A
filli N TERSITY

Transformer Language Models

Slido: https://app.sli.do/event/kLfanHdyTj7DT2iuwxEJMs

Yu Meng
University of Virginia
yumeng5@virginia.edu

Oct 1, 2025

mailto:yumeng5@virginia.edu
https://app.sli.do/event/kLfanHdyTj7DT2iuwxEJMs
https://app.sli.do/event/kLfanHdyTj7DT2iuwxEJMs

i UNIVERSITY,VIRGINIA

Overview of Course Contents

* Week 6: Language Modeling with Transformers

. 2/59

il UNIVERSITYs VIRGINIA

Reminder

* Assignment 2 grades released; contact Wei-Lin (wlchen@virginia.edu) if you have
questions

* No class next week (instructor travel)

* Next lecture date: 10/15 guest lecture (held on Zoom; more info later)
* Assignment 3 due next Monday (10/6) 11:59pm

3/59

mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu
mailto:wlchen@virginia.edu

i UNIVERSITY,VIRGINIA

(Recap) Vanishing & Exploding Gradient

« Gradient signal from far away can be unstable! — Ling (:1;(4))
e Vanishing gradient = many small gradients multiplied together Mﬂ

* Exploding gradient = many large gradients multiplied together

i TJ) desesesesesesesesessaeasasseseas e e e e e e e e e e e e s e e ae e ananans U
Gradient backpropagation <« i o o h(i
L (] e
o\ W. 0| Wr |@
Lots of gradient multiplications! : : :
OLin (z@) 9rD 9h® 0R®) Gh® DL (2@) IWe IWe IWe
or® :6n® opM 9p® op®): op™ o (o o
*ermsmssssmsnssnannnnnnnnnnnnnnns® (@] o o
@) o @)
T Tz Te

the students opened their
=0) NE) z@

4/59

ik UNIVERSITYsf VIRGINIA

(Recap) Difficulty in Capturing Long-Term Dependencies

* RNNs are theoretically capable of remembering information over arbitrary lengths of
input, but they struggle in practice with long-term dependencies

* RNNs use a fixed-size hidden state to encode an entire sequence of variable length;
the hidden state is required to compress a lot of information

* RNNs might give more weight to the most recent inputs and may ignore or “forget”
important information at the beginning of the sentence while processing the end

@ :
Wi S| i Fixedsize hidden states!
ol

.

E{oooo]g:»[oooo
?[oooo]mg%[oooo]
F)[oooo]?%[

the students opened their
2z 22 23 o) 5/59

il UNIVERSITYs VIRGINIA

(Recap) Lack of Bidirectionality

* RNNs process the input sequence step by step from the beginning to the end (left to
right for English)

* At each time step, the hidden state only has access to the information from the past
without being able to leverage future contexts

* Example: “The bank is on the river” -> the word “bank” can be correctly disambiguated
only if the model has access to the word “river” later in the sentence

h(0) r) h(®) h®) B4
S)

]]
e\ W, |@| W,
(] (]
(] (]

Wi, Wi,

e® e

Left to right processing

&
\

j»[....]?[....}v

the students opened their
2z 22 23 o) 6/59

il UNIVERSITYo VIRGINIA

(Recap) Exposure Bias

Teacher forcing/exposure bias: during RNN training, the model always receives the
correct next word from the training data as input for the next step

When the model has to predict sequences on its own, it may perform poorly if it
hasn’t learned how to correct its own mistakes

--

: . During training:
: lon and thanks for all :
Next word “anuus g .. Next word = actual next word
Loss [~ 108 fiong] [—10g Jand| [~108Fwmanks] E10g Jtor | [=10g Jan During generation:
y Next word = model’s prediction
Softmaxover | [l i (o) (o) Ji.
Vocabulary T T
h
RNN

e @ @ @ @ @

So long and thanks for

il UNIVERSITYs VIRGINIA

(Recap) Long Short-Term Memory (LSTM)

e Challenge in RNNs: information encoded in hidden states tends to be local; distant
information gets lost

e LSTM design intuition:
. Remove information no longer needed from the context
. Add information likely to be needed for future time steps

* Inputs at each time step:

. Word embedding of the current word
. Hidden state from the previous time step
. Memory/cell state

* Three gates:
. Forget gate
. Add/input gate
. Output gate

8/59

i UNIVERSITYo VIRGINIA
(Recap) LSTM Computation (Forget Gate)

