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Overview of Course Contents

• Week 1: Logistics & Overview
• Week 2: N-gram Language Models
• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)
• Week 6: Language Modeling with Transformers
• Week 9: Large Language Models (LLMs) & In-context Learning
• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)

• Week 11: LLM Alignment
• Week 12: Reinforcement Learning for LLM Post-Training
• Week 13: LLM Agents + Course Summary
• Week 15 (after Thanksgiving): Project Presentations 2/52



Reminder

• Project proposal is due today (no late days allowed)!
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(Recap) Word Similarity

• Measure word similarity with cosine similarity between embeddings
• Higher cosine similarity = more semantically close
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(Recap) Word Similarity Evaluation

• An intrinsic word embedding evaluation
• Measure how well word vector similarity correlates with human judgments
• Example dataset: WordSim353 (353 word pairs with their similarity scores assessed by

humans)

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs2.pdf 5/52
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(Recap) Correlation Metric

Spearman rank correlation: measure the correlation between two rank variables

Rank by human

<latexit sha1_base64="70hE6NO6sQoYkyVR7OjwEsGlU4Q="></latexit>

r =
Cov[R[X], R[Y ]]

�R[X]�R[Y ]

Covariance

Standard deviations

<latexit sha1_base64="ZnzaPYJaS+c6tPSA/HcNhlgDawU=">AAACPXicbZDLS8NAEMY3vq2vqkcvq0VoQUsiol4EUQSPClZTklA220m7dPNgdyKW0H/Mi/+DN29ePCji1atJ7cHXBwsfv5lhZz4/kUKjaT4aY+MTk1PTM7OlufmFxaXy8sqVjlPFocFjGSvbZxqkiKCBAiXYiQIW+hKu/d5JUb++AaVFHF1iPwEvZJ1IBIIzzFGrfOki3GJ2Et8MqvZWs0YPqRsy7Pp+djpw110JATq0atPtb9yxvVq1+RM1vRp1leh00Su1yhWzbg5F/xprZCpkpPNW+cFtxzwNIUIumdaOZSboZUyh4BIGJTfVkDDeYx1wchuxELSXDa8f0M2ctGkQq/xFSIf0+0TGQq37oZ93Fuvq37UC/ldzUgwOvExESYoQ8a+PglRSjGkRJW0LBRxlPzeMK5HvSnmXKcYxD7wIwfp98l9ztVO39up7F7uVo+NRHDNkjWyQKrHIPjkiZ+ScNAgnd+SJvJBX4954Nt6M96/WMWM0s0p+yPj4BFWIrE0=</latexit>

Cov(X,Y ) = E[(X � E[X])(Y � E[Y ])]
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(Recap) Word Analogy

• Word embeddings reflect intuitive semantic and syntactic analogy
• Example: man : woman :: king : ?
• General case: find the word such that a : b :: c : ?

• Find the word that maximizes the cosine similarity
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(Recap) Word Analogy Evaluation

• Word analogy is another intrinsic word embedding evaluation
• Encompass various types of word relationships
• Usually use accuracy as the metric

Figure source: https://arxiv.org/pdf/1301.3781 8/52
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(Recap) Extrinsic Evaluation of Word Embeddings

• Word embeddings can be used as input features to task-specific NLP models
• Example 1: Text classification (topic/sentiment classification)

§ Sentence/document embeddings are obtained by applying sequence modeling architectures
on top of word embeddings

§ Classification accuracy is used as the extrinsic metric

• Example 2: Named entity recognition (NER)
§ Find and classify entity names (e.g., person, organization, location) in text
§ Concatenated word embeddings can be used to represent spans of words (entities)
§ Precision/recall/F1 are used as the extrinsic metrics

• Word embedding demo
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(Recap) Sequence Modeling: Overview

• Use deep learning methods to understand, process, and generate text sequences
• Goals:

§ Learn context-dependent representations
§ Capture long-range dependencies
§ Handle complex relationships among large text units

• Sequence modeling architectures are based on deep neural networks (DNNs)!
§ Language exhibits hierarchical structures (e.g., letters form words, words form phrases, 

phrases form sentences)
§ DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level 

patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence 
meanings) in higher layers

§ Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of 
words and sequences
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(Recap) Sequence Modeling Architectures

RNN neural networks:
https://web.stanford.edu/class/cs224n/sli
des/cs224n-spr2024-lecture05-rnnlm.pdf

Transformer: https://arxiv.org/pdf/1706.03762

Multiple layers! Multiple layers!
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(Recap) Neural Networks (Overview)

Figure source:
https://commons.wikimedia.org/w/index.php?curid=28761830

Biological neural network

Figure source:
https://web.stanford.edu/~jurafsky/slp3/7.pdf

Artificial neural network
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Neural Network: Basic Unit (Perceptron)

• Input:
• Model parameters (weights & bias): &
• Linear computation:

• Nonlinear activation:

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 13/52
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Basic Unit (Perceptron): Example

• Input:
• Model parameters (weights & bias): &
• Linear computation:

• Nonlinear activation:

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 14/52
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Common Non-linear Activations

• Why non-linear activations?
• Stacking linear operations will only result in another linear operation
• We wish our network to model complex, non-linear relationships between inputs and 

outputs

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

Hyperbolic
tangent (tanh)

Rectified linear unit
(ReLU)
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Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs
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Feedforward Network (FFN)

• Feedforward network (FFN) = multilayer network where the outputs from units in
each layer are passed to units in the next higher layer

• FFNs are also called multi-layer perceptrons (MLPs)

• Model parameters in each layer in FFNs: a weight matrix and a bias vector
§ Each layer has multiple hidden units
§ Recall: a single hidden unit has a weight vector and a bias parameter
§ Weight matrix: combining the weight vector for each unit 
§ Bias vector: combining the bias for each unit 
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Example: 2-layer FFN

• Input:
• Model parameters (weights & bias): , &
• Forward computation:

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf

First layer:

Non-linear function (element-wise)

Second layer:

Output: 

Convert to probability 
distribution
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Training Objective

• We’ll need a loss function that models the distance between the model output and 
the gold/desired output

• The common loss function for classification tasks is cross-entropy (CE) loss

Model output probability Ground-truth probability

K-way classification (K classes):

Usually a one-hot vector (one dimension is 1; others are 0):

c is the ground-truth class

Also called “negative log 
likelihood (NLL) loss”
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Model Training (Forward Pass)

• Most optimization methods for DNNs are based on gradient descent 
• First, randomly initialize model parameters 
• In each optimization step, run two passes

§ Forward pass: evaluate the loss function given the input and current model parameters
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Model Training (Backward Pass)

• Most optimization methods for DNNs are based on gradient descent 
• First, randomly initialize model parameters 
• In each optimization step, run two passes

§ Forward pass: evaluate the loss function given the input and current model parameters
§ Backward pass: update the parameters following the opposite direction of the gradient

• Gradient computed via the chain rule

Gradient computation taken care of by deep learning libraries 
(e.g., PyTorch)
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Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs
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Simple Neural Language Model

Instantiate FFN as a neural language model

2-layer FFN 2-layer neural language model

Word embeddings

Hidden layer

Output distribution

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf 23/52
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• Address sparsity issue:
§ Strictly positive probability on every token in the

vocabulary
§ Semantically similar words tend to have similar

probabilities

Benefits of Neural Language Models

Output distribution

-dimensions
Word embedding matrix
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Limitations of (Simple) Neural Language Models

• Context window is fixed (same as N-gram language models)
• Increasing N will enlarge 𝑾

Fixed sizeConcatenated word embeddings
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Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs
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Recurrent Neural Network (RNN) Overview

A neural language model that can process inputs of arbitrary lengths

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

Simple neural
language model

Recurrent neural
language model

Different words
multiplied with

different subparts in W Reuse the same
weights for all words
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RNN Computation

• Hidden states in RNNs are computed based on
§ The hidden state at the previous step (memory)
§ The word embedding at the current step

• Parameters:
§ : weight matrix for the recurrent connection
§ : weight matrix for the input connection

[BOS]

Hidden states at the
previous word (time step)

Word embedding of the
current word (time step)
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RNN Computation

• Input:
• Initialize
• For each time step (word) in the input:

§ Compute hidden states:

§ Compute output:
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RNN Weight Tying

• Role of matrix 𝑼: score the likelihood of each word in the vocabulary

• Use the same input embeddings in the softmax layer!

• Weight tying benefits:
§ Improve learning efficiency & effectiveness
§ Reduce the number of parameters in the model

Same dimensionality of the
word embedding matrix!
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RNN for Language Modeling

• Recall that language modeling predicts the next word given previous words

• How to use RNNs to represent ?

Output probability at (t-1) step:

……

𝒉("#$) is a function of 𝒉("#&) and 𝒙("#$) :

𝒉("#&) is a function of 𝒉("#') and 𝒙("#&) :

𝒉($) is a function of 𝒉(() and 𝒙($) :
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RNN Language Model Training

Train the output probability at each time step to predict the next word

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 32/52
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[BOS]

RNN for Text Generation

• Input [BOS] (beginning-of-sequence) token to the model
• Sample a word from the softmax distribution at the first time step
• Use the word embedding of that first word as the input at the next time step

• Repeat until the [EOS] (end-of-sequence) token is generated

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 33/52

https://web.stanford.edu/~jurafsky/slp3/13.pdf


Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs

34/52



Vanishing & Exploding Gradient

• Gradient signal from far away can be unstable!
• Vanishing gradient = many small gradients multiplied together
• Exploding gradient = many large gradients multiplied together

Gradient backpropagation

Lots of gradient multiplications!
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Difficulty in Capturing Long-Term Dependencies

• RNNs are theoretically capable of remembering information over arbitrary lengths of 
input, but they struggle in practice with long-term dependencies

• RNNs use a fixed-size hidden state to encode an entire sequence of variable length; 
the hidden state is required to compress a lot of information

• RNNs might give more weight to the most recent inputs and may ignore or “forget” 
important information at the beginning of the sentence while processing the end

Fixed size hidden states!
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Lack of Bidirectionality

• RNNs process the input sequence step by step from the beginning to the end (left to 
right for English)

• At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

• Example: “The bank is on the river” -> the word “bank” can be correctly disambiguated 
only if the model has access to the word “river” later in the sentence

Left to right processing
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Exposure Bias

• Teacher forcing/exposure bias: during RNN training, the model always receives the 
correct next word from the training data as input for the next step

• When the model has to predict sequences on its own, it may perform poorly if it 
hasn’t learned how to correct its own mistakes

During training:
Next word = actual next word

During generation:
Next word = model’s prediction
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Agenda

• Feedforward Network (FFN)
• Simple Neural Language Model
• Recurrent Neural Network (RNN)

• RNN Limitations
• Advanced RNNs
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Long Short-Term Memory (LSTM)

• Challenge in RNNs: information encoded in hidden states tends to be local; distant
information gets lost

• LSTM design intuition:
§ Remove information no longer needed from the context
§ Add information likely to be needed for future time steps

• Inputs at each time step:
§ Word embedding of the current word
§ Hidden state from the previous time step
§ Memory/cell state

• Three gates:
§ Forget gate
§ Add/input gate
§ Output gate
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LSTM Computation (Forget Gate)

Hidden state

Word embedding

Cell state

Decides what information to 
discard from the cell state

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 41/52

https://web.stanford.edu/~jurafsky/slp3/13.pdf


LSTM Computation (Add/Input Gate)

Hidden state

Word embedding

Cell state

Decides what new
information to store
to the cell state

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 42/52
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LSTM Computation (Candidate Cell State)

Hidden state

Word embedding

Cell state

Compute information needed 
from the previous hidden 
state and current inputs

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 43/52
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LSTM Computation (Cell State Update)

Hidden state

Word embedding

Cell state

Cell state updated by 
combining the input 
gate, candidate cell 
state, forget gate & 
previous cell state 

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 44/52
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LSTM Computation (Output Gate)

Hidden state

Word embedding

Cell state

Decides what parts of the 
cell state will be output

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 45/52
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LSTM Computation (Hidden State Update)

Hidden state

Word embedding

Cell state

Hidden state updated 
using the output gate & 
the updated cell state

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 46/52
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Bidirectional RNNs

• Separate models are trained in the forward and backward directions
• Hidden states from both RNNs are concatenated as the final representations

Forward RNN

Backward RNN

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 47/52
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Deep RNNs

• We can stack multiple RNN layers to build deep RNNs
• The output of a lower level serves as the input to higher levels
• The output of the last layer is used as the final output

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 48/52
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Summary: Sequence Modeling

• Sequence modeling goals:
§ Learn context-dependent representations
§ Capture long-range dependencies
§ Handle complex relationships among large text units

• Use deep learning architectures to understand, process, and generate text sequences
• Why DNNs?

§ The multi-layer structure in DNNs mirrors the hierarchical structures in language
§ DNNs learn multiple levels of semantics across layers: low-level patterns (e.g., relations

between words) in lower layers & high-level patterns (e.g., sentence meanings) in higher 
layers
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Summary: Neural Language Models

• Address the sparsity issue in N-gram language models by computing the output 
distribution based on distributed representations (with semantic information)

• Simple neural language models based on feedforward networks suffer from the fixed 
context window issue
§ Can only model a fixed number of words (similar to N-gram assumption)
§ Increasing the context window requires adding more model parameters

50/52



Summary: Recurrent Neural Networks

• General idea: Use the same set of model weights to process all input words
• RNNs as language models

§ Theoretically able to process infinitely long sequences
§ Practically can only keep track of recent contexts 

• Training issues: vanishing & exploding gradients 
• LSTM is a prominent RNN variant to keep track of both long-term and short-term 

memories via multiple gates
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