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Overview of Course Contents

*  Week 6: Language Modeling with Transformers
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Reminder

* Project proposal grades & feedback released
* Assignment 3 released; due date: 10/06 11:59pm
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(Recap) Sequence Modeling: Overview

* Use deep learning methods to understand, process, and generate text sequences

* Goals:
. Learn context-dependent representations
. Capture long-range dependencies
. Handle complex relationships among large text units

* Sequence modeling architectures are based on deep neural networks (DNNs)!

. Language exhibits hierarchical structures (e.g., letters form words, words form phrases,
phrases form sentences)

. DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level
patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence
meanings) in higher layers

. Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of
words and sequences
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(Recap) Sequence Modeling Architectures
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(Recap) Neural Network: Basic Unit (Perceptron)

* Input: & = [x1, T2, X3]

*  Model parameters (weights & bias): w = [wy, wo, w3] & b

e Linear computation: z =w -ax + b I y = o(x)
*  Nonlinear activation: a = o (2) ﬁ

+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 6/63
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(Recap) Basic Unit (Perceptron): Example

* Input: £ =[0.5,0.6,0.1]
¢ Model parameters (weights & bias): w = [0.2,0.3,0.9] & b = 0.5
e Linear computation: z = w -2 + b = 0.87

1
* Nonlinear activation: a =0o(2) = ~ 0.70

1+ exp(—0.87)

+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 7/63
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(Recap) Common Non-linear Activations
Why non-linear activations?

e Stacking linear operations will only result in another linear operation
*  We wish our network to model complex, non-linear relationships between inputs and

outputs
1.0 10
e’ —e
tanh(z) = ReLU(z) = max(z,0)
0.5 e +e % | 5
S &)
€ X
& 00 % 0
I ;
—05 Hyperbolic s Rectified linear unit
tangent (tanh) (ReLU)
~1.05 =5 0 5 10 ¥ =5 0 5 10

b4 z

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 8/63
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(Recap) Feedforward Network (FFN)

* Feedforward network (FFN) = multi-layer network where the outputs from units in
each layer are passed to units in the next higher layer

*  FFNs are also called multi-layer perceptrons (MLPs)

* Model parameters in each layer in FFNs: a weight matrix W and a bias vector b
. Each layer has multiple hidden units
. Recall: a single hidden unit has a weight vector and a bias parameter
. Weight matrix: combining the weight vector for each unit
. Bias vector: combining the bias for each unit

9/63
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(Recap) Example: 2-layer FFN

Convert to probability __ exp(21) exp(zn,)
. . . - ) n
distribution ;Lil exp(z;) Zjil exp(z;)

Input: & = [xl, o, ... ,xno]
Model parameters (weights & bias): W € R™1 %™, U € R™*™ & b € R™

Forward computation: X, W U
Firstlayer: b = o(Wa + b)
:
Non-linear function (element-wise) X5

Second layer: 2 = Uh

Output: Y = Softmax(z)

+1

input layer hidden layer output layer

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 10/63
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(Recap) Training Objective

 We'll need a loss function that models the distance between the model output and
the gold/desired output

* The common loss function for classification tasks is cross-entropy (CE) loss

K-way classification (K classes): Lcg(9,y) = — Z yi log Uk

Model output probability Ground-truth probability
v
Usually a one-hot vector (one dimension is 1; othersare 0): y = [0,...,1,...,0]

exp(zc) Also called “negative log
S iexp(z;)  likelihood (NLL) loss”

Lce(y,y) = —logy. = —log

v
c is the ground-truth class
11/63
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(Recap) Model Training (Forward Pass)

*  Most optimization methods for DNNs are based on gradient descent
e  First, randomly initialize model parameters

* In each optimization step, run two passes
Forward pass: evaluate the loss function given the input and current model parameters

12/63
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(Recap) Model Training (Backward Pass)

Most optimization methods for DNNs are based on gradient descent
First, randomly initialize model parameters

In each optimization step, run two passes
. Forward pass: evaluate the loss function given the input and current model parameters
. Backward pass: update the parameters following the opposite direction of the gradient

w Y  w® — V., L(7,y)

_ . oL 0L 0y 0z
Gradient computed via the chain rule Vuwl(Y,y) = Sw = dy Oz dw

Gradient computation taken care of by deep learning libraries
(e.g., PyTorch)

