ® Positional
Encoding @ Encoding
Input. Outpu{t
RNN neural networks: Embef’dmg Embetddmg
https://web.stanford.edu/class/cs224n/sli Inpute Outputs
des/cs224n-spr2024-lecture05-rnnim.pdf (shifted right)

Transformer: https://arxiv.org/pdf/1706.03762 11/52
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(Recap) Neural Networks (Overview)

Biological neural network Artificial neural network

Cell body

Telodendria

Nucleus

Synaptic terminals

Endoplasmic
reticulum

Mitochondrion
A Figure source:
) el Mhenanenes https://web.stanford.edu/~jurafsky/slp3/7.pdf

Figure source:
https://commons.wikimedia.org/w/index.php?curid=28761830 12/52
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Neural Network: Basic Unit (Perceptron)

* Input: * = [x1, T2, x3]

*  Model parameters (weights & bias): w = [wy, wo, w3] & b

e Linear computation: z =w -ax + b I y = o(x)
*  Nonlinear activation: a = o (2) ﬁ

+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 13/52
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Basic Unit (Perceptron): Example

* Input: £ =[0.5,0.6,0.1]
¢ Model parameters (weights & bias): w = [0.2,0.3,0.9] & b = 0.5
e Linear computation: z = w -2 + b = 0.87

1
* Nonlinear activation: a =0o(2) = ~ 0.70

1+ exp(—0.87)

+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 14/52
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Common Non-linear Activations
Why non-linear activations?

e Stacking linear operations will only result in another linear operation
*  We wish our network to model complex, non-linear relationships between inputs and

outputs
1.0 v 10
e’ —e
tanh(z) = ReLU(z) = max(z,0)

0.5 e +e””? | 5
8 &)
€ X
& 00 % 0
I ﬁ
7 o5 Hyperbolic N s Rectified linear unit

tangent (tanh) (ReLU)
~1.05 s 0 5 0 P =5 0 5 10

p4 z

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 15/52
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Agenda

* Feedforward Network (FFN)
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Feedforward Network (FFN)

* Feedforward network (FFN) = multilayer network where the outputs from units in
each layer are passed to units in the next higher layer

*  FFNs are also called multi-layer perceptrons (MLPs)

* Model parameters in each layer in FFNs: a weight matrix W and a bias vector b
. Each layer has multiple hidden units
. Recall: a single hidden unit has a weight vector and a bias parameter
. Weight matrix: combining the weight vector for each unit
. Bias vector: combining the bias for each unit
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Example: 2-layer FFN

*  |nput: & = [xl,xz,...,xno]
* Model parameters (weights & bias): W € R"1*™, [ ¢ R™*™ & b ¢ R™

 Forward computation: X, W U
Firstlayer: b = o(Wa + b)
:
Non-linear function (element-wise) X5

Second layer: 2 = Uh

Output: Y = Softmax(z)

+1

Convert to probability __ exp(21) exp(zn,)
distribution ;Lil exp(z;) T Z;‘il exp(z;)

input layer hidden layer output layer

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Training Objective

 We'll need a loss function that models the distance between the model output and
the gold/desired output

* The common loss function for classification tasks is cross-entropy (CE) loss

K-way classification (K classes): Lcg(9,y) = — Z yi log Uk

Model output probability Ground-truth probability
v
Usually a one-hot vector (one dimension is 1; othersare 0): y = [0,...,1,...,0]

exp(zc) Also called “negative log
S iexp(z;)  likelihood (NLL) loss”

Lce(y,y) = —logy. = —log

v
c is the ground-truth class
19/52
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Model Training (Forward Pass)

*  Most optimization methods for DNNs are based on gradient descent
e  First, randomly initialize model parameters

* In each optimization step, run two passes
. Forward pass: evaluate the loss function given the input and current model parameters

z=w-x+D>b
b 4
y = 0o(z)

20/52
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Model Training (Backward Pass)

Most optimization methods for DNNs are based on gradient descent
First, randomly initialize model parameters

In each optimization step, run two passes
. Forward pass: evaluate the loss function given the input and current model parameters
. Backward pass: update the parameters following the opposite direction of the gradient

w Y  w® — V., L(7,y)

0L 0L 0y 0z
ow Oy 0z Ow

Gradient computed via the chain rule Vw£(§,y) =

Gradient computation taken care of by deep learning libraries
(e.g., PyTorch)

21/52
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Agenda

Simple Neural Language Model

22/52
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Simple Neural Language Model

books

Instantiate FFN as a neural language model laptops
Output distribution
y = softmax(Uh)

a Z00

U

Hidden layer
» h=0c(Wx+b) eecececeeeeo|

|44

(0000 0000 0000 0000)|

Word embeddings T T T T

input layer hidden layer output layer the students opened their
2D ) NE) 2
2-layer FFN

2-layer neural language model

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
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Benefits of Neural Language Models

Output distribution books

laptops
y = sofomax(Uh) = | SR I )] ﬁwﬂm

S exp(z) SV exp(z)

a Z00

- ~ ~ U Word embedding matrix
|V|-dimensions (ee000000cc00)]
w

e Address sparsity issue:
. Strictly positive probability on every token in the [.‘.' 00006 0000 ...']

vocabulary
. Semantically similar words tend to have similar
probabilities the  students opened  their
e 22 ) 2@
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Limitations of (Simple) Neural Language Models

books

* Context window is fixed (same as N-gram language models) laptops
* Increasing N will enlarge W i i

a Z00

U
(ee0000000000)|
i =N T T d' X (N-d)
Concatenated word embeddings Fixed size < WeR

m:m(l)@m(z)@...@w(l\])ERN'd4 .............. [.... 0000 0000 .'.‘]

T

the  students opened their
e 22 23 z®

c R4 c R? € R4 c R4
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Agenda

* Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN) Overview

books

A neural language model that can process inputs of arbitrary lengths laptops
books
laptops
Simple neural

Recurrent neural

language model language model

a 200

u Wi,

Wi,

U

h(2) h(S) h#)

Different words (eeeeeeeeeee0)

multiplied with
different subparts in W w Reuse the same
weights for all words

(0000 0000 0000 0000)

LT

—{000 ]?[oooo
E)[oooo]g{oooo
—>[0000]§>[0000

E E
the  students opened their the  students opened
@ (2 23 @) ey 22 )

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
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To
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@

o
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RNN Computation

books
 Hidden states in RNNs are computed based on laptops

. The hidden state at the previous step (memory)
. The word embedding at the current step

previous word (time step) current word (time step)

«  Parameters: : e
= Wy weight matrix for the recurrent connection " B ) o~ u
= W, :weight matrix for the input connection (@) @) ®
Wh (©) Wh (0] Wh (]
[ (] [
R — W hE D L wop® ° ° °
? ( e T Wea ) Iwe IWE IWE
L T . ° 5 °
Hidden states at the Word embedding of the : | : ‘ :
6) 6) 6)

Te

the  students opened their
2D 22 2(3) @

&
&
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RNN Computation

° |nput: €T = [m(l), w(2), . ,m(N)] books loptaps

e Initialize h©

* For each time step (word) in the input: : 200

Compute hidden states: lU
h(t) — 0 (Whh(t—l) +W m(t)) h(©) R h? h(:L B4
- e

Compute output:

y(t) = softmax (Uh(t))

Wi, Wi

)
()
W, | @| W,
()
(]

Te

the  students opened their
21 22 2(3) @

&

F{oooo]?[
—>[oooo]§>[oooo
—{oooo]?[oooo

&
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RNN Weight Tying

books

* Role of matrix U: score the likelihood of each word in the vocabulary mﬂ
exp(u - h) exp(uy| - h)

y — SOftmaX(Uh) = |V| Zv eXp(z )] e,
i1 i) e

, . 200
i1 €xp(z5) U
h(®2) h3) h&® | e
) ".’

ooy

U 6 R|V|Xd h(l)
[ () () e
Same dimensionality of the Wi @ W, (@ Wh 0| Wr |@
. . @ [ o [
word embedding matrix! ® ® ® ®
Ive IWe Iwe IWE
e Use the same input embeddings in the softmax layer! o S 'S S
6] e} (o} o
*  Weight tying benefits: B G B ... ... °).%.
= Improve learning efficiency & effectiveness TEET;E ........ T;’J ........ T;*J ......
. Reduce the number of parameters in the model the  students opened  their
20 22 23 z®
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RNN for Language Modeling

* Recall that language modeling predicts the next word given previous words
p(x)=p(zM)p x(2)‘x(1) ceep x(")\x(l), oz = Hp x(t)|x(1), Gy
[+ (x1) - )11 ( )
*  How to use RNNs to represent p (x(t)|w(1), . -,x(t_l)) ?
Output probability at (t-1) step: y(t—l) = softmax (Uh(t_l)) = f (:1:(1), e ,m(t_z), :I:(t_l))
h®=D is a function of Rt=2) and xt~D : Rt~ — 4 (Whh(t_2) + Wew(t_l)) =g (h(t_2), m(t_1)>

h(=2 is a function of Rt~ and x(t=2) ;. p(t=2) _ & (Whh,(t_3) + Wea:(t_2)) =g (h(t_3), m(t—2))

h® is a function of A® and x® : B = & (Whh(o) + We:n(l)) =g (h(o), m(l))

31/52
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RNN Language Model Training

Train the output probability at each time step to predict the next word

exp (x(t))

Zw’ (2% exp(w’)

1 L . 1 n 0 1 n
Lrm(z) = n ZECE (y(t)’ y(t)) ~n Z —log y;&) = Z —log
t=1 t=1 t=1
Next word long and thanks for all
Loss |_ log ylongl Iﬁg yandl |_ log §hanks | |: log Yfor —1Io 1
y
Softmax over ( [, ( Ji ) ( i ) i L
Vocabulary T T
h
RNN
Input
Embeddings

@

So

@

long

@

and thanks

@

for

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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RNN for Text Generation

* Input [BOS] (beginning-of-sequence) token to the model
 Sample a word from the softmax distribution at the first time step
* Use the word embedding of that first word as the input at the next time step

* Repeat until the [EOS] (end-of-sequence) token is generated

- P P

P

Sampled Word SO/ i Ioné i and : ?
| | |
Softmax (mﬂ_n_n : [mﬂﬂﬂ : sl : L
A i A i A i A
e T e
T v
Embedding i @ i i @
I [ |
mputword  [BOS] | So | long | and
I

/' 7
7/

\,

[ I,

7/ \7 \7
Figure source: https:/\/web.stanford.edu/'“iurafskv/slp3/13.pdf
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Agenda

* RNN Limitations

34/52



i UNIVERSITY,VIRGINIA

Vanishing & Exploding Gradient

«  Gradient signal from far away can be unstable! — Ling (:1;(4))
e Vanishing gradient = many small gradients multiplied together Mﬂ

* Exploding gradient = many large gradients multiplied together

i TJ)  desesesesesesesesessaeasasseseas e e e e e e e e e e e e s e e ae e ananans U
Gradient backpropagation <« i o o h(i
L (] e
o\ W. 0| Wr |@
Lots of gradient multiplications! : : :
OLin (z@) 9rD 9h® 0R®) Gh® DL (2@) IWe IWe IWe
or®  :6n® opM 9p® op®):  op™ o (o o
*ermsmssssmsnssnannnnnnnnnnnnnnns® (@] o o
@) o o
T Tz e

the  students opened their
=0 ) NE) z@
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Difficulty in Capturing Long-Term Dependencies

* RNNs are theoretically capable of remembering information over arbitrary lengths of
input, but they struggle in practice with long-term dependencies

* RNNs use a fixed-size hidden state to encode an entire sequence of variable length;
the hidden state is required to compress a lot of information

”

*  RNNs might give more weight to the most recent inputs and may ignore or “forget
important information at the beginning of the sentence while processing the end

Fixed size hidden states!