Y=o (U R W fa,»“)) y=o(z) ﬁ
4 j

-6 -4 -2 0 2 4 6

- c(®)
Decides what information to
discard from the cell state

—1)
Cell state c(t 1)

Hidden state h(,t_,l)

-, (D)

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 9/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

i UNIVERSITYo VIRGINIA
(Recap) LSTM Computation (Add/Input Gate)

—1)
Cell state c(t 1)

- o)
Decides what new
information to store
to the cell state

-, (D)

Hidden state h(,t_,l) »h,_

D 4 Wiw(t)>
Word embedding 45 (t)

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 10/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

i UNIVERSITY,VIRGINIA

(Recap) LSTM Computation (Candidate Cell State)
g® = tanh (Ugh(t_l) + Wga:(t))

—1)
Cell state c(t 1)

-0.5

~o(t)

Hidden state h(,t_,l)

-, (D)

Compute information needed
from the previous hidden
state and current inputs

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 11/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

i UNIVERSITY,VIRGINIA

(Recap) LSTM Computation (Cell State Update)
c® =i g\ + f(t) ® 1) Cell state updated by

combining the input
gate, candidate cell
state, forget gate &
previous cell state

—1)
Cell state c(t 1)

Hidden state h(,t_,l)

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 12/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

i UNIVERSITYo VIRGINIA
(Recap) LSTM Computation (Output Gate)

—1)
Cell state c(t 1)

- o®
Hidden state p,(t=1)

-, (D)

Decides what parts of the
cell state will be output

JLh(=D) 4 Woa:(t))

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 13/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

i UNIVERSITY,VIRGINIA
(Recap) LSTM Computation (Hidden State Update)

—1)
Cell state c(t 1)

- o(®)

Hidden state h(,t_,l)

— 0o © tanh (c(t))

Hidden state updated
using the output gate &
the updated cell state

Word embedding 45 (t)

&

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 14/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

fiili UNIVERSITY,/VIRGINIA
(Recap) Bidirectional RNNs

* Separate models are trained in the forward and backward directions

* Hidden states from both RNNs are concatenated as the final representations
Y1 Yo Y3 Yn

U‘T concatenated
»O outputs)
([:|<——|: RNN 2 ——[;IJ Backward RNN

(- ——RNNT 1])

Forward RNN

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf

15/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

A
P

s UNIVERSITYsf VIRGINIA
(Recap) Deep RNNs

* We can stack multiple RNN layers to build deep RNNs
* The output of a lower level serves as the input to higher levels

* The output of the last layer is used as the final output

¥
(ANN3———{]
(—1—1 RNN 2 1)
(

RNN 1 l)

L)

x
—
x
N
x
w
X
=

Figure source: https://web.stanford.edu/~jurafsky/slp3/13.pdf 16/59

https://web.stanford.edu/~jurafsky/slp3/13.pdf

ik UNIVERSITYsf VIRGINIA

(Recap) Transformer: Overview

* Transformer is a specific kind of sequence modeling architecture (based on DNNs)
e Use attention to replace recurrent operations in RNNs

* The most important architecture for language modeling (almost all LLMs are based on
Transformers)!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* f Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Tllia Polosukhin*
illia.polosukhin@gmail.com

Transformer: https://arxiv.org/pdf/1706.03762

https://arxiv.org/pdf/1706.03762

il UNIVERSITYo VIRGINIA

(Recap) Transformer vs. RNN

Transformer
RNN (self-attention computations)
(recurrent computations) Nexttoken long n thanks all

| t
e a
Next word long and thanks for all Iﬁgg:ﬁr?: .ogns’ Iog ts Iog mQ’ Iog
j | | U /

l l Head \U/ \?/

Loss [—T0g flong] [—10g Jand [~logtmans] E10gFtor | [=10g Fanl]

U /
\ |
, . (E —h=,\
F
Softmax over 06D
Vocabula:'Iy mﬂh mﬂlu Djhn quﬂ,ﬂ Djiu Trgr:z;?gfr:er $
ANN h Blocks =

A ‘ >~ A;—;",_/ﬂ
s @ @ @ ?] @) L) =0
Inpu {12
So long and thanks for Encgditng [/_E_\] [/_IE] [/ E \] [/ E \] [/ E \]
and for

Input tokens S Iong n thanks

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 18/59

https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYo VIRGINIA

(Recap) Transformer: Motivation

e Parallel token processing
. RNN: process one token at a time (computation for each token depends on previous ones)
. Transformer: process all tokens in a sequence in parallel

* Long-term dependencies
. RNN: bad at capturing distant relating tokens (vanishing gradients)
. Transformer: directly access any token in the sequence, regardless of its position

* Bidirectionality
. RNN: can only model sequences in one direction
. Transformer: inherently allow bidirectional sequence modeling via attention

19/59

i UNIVERSITY,VIRGINIA

(Recap) Transformer Layer

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm

A
o

Add & Normalize

Transformer layer C
4

POSITIONAL
ENCODING
x+ (I x [

Figure source: https://jalammar.github.io/illustrated-transformer/

20/59

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

il UNIVERSITYo VIRGINIA

(Recap) Self-Attention: Intuition

e Attention: weigh the importance of different words in a sequence when processing a
specific word

. “When I'm looking at this word, which other words should | pay attention to in order to
understand it better?”

e Self-attention: each word attends to other words in the same sequence

* Example: “The quick brown fox jumps over the lazy dog.”
. Suppose we are learning attention for the word “jumps”
. With self-attention, “jumps” can decide which other words in the sentence it should focus
on to better understand its meaning
. Might assign high attention to “fox” (the subject) & “over” (the preposition)
. Might assign less attention to words like “the” or “lazy”

i UNIVERSITY,VIRGINIA

Self-Attention: Example

Derive the center word representation as a
weighted sum of context representations!

Center word representation Context word representation

v, A

a; — E QG , E OG5 =1

acjea: : .’EjE:B :
v v

Attention score i — j, summed to 1

Context word (key) Center word (query)

The The
_ chicken
didn’t didn’t
Cross Cross
the the
road road
because because
it Current word = “it”
was was

too too
tired tired

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 22/59

https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYs VIRGINIA

Self-Attention: Attention Score Computation

* Attention score is given by the softmax function over vector dot product

a; = E Qi Ly, E Qg5 = 1

TjExT TjEx

Q5 = Softmax(a:i . a:j)

. e,
. .
. .
. .y
.
. .
. .
. ey,
. N

Center word (query) representation Context word (key) representation

* Why use two copies of word representations for attention computation?

We want to reflect the different roles a word plays (as the target word being compared to
others, or as the context word being compared to the target word)

If using the same copy of representations for attention calculation, a word will (almost)
always attend to itself heavily due to high dot product with itself!

23/59

il UNIVERSITYs VIRGINIA

Self-Attention: Query, Key, and Value

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output

24/59

i UNIVERSITY,VIRGINIA

Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

— O query representation

q, = x;W¢
we
Input word representation

key representation

value representation

25/59

il UNIVERSITYo VIRGINIA

Self-Attention: Overall Computation

* Input: single word vector of each word &;
* Compute Q, K, V representations for each word:
q; = iUz'WQ ki, = CL‘Z-WK vV, = wiWV

 Compute attention scores with Q and K
. The dot product of two vectors usually has an expected magnitude proportional to v/d
. Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k

* Sum the value vectors weighted by attention scores

a; = E Ckij’vj

Tr;cx

i UNIVERSITY,VIRGINIA

Self-Attention: lllustration

e Example: an input sequence with three words [xq, x5, X3] 8 Output of self-attention

* Suppose we want to compute the self-attention for x5 @

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,
N ©) "))
Divide the dot product by X 7$
vector dimension Jdi Jai Ve
) Compare x3’s query with
N the keys of all words
—) — 4
Compute query, key, value @@ @@ @@
X1 X2 X3

~J0 x, ~J0 x, 6~

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 27/59

https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYs VIRGINIA
Multi-Head Self-Attention

e Transformers use multiple attention heads for each self-attention module

* Intuition:
. Each head might attend to the context for different purposes (e.g., particular kinds of
patterns in the context)

. Heads might be specialized to represent different linguistic relationships
Multi-Head Attention

Concat
ﬁ

Scaled Dot-Product
Attention

TN 1 i
|
ﬁear Linear Linear

i i

Concatenate the outputs of all heads

I
L

yh h attention heads are computed separately

V K Q
Figure source: https://arxiv.org/pdf/1706.03762 28/59

https://arxiv.org/pdf/1706.03762

i UNIVERSITYo VIRGINIA
Multi-Head Self-Attention Variants

* Multi-query attention (Fast Transformer Decoding: One Write-Head is All You Need):
share keys and values across all attention heads

* Grouped-query attention (GQA: Training Generalized Multi-Query Transformer Models
from Multi-Head Checkpoints): share keys and values within groups of heads

Multi-head Grouped-query Multi-query

e o —

Values

—J
—

) |
)

Keys

Queries

—

—
—

=
r— — — . e f— — . - JR—

J |
J |

—
—

J |

J |

—J - S
— — —

,,,,,,,,

,,,,,,,,

00| angnonan | oognain

Used in latest LLMs (e.g., Llama3)
Figure source: https://arxiv.org/pdf/2305.13245 29/59

https://arxiv.org/pdf/1911.02150
https://arxiv.org/pdf/1911.02150
https://arxiv.org/pdf/1911.02150
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245

il UNIVERSITYo VIRGINIA

Parallel Computation of QKV

Self-attention computation performed for each token is independent of other tokens

Easily parallelize the entire computation, taking advantage of the efficient matrix
multiplication capability of GPUs

Process an input sequence with N words in parallel

Compute QKV for one word: q; = iBiWQ k;, = iBiWK v; = :BiWV € Rd

. .
.......
" .
L .
. .
......
L .
.
......

a v &
— I

X=| 7

i UNIVERSITY,VIRGINIA

Parallel Computation of Attention

Attention computation can also be written in matrix form

Compute attention for one word: a; = Softmax (qZ—J -V

S

-
Compute attention for one N words: A = Softmax (Q > V N

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Attention matrix

q1-ki

q1-k2

qi-k3

qi-k4

q2-k1

q2-k2

q2:k3

q2-k4

q3-k1

q3-k2

q3-k3

q3-k4

q4-k1

q4-k2

q4-k3

q4-kd

N

31/59

https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYs VIRGINIA

Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Bidirectional self-attention:
. Each position to attend to all other positions in the input sequence
. Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)
. Use case: natural language understanding (NLU) where the entire input is available at once,
such as text classification & named entity recognition

hsa hp he every token attends to
. all tokens
\ //’:\\\:\\ o .
AN AN Bidirectional
/o E LN Self-Attention

¥) R Y
S S

(A~ e)e]--

ik UNIVERSITYs VIRGINIA

Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Unidirectional (or causal) self-attention:
. Each position can only attend to earlier positions in the sequence (including itself).
. Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
. Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf

hs hp hco every tok.en attends to qi-k1| —o0 | —o0 | —o0
A T A e its previous tokens
1‘ N q2:k1(g2:k2| —oc0 | —oc0
S Unidirectional N
’/ : Self-Attention q3-k1|q3-k2|q3-k3| —oo
A
I
(A][B][c } e q4-k1|g4-k2(q4-k3|q4-k4

i UNIVERSITY,VIRGINIA

Agenda

e Position Encoding

34/59

il UNIVERSITYo VIRGINIA

Position Encoding

* Motivation: inject positional information to input vectors
q;, = wiWQ k;, = aziWK v; = miWV c Rd

a; = Softmax q; kj\ v, When x is W(?I’-d empeddlng, _q and k do
\/E not have positional information!

* How to know the word positions in the sequence? Use position encoding!

Transformer Block

L

bill

X = Composite
Embeddings
(word + position)

<P
Word m
Embeddings 8

Position
Embeddings

Janet WI|| back t

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

https://web.stanford.edu/~jurafsky/slp3/8.pdf

UNIVERSITYs VIRGINIA

Position Encoding Methods

e Absolute position encoding (the original Transformer paper)

Learn position embeddings for each position
Not generalize well to sequences longer than those seen in training

* Relative position encoding (Self-Attention with Relative Position Representations)

Encode the relative distance between words rather than their absolute positions
Generalize better to sequences of different lengths

* Rotary position embedding (RoFormer: Enhanced Transformer with Rotary Position
Embedding)

Apply a rotation matrix to the word embeddings based on their positions
Incorporate both absolute and relative positions

Generalize effectively to longer sequences

Widely-used in latest LLMs

36/59

https://arxiv.org/pdf/1803.02155
https://arxiv.org/pdf/1803.02155
https://arxiv.org/pdf/1803.02155
https://arxiv.org/pdf/2104.09864
https://arxiv.org/pdf/2104.09864

i UNIVERSITY,VIRGINIA

Agenda

e Tokenization

37/59

il UNIVERSITYo VIRGINIA

Tokenization: Overview

Tokenization: splitting a string into a sequence of tokens

Simple approach: use whitespaces to segment the sequence

. One token = one word
. We have been using “tokens” and “words” interchangeably

However, segmentation using whitespaces is not the approach used in modern large
language models

Multiple models, each with different capabilities and price points. Prices can be viewed in
units of either per 1M or 1K tokens. You can think of tokens as pieces of words, where 1,000
tokens is about 750 words.

38/59

il UNIVERSITYs VIRGINIA

Limitation of Word-Based Segmentation

* Qut-of-vocabulary (OOV) issues:
. Cannot handle words never seen in our training data
. Reserving an [UNK] token for unseen words is a remedy

* Subword information:
. Loses subword information valuable for understanding word meaning and structure
. Example: “unhappiness” -> “un” + “happy” + “ness”

e Data sparsity and exploded vocabulary size:
. Require a large vocabulary (vocabulary size = number of unique words)
. The model sees fewer examples of each word (harder to generalize)

39/59

ik UNIVERSITYsf VIRGINIA

Single-Character Segmentation?

* How about segmenting sequences by character?
. No OQV issue
. Small vocabulary size

* Increased sequence length:
. Significantly increases the length of input sequences
. Transformer’s self-attention has quadratic complexity w.r.t. sequence length!

* Loss of word-level semantics:
. Characters alone often don't carry semantic meaning/linguistic patterns

40/59

il UNIVERSITYf VIRGINIA

Subword Tokenization

* Strike a balance between character-level and word-level tokenization
. Capture meaningful subword semantics
. Handle out-of-vocabulary words better
. Efficient sequence modeling

e Three common algorithms:
. Byte-Pair Encoding (BPE): Sennrich et al. (2016)
. WordPiece: Schuster and Nakajima (2012)
. SentencePiece: Kudo and Richardson (2018)

e Subword tokenization usually consists of two parts:

. A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens)
. A token segmenter that takes a raw sentence and tokenizes it according to that vocabulary

41/59

https://arxiv.org/pdf/1508.07909
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/37842.pdf
https://arxiv.org/pdf/1808.06226

il UNIVERSITYo VIRGINIA

Byte-Pair Encoding (BPE) Overview

e BPE is the most commonly used tokenization algorithm in modern LLMs

* Intuition: start with a character-level vocabulary and iteratively merges the most
frequent pairs of tokens

* Initialization: Let vocabulary be the set of all individual characters: {A, B, C, D, ..., a, b,
c,d, ...}

* Frequency counting: count all adjacent symbol pairs (could be a single character or a
previously merged pair) in the training corpus

* Pair merging: merge the most frequent pair of symbols (e.g. ‘t’, ‘h’ => “th”)

* Update corpus: replace all instances of the merged pair in the corpus with the new
token & update the frequency of pairs

* Repeat: repeat the process of counting, merging, and updating until a predefined
number of merges (or vocabulary size) is reached

il UNIVERSITYo VIRGINIA

BPE: Token Learner

Token learner of BPE

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V< all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k times

11, tr < Most frequent pair of adjacent tokens in C

tvew <1 + IR # make new token by concatenating

VeV +tyew # update the vocabulary

Replace each occurrence of 77, tg in C with #y.y # and update the corpus
return V

Figure source: https://web.stanford.edu/~jurafsky/slp3/2.pdf

https://web.stanford.edu/~jurafsky/slp3/2.pdf

i UNIVERSITY,VIRGINIA

BPE Example

Suppose we have the following corpus

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

Special “end-of-word” character

corpus ¥ (distinguish between subword units
5 low _~ vs. whole word)
2 lowest_
6 newer _
3 wider _
2 new_
vocabulary

_,d, e, i, 1, n, o, r, s, t, w

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 44/59

https://web.stanford.edu/~jurafsky/slp3/2.pdf

i UNIVERSITY,VIRGINIA

BPE: Counting & Merging

The adjacent symbol pair with the highest frequency is “er” (count = 9)

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 low _ Merge “er” 5 low _
2 lowest_ - 2 lowest_
6 newi_eri_ 6 newi_er!_
3 widleri_ 3 widleri_
2 new_ 2 new_
vocabulary » vocabulary

_,d, e, i, 1, n, o, r, s, t, w

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf

= ————
1 1

_,d, e i, 1, n, o, r, s, t, w, er!

45/59

https://web.stanford.edu/~jurafsky/slp3/2.pdf

i UNIVERSITY,VIRGINIA

BPE: Counting & Merging

The adjacent symbol pair with the highest frequency is “er_” (count = 9)

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 low _ Merge “er ” 5 low _
2 lowest _ 2 lowest _
6 ne Wi-éi‘__;_i » 6 ne wi-er_i
3 wider | 3 widier_:
2 new_ 2 new_
vocabulary » vocabulary R :

_, d, e, i, 1, n, o, r, s, t, w, er

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 46/59

https://web.stanford.edu/~jurafsky/slp3/2.pdf

i UNIVERSITY,VIRGINIA

BPE: Counting & Merging

The adjacent symbol pair with the highest frequency is “ne” (count = 8)

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 1 oOw __ Merge “ne” 5 1 oOw _
2 lowest_ 2 lowest _
r====1 ‘ ===
6 'neiwer_ 6 | new er_
(R I | -
3 wider_ 3 wider_
re===n re———
2 new _ 2 inew _
[S—— | -
vocabulary vocabulary R
. . 1 1
,d,e,i,1,n,0, 1,5, t,w, er, er - _,d,e,i,1,n,0,1,s,t,w, er,er_J/ne i

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 47/59

https://web.stanford.edu/~jurafsky/slp3/2.pdf

ik UNIVERSITYs VIRGINIA

BPE: Counting & Merging

Continue the process to merge more adjacent symbols corpus
5 low _
low low low low low lowest lowest newer newer newer 2 lowest _
newer newer newer wider wider wider new new 6 hewer_

3 wider_
2 new_

merge current vocabulary

(ne, w) _,d,e,i,1,n,0, 1, s, t,w, er, er__, ne, new

(1, o) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo

(lo, w) —,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, 1o, low

(new, er_) _,d,e,i,1,n, 0,1, s, t,w, er, er_, ne, new, 1o, low, newer__

(low,) _,d,e,i,1,n, 0, 1, s, t,w, er, er_, ne, new, 1o, low, newer__, low__

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf

https://web.stanford.edu/~jurafsky/slp3/2.pdf

il UNIVERSITYo VIRGINIA

BPE: Token Segmenter

* Once we learn our vocabulary, we need a token segmenter to tokenize an unseen
sentence (from test set)

* Just run (greedily based on training data frequency) on the merge rules we have
learned from the training data on the test data

e Example:
. Assume the merge rules: [(e, r), (er, _), (n, e), (ne, w), (I, 0), (lo, w), (new, er_), (low,)]
. First merge all adjacent “er”, then all adjacent “er_”, then all adjacent “ne”...
. “newer_” from the test set will be tokenized as a whole word
. “lower_”" from the test set will be tokenized as “low” + “er_”

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

2

“lower_" is an unseen word from the training set

49/59

i UNIVERSITY,VIRGINIA

Agenda

e QOther Transformer Modules

50/59

ik UNIVERSITYsf VIRGINIA

Transformer Block

* Modules in Transformer layers:

. Multi-head attention

. Layer normalization (LayerNorm)
. Feedforward network (FFN)

. Residual connection

h;

pa

Layer Norm]

Residual Pis

-~ Stream

-

Feedforward

i+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 51/59

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf

i UNIVERSITY,VIRGINIA

Layer Normalization: Motivation

Proposed in Ba et al. (2016)

hi 1 h;
”3
@

Xi-1 X

The distribution of inputs to DNN can change during training — “internal covariate shift”

Slow down the training process: the model constantly adapts to changing distributions

Residual hive

_ -~ Stream

Feedforward

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

52/59

https://arxiv.org/pdf/1607.06450
https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYs VIRGINIA

Layer Normalization: Solution

* Normalize the input vector x
Calculate the mean & standard deviation over the input vector dimensions

1 & d
=2 2 (i
i=1 i=1

T —p

o
* Learn to scale and shift the normalized output with parameters

Sl.l'—‘

Apply normalization

T =

T — |

LayerNorm(x) = v
4

+ 8

Learnable parameters

53/59

il UNIVERSITYs VIRGINIA
Feedforward Network (FFN)

FFN in Transformer is a 2-layer network (one hidden layer, two weight matrices)

FFN(wZ) = ReLU(wZW1)W2 hi-1 hi Residual hiv1

_ -~ Stream

<

Apply non-linear activation after the first layer

* Same weights applied to every token

Weights are different across different Transformer layers

54/59

il UNIVERSITYof VIRGINIA

Residual Connections

* Add the