13/63
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(Recap) Simple Neural Language Model

books

Instantiate FFN as a neural language model laptops
Output distribution
y = softmax(Uh)

a Z00

U

Hidden layer
» h=0c(Wx+b) eecececeeeeo|

|44

(0000 0000 0000 0000)|

Word embeddings T T T T

input layer hidden layer output layer the students opened their
2D ) NE) 2
2-layer FFN

2-layer neural language model

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
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(Recap) Benefits of Neural Language Models

Output distribution books

laptops
. h
- [ o] Liplg

S exp(z) SV exp(z)

a Z00

- ~ ~ U Word embedding matrix
|V|-dimensions (ee000000cc00)]
w

Address sparsity issue:
Strictly positive probability on every token in the [.’.. 60006 o060 .'.']

vocabulary

Semantically similar words tend to have similar

probabilities the  students opened  their
e 22 ) 2@
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(Recap) Limitations of (Simple) Neural Language Models

books

* Context window is fixed (same as N-gram language models) laptops
* Increasing N will enlarge W i i

a Z00

U
(ee0000000000)|
i =N T T d' X (N-d)
Concatenated word embeddings Fixed size < WeR

m:m(l)@m(2)®---@w(N)e]RN'd< .............. [.... 0000 0000 .'.‘]

T

the  students opened their
e 22 23 z®

c R4 c R? € R4 c R4
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(Recap) Recurrent Neural Network (RNN) Overview

books

A neural language model that can process inputs of arbitrary lengths laptops
books
laptops
Simple neural

Recurrent neural

language model language model

a 200

u Wi,

Wi,

U

h(2) h(S) h#)

Different words [.........ooo]
multiplied with

L
e
e
L
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%
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Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
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(Recap) RNN Computation

books
* Hidden states in RNNs are computed based on laptops

. The hidden state at the previous step (memory)
. The word embedding at the current step

Z00

a
* Parameters: .
= W weight matrix for the recurrent connection
. . . . h(0) R h(®2) h®) h4)
= W, : weight matrix for the input connection P o) o °
o W, le|Wr |@| Wr_ |@®
® @ ) )
®) (t-1) ) hd ® ® o
WO = (Wi D+ Weal?) . W . w
> T A : o (6] o
Hidden states at the Word embedding of the o : | : | :
previous word (time step) current word (time step) ° (@) 6) 6)
e T T e

the  students opened their
) 2 2(3) @
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(Recap) RNN Computation

° |nput: €T = [m(l), m(2), . ,m(N)] books loptaps

e Initialize h©

* For each time step (word) in the input: : 200
Compute hidden states: lU
_ h(0) h(L h(L h(iL h#)

A — 5 (Whh(t 1) 4 Wea:(t)) o ° ° o ®
C _ oW, || W, || W, |l@| Wr |@®
ompute output: P ° ® ® ®
y(t) = softmax (Uh(t)) 2 z > > >

Ive IWe IWe IWE
o o o o
o 5) |@ |@
(e} 5) (5} o
(6} 5} o o

T e s

the  students opened their
21 22 2(3) @
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(Recap) RNN Weight Tying

books

* Role of matrix U: score the likelihood of each word in the vocabulary mﬂ
exp(u - h) exp(uy| - h)

y — SOftmaX(Uh) = |V| Zv eXp(z )] e,
i1 i) e

, . 200
i1 €xp(z5) U
h(®2) h3) h&® | e
) ".’

ooy

U 6 R|V|Xd h(l)
[ () () e
Same dimensionality of the Wi @ W, (@ Wh 0| Wr |@
. . @ [ o [
word embedding matrix! ® ® ® ®
Ive IWe IWe IWE
e Use the same input embeddings in the softmax layer! o S 'S S
6] e} (o} o
*  Weight tying benefits: B G B ... ... °).%.
= Improve learning efficiency & effectiveness jﬁE.—T;f ........ T;J ........ Té ......
. Reduce the number of parameters in the model the  students opened  their
20 22 23 z®
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(Recap) RNN for Language Modeling

* Recall that language modeling predicts the next word given previous words
p(x)=p(zM)p x(2)‘x(1) ceep x(")\x(l), oz = Hp x(t)|x(1), Gy
[+ (x1) - )11 ( )
*  How to use RNNs to represent p (x(t)|w(1), . -,x(t_l)) ?
Output probability at (t-1) step: y(t_l) = softmax (Uh(t_l)) = f (:1:(1), e ,m(t_z), :L'(t_l))
h®=D is a function of Rt=2) and xt~D : Rt~ — 4 (Whh(t_2) + Wew(t_l)) =g (h(t_2), m(t_1)>

h(=2 is a function of Rt~ and x(t=2) ;. p(t=2) _ & (Whh,(t_3) + Wea:(t_2)) =g (h(t_3), m(t—2))

h® is a function of A® and x® : B = & (Whh(o) + We:n(l)) =g (h(o), m(l))

21/63
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(Recap) RNN Language Model Training

Train the output probability at each time step to predict the next word

Lryv(z) = %ZECE (@(t),y(t)) = %
=1

Next word

Loss

long

and

thanks

0 _ 1%
t
() =gZ—10g

exp (x(t))

Zw’ ey exp(w’)

|_ log ylongl = log yandl |_ 103 gthanks | 108 yfor

y

—lo

11

Softmax over
Vocabulary

RNN

CONCONCONCONC)

h

Input
Embeddings

@

So

@
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@
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@
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@
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Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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(Recap) RNN for Text Generation

* Input [BOS] (beginning-of-sequence) token to the model
 Sample a word from the softmax distribution at the first time step
* Use the word embedding of that first word as the input at the next time step

* Repeat until the [EOS] (end-of-sequence) token is generated

P P
- |

sampledWord S0 i Io?g/ ' and 12
: l I |
Softmax (&%]‘_D_D i (D%l[ﬂﬂ) i m%]‘_[]_n i D:«{]‘.ﬂ.n
N e e
L 5 )
Embedding i @ i i @
| | |
mputword  [BOS] | So | long | and
|

/' 7
7/

\,

I, I,

7/ \7 \7
Figure source: https:/\/web.stanford.edu/'“iurafskv/slp3/13.pdf
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Agenda

* RNN Limitations
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Vanishing & Exploding Gradient

«  Gradient signal from far away can be unstable! — Ling (:1;(4))
e Vanishing gradient = many small gradients multiplied together Mﬂ

* Exploding gradient = many large gradients multiplied together

i TJ)  desesesesesesesesessaeasasseseas e e e e e e e e e e e e s e e ae e ananans U
Gradient backpropagation <« i o o h(i
L (] e
o\ W. 0| Wr |@
Lots of gradient multiplications! : : :
OLin (z@) 9rD 9h® 0R®) Gh® DL (2@) IWe IWe IWe
or®  :6n® opM 9p® op®):  op™ o (o o
*ermsmssssmsnssnannnnnnnnnnnnnnns® (@] o o
@) o o
T Tz e

the  students opened their
=0 ) NE) z@

25/63



il UNIVERSITYs VIRGINIA

Difficulty in Capturing Long-Term Dependencies

* RNNs are theoretically capable of remembering information over arbitrary lengths of
input, but they struggle in practice with long-term dependencies

* RNNs use a fixed-size hidden state to encode an entire sequence of variable length;
the hidden state is required to compress a lot of information

”

*  RNNs might give more weight to the most recent inputs and may ignore or “forget
important information at the beginning of the sentence while processing the end

Fixed size hidden states!

.
--------------------------

E{oooo]g:»[oooo
?[oooo]mg%[oooo]
F)[ ]mg%[oooo

the  students opened their
2z 22 23 o) 26/63
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Lack of Bidirectionality

* RNNs process the input sequence step by step from the beginning to the end (left to

right for English)

* At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

* Example: “The bank is on the river” -> the word “bank” can be correctly disambiguated
only if the model has access to the word “river” later in the sentence

RO R RO B R
(<) (] (0} ) (]
oW, (@ W, |@| W, |@| Wi |@

o (] ] (] "]

] (] ] @ ]

8] L[S fF] 3

1 (2) ®3)| @ ()

Dol Vol o] ¢e

e o e o
................. :Fé"""mﬁﬁéuuuuﬁﬁéuuumﬁTé"">

the  students opened their

2D D)

NE)

Left to right processing
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Exposure Bias

Teacher forcing/exposure bias: during RNN training, the model always receives the
correct next word from the training data as input for the next step

When the model has to predict sequences on its own, it may perform poorly if it
hasn’t learned how to correct its own mistakes

------------------------------------------------------------------------------

: . During training:
: lon and thanks for all :
Next word “anuus g .................................................................... Next word = actual next word
Loss [~ 108 fiong] [—10g Jand| [~108Fwmanks] E10g Jtor | [=10g Jan During generation:
y Next word = model’s prediction
Softmaxover | [l i (o ) (o) Ji.
Vocabulary T T
h
RNN

e @ @ @ @ @

So long and thanks for
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Agenda

e Advanced RNNs
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Long Short-Term Memory (LSTM)

e Challenge in RNNs: information encoded in hidden states tends to be local; distant
information gets lost

e LSTM design intuition:
. Remove information no longer needed from the context
. Add information likely to be needed for future time steps

* Inputs at each time step:

. Word embedding of the current word
. Hidden state from the previous time step
. Memory/cell state

* Three gates:
. Forget gate
. Add/input gate
. Output gate

30/63
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LSTM Computation (Forget Gate)
PO (U D LW fa,»<t>)

—1)
Cell state c(t 1)

Hidden state h(,t_,l)

Word embedding 45 (t)

&

A\
(< )
z

\

0.5
1 4/9 1 1 I

-6 -4 -2 0 2 4 6

- c(®)
Decides what information to
discard from the cell state

-, (D)

Figure source:

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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LSTM Computation (Add/Input Gate)

—1)
Cell state c(t 1)

Hidden state h(,t_,l)

Word embedding 45 (t)

&

A\
(< )
\
\
\

—————

- c(®)
Decides what new
information to store
to the cell state

-, (D)

D 4 W,,;a:(t)>

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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LSTM Computation (Candidate Cell State)
g® = tanh (Ugh(t_l) + Wga:(t))

—1)
Cell state c(t 1)

-0.5

- e(t)

Hidden state h(,t_,l)

-, (D)

Compute information needed
from the previous hidden
state and current inputs

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 33/63
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LSTM Computation (Cell State Update)
c® =i g\ + f(t) ® 1) Cell state updated by

combining the input
gate, candidate cell
state, forget gate &
previous cell state

- o(®)

—1)
Cell state c(t 1)

Hidden state h(,t_,l)

-, (D)

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 34/63
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LSTM Computation (Output Gate)

—1)
Cell state c(t 1)

- o®
Hidden state p,(t=1)

-, (D)

Decides what parts of the
cell state will be output

JLh(=D) 4 Woa:(t))

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 35/63
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LSTM Computation (Hidden State Update)

—1)
Cell state c(t 1)

- o(®)

Hidden state h(,t_,l)

— 0o © tanh (c(t))

Hidden state updated
using the output gate &
the updated cell state

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 36/63
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Bidirectional RNNs

* Separate models are trained in the forward and backward directions

* Hidden states from both RNNs are concatenated as the final representations
Y1 Yo Y3 Yn

U‘T concatenated
»O outputs )
( [ :|<——|: RNN 2 ——[;IJ Backward RNN

( - ——RNNT 1] )

Forward RNN

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Deep RNNs

* We can stack multiple RNN layers to build deep RNNs
* The output of a lower level serves as the input to higher levels

* The output of the last layer is used as the final output

RNN 2

)
)

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 38/63
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Summary: Sequence Modeling

* Sequence modeling goals:
. Learn context-dependent representations
. Capture long-range dependencies
. Handle complex relationships among large text units

Use deep learning architectures to understand, process, and generate text sequences
e  Why DNNs?
. The multi-layer structure in DNNs mirrors the hierarchical structures in language

DNNs learn multiple levels of semantics across layers: low-level patterns (e.g., relations

between words) in lower layers & high-level patterns (e.g., sentence meanings) in higher
layers
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Summary: Neural Language Models

e Address the sparsity issue in N-gram language models by computing the output
distribution based on distributed representations (with semantic information)

* Simple neural language models based on feedforward networks suffer from the fixed
context window issue
Can only model a fixed number of words (similar to N-gram assumption)
Increasing the context window requires adding more model parameters
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Summary: Recurrent Neural Networks

* General idea: Use the same set of model weights to process all input words

* RNNs as language models

Theoretically able to process infinitely long sequences
Practically can only keep track of recent contexts

* Training issues: vanishing & exploding gradients

* LSTM s a prominent RNN variant to keep track of both long-term and short-term
memories via multiple gates
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Agenda

e  Transformer Overview
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Transformer: Overview

* Transformer is a specific kind of sequence modeling architecture (based on DNNs)
e Use attention to replace recurrent operations in RNNs

* The most important architecture for language modeling (almost all LLMs are based on
Transformers)!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* f Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Tllia Polosukhin*
illia.polosukhin@gmail.com

Transformer: https://arxiv.org/pdf/1706.03762
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Transformer vs. RNN

Transformer
RNN (self-attention computations)
(recurrent computations) Nesdi iokan |0?g n thanks all
) )
Next word long and thanks for all Iﬁgg:ﬁr?: [.o .og ts Iog Iog’ [Iog
| | | | | eaa® (U7 W)\ \\9/
Loss  [=10g fions] (10 Jand [E1ogdmans] EI0gTtor | [=10gJan] p 'I 4
d =
I?I
Softmax over [ .]ln, i wli ol o e
Vocabulary C’_L‘D Trgr:z;?cl:fr:er $
RNN h Blocks [
=i =) =)=\
Input ' ] 7 ] e
EmbeZdings @ @ $ @ @ o X4
So long and thanks for Inpu‘t e
Encoding /_E_\ /_IE /E\ /E\ /E\
Input tokens S Iong and thanks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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Transformer: Motivation

e Parallel token processing
. RNN: process one token at a time (computation for each token depends on previous ones)
. Transformer: process all tokens in a sequence in parallel

* Long-term dependencies
. RNN: bad at capturing distant relating tokens (vanishing gradients)
. Transformer: directly access any token in the sequence, regardless of its position

* Bidirectionality
. RNN: can only model sequences in one direction
. Transformer: inherently allow bidirectional sequence modeling via attention
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Transformer Layer

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm

A
o

Add & Normalize

Transformer layer C
4

POSITIONAL
ENCODING
x+ (I x [

Figure source: https://jalammar.github.io/illustrated-transformer/
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Agenda

e Self-Attention
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Self-Attention: Intuition

e Attention: weigh the importance of different words in a sequence when processing a
specific word

. “When I'm looking at this word, which other words should | pay attention to in order to
understand it better?”

e Self-attention: each word attends to other words in the same sequence

*  Example: “The quick brown fox jumps over the lazy dog.”
. Suppose we are learning attention for the word “jumps”
. With self-attention, “jumps” can decide which other words in the sentence it should focus
on to better understand its meaning
. Might assign high attention to “fox” (the subject) & “over” (the preposition)
. Might assign less attention to words like “the” or “lazy”



i UNIVERSITY,VIRGINIA

Self-Attention: Example

Derive the center word representation as a
weighted sum of context representations!

Center word representation Context word representation

v, A

a; — E QG , E OG5 =1

acjea: : .’EjE:B :
v v

Attention score i — j, summed to 1

Context word (key) Center word (query)

The The
_ chicken
didn’t didn’t
Cross Cross
the the
road road
because because
it Current word = “it”
was was

too too
tired tired

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 49/63
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Self-Attention: Attention Score Computation

* Attention score is given by the softmax function over vector dot product

a; = E Qi Ly, E Qg5 = 1

TjExT TjEx

Q5 = Softmax(a:i . a:j)

. e,
. .
. .
. .y
.
. .
. .
. ey,
. N

Center word (query) representation Context word (key) representation

*  Why use two copies of word representations for attention computation?

We want to reflect the different roles a word plays (as the target word being compared to
others, or as the context word being compared to the target word)

If using the same copy of representations for attention calculation, a word will (almost)
always attend to itself heavily due to high dot product with itself!
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Self-Attention: Query, Key, and Value

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output
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Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

— O query representation

q, = x;W¢
we
Input word representation

key representation

value representation
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Self-Attention: Overall Computation

* Input: single word vector of each word &;
* Compute Q, K, V representations for each word:
q; = iUz'WQ ki, = CL‘Z-WK vV, = wiWV

 Compute attention scores with Q and K
. The dot product of two vectors usually has an expected magnitude proportional to v/d
. Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k

* Sum the value vectors weighted by attention scores

a; = E Ckij’vj

Tr;cx
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Self-Attention: lllustration

e Example: an input sequence with three words [xq, x5, X3] 8 Output of self-attention

* Suppose we want to compute the self-attention for x5 @

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,
N © ) "))
Divide the dot product by X 7$
vector dimension Jdi Jai Ve
) Compare x3’s query with
N the keys of all words
— ) — 4
Compute query, key, value @@ @@ @@
X1 X2 X3

~J0 x, ~J0  x, 6~

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 54/63
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Multi-Head Self-Attention

e Transformers use multiple attention heads for each self-attention module

* Intuition:
. Each head might attend to the context for different purposes (e.g., particular kinds of
patterns in the context)

. Heads might be specialized to represent different linguistic relationships
Multi-Head Attention

Concat
ﬁ

Scaled Dot-Product
Attention

TN 1 i
|
ﬁear Linear Linear

i i

Concatenate the outputs of all heads

I
L

yh h attention heads are computed separately

V K Q
Figure source: https://arxiv.org/pdf/1706.03762 55/63
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Multi-Head Self-Attention Variants

*  Multi-query attention (Fast Transformer Decoding: One Write-Head is All You Need):
share keys and values across all attention heads

* Grouped-query attention (GQA: Training Generalized Multi-Query Transformer Models
from Multi-Head Checkpoints): share keys and values within groups of heads

Multi-head Grouped-query Multi-query

e o —

Values

—J
—

) |
)

Keys

Queries

—

—
—

=
r— — — . e f— — . - JR—

J |
J |

—
—

J |

J |

—J - S
— — —

,,,,,,,,

,,,,,,,,

00| angnonan | oognain

Used in latest LLMs (e.g., Llama3)
Figure source: https://arxiv.org/pdf/2305.13245 56/63
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Parallel Computation of QKV

Self-attention computation performed for each token is independent of other tokens

Easily parallelize the entire computation, taking advantage of the efficient matrix
multiplication capability of GPUs

Process an input sequence with N words in parallel

Compute QKV for one word: q; = iBiWQ k;, = iBiWK v; = :BiWV € Rd

. .
.......
" .
L .
. .
......
L .
.
......

a v &
— I

X=| 7
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Parallel Computation of Attention

Attention computation can also be written in matrix form

Compute attention for one word:  a; = Softmax (qZ—J -V

S

-
Compute attention for one N words: A = Softmax (Q > V N

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Attention matrix

q1-ki

q1-k2

qi-k3

qi-k4

q2-k1

q2-k2

q2:k3

q2-k4

q3-k1

q3-k2

q3-k3

q3-k4

q4-k1

q4-k2

q4-k3

q4-kd

N
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Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Bidirectional self-attention:
. Each position to attend to all other positions in the input sequence
. Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)
. Use case: natural language understanding (NLU) where the entire input is available at once,
such as text classification & named entity recognition

hsa hp he every token attends to
. all tokens
\ //’:\\\:\\ o .
AN AN Bidirectional
/o E LN Self-Attention

¥ ) R Y
S S

(A~ e )e]--
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Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Unidirectional (or causal) self-attention:
. Each position can only attend to earlier positions in the sequence (including itself).
. Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
. Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf

hs hp hco every tok.en attends to qi-k1| —o0 | —o0 | —o0
A T A e its previous tokens
1‘ N q2:k1(g2:k2| —oc0 | —oc0
S Unidirectional N
’/ : Self-Attention q3-k1|q3-k2|q3-k3| —oo
A
I
( A ][ B ][ c } e q4-k1|g4-k2(q4-k3|q4-k4
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Position Encoding

*  Motivation: inject positional information to input vectors
q;, = wiWQ k;, = aziWK v; = miWV c Rd

a; = Softmax q; kj\ v, When x is W(?I’-d empeddlng, _q and k do
\/E not have positional information!

* How to know the word positions in the sequence? Use position encoding!

Transformer Block

L

bill

X = Composite
Embeddings
(word + position)

<P
Word m
Embeddings 8

Position
Embeddings

Janet WI|| back t

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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Position Encoding Methods

e Absolute position encoding (the original Transformer paper)

Learn position embeddings for each position
Not generalize well to sequences longer than those seen in training

* Relative position encoding (Self-Attention with Relative Position Representations)

Encode the relative distance between words rather than their absolute positions
Generalize better to sequences of different lengths

* Rotary position embedding (RoFormer: Enhanced Transformer with Rotary Position
Embedding)

Apply a rotation matrix to the word embeddings based on their positions
Incorporate both absolute and relative positions

Generalize effectively to longer sequences

Widely-used in latest LLMs
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Thank You!

Yu Meng
University of Virginia
yumeng5@virginia.edu
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