.
--------------------------

E{oooo]g:»[oooo
?[oooo]mg%[oooo]
F)[ ]mg%[oooo

the  students opened their
2z 22 23 o) 36/52
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Lack of Bidirectionality

* RNNs process the input sequence step by step from the beginning to the end (left to

right for English)

* At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

* Example: “The bank is on the river” -> the word “bank” can be correctly disambiguated
only if the model has access to the word “river” later in the sentence

RO R RO B R
(<) (] (0} ) (]
oW, (@ W, |@| W, |@| Wi |@

o (] ] (] "]

] (] ] @ ]

8] L[S fF] 3

1 (2) ®3)| @ ()

Dol Vol o] ¢e

e o e o
................. :Fé"""mﬁﬁéuuuuﬁﬁéuuumﬁTé"">

the  students opened their

2D D)

NE)

Left to right processing
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Exposure Bias

Teacher forcing/exposure bias: during RNN training, the model always receives the
correct next word from the training data as input for the next step

When the model has to predict sequences on its own, it may perform poorly if it
hasn’t learned how to correct its own mistakes

------------------------------------------------------------------------------

: . During training:
: lon and thanks for all :
Next word “anuus g .................................................................... Next word = actual next word
Loss [~ 108 fiong] [—10g Jand| [~108Fwmanks] E10g Jtor | [=10g Jan During generation:
y Next word = model’s prediction
Softmaxover | [l i (o ) (o) Ji.
Vocabulary T T
h
RNN

e @ @ @ @ @

So long and thanks for
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Agenda

Advanced RNNs
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Long Short-Term Memory (LSTM)

e Challenge in RNNs: information encoded in hidden states tends to be local; distant
information gets lost

e LSTM design intuition:
. Remove information no longer needed from the context
. Add information likely to be needed for future time steps

* Inputs at each time step:

. Word embedding of the current word
. Hidden state from the previous time step
. Memory/cell state

* Three gates:
. Forget gate
. Add/input gate
. Output gate

40/52
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LSTM Computation (Forget Gate)
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Figure source:

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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LSTM Computation (Add/Input Gate)
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Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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LSTM Computation (Candidate Cell State)
g® = tanh (Ugh(t_l) + Wga:(t))
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LSTM Computation (Cell State Update)
c® =i g\ + f(t) ® 1) Cell state updated by

combining the input
gate, candidate cell
state, forget gate &
previous cell state
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LSTM Computation (Output Gate)
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LSTM Computation (Hidden State Update)
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Bidirectional RNNs

* Separate models are trained in the forward and backward directions

* Hidden states from both RNNs are concatenated as the final representations
Y1 Yo Y3 Yn

U‘T concatenated
»O outputs )
( [ :|<——|: RNN 2 ——[;IJ Backward RNN

( - ——RNNT 1] )

Forward RNN

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Deep RNNs

* We can stack multiple RNN layers to build deep RNNs
* The output of a lower level serves as the input to higher levels

* The output of the last layer is used as the final output

RNN 2

)
)

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 48/52
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Summary: Sequence Modeling

* Sequence modeling goals:
. Learn context-dependent representations
. Capture long-range dependencies
. Handle complex relationships among large text units

Use deep learning architectures to understand, process, and generate text sequences
e  Why DNNs?
. The multi-layer structure in DNNs mirrors the hierarchical structures in language

DNNs learn multiple levels of semantics across layers: low-level patterns (e.g., relations

between words) in lower layers & high-level patterns (e.g., sentence meanings) in higher
layers
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Summary: Neural Language Models

e Address the sparsity issue in N-gram language models by computing the output
distribution based on distributed representations (with semantic information)

* Simple neural language models based on feedforward networks suffer from the fixed
context window issue
Can only model a fixed number of words (similar to N-gram assumption)
Increasing the context window requires adding more model parameters
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Summary: Recurrent Neural Networks

* General idea: Use the same set of model weights to process all input words

* RNNs as language models

Theoretically able to process infinitely long sequences
Practically can only keep track of recent contexts

* Training issues: vanishing & exploding gradients

* LSTM s a prominent RNN variant to keep track of both long-term and short-term
memories via multiple gates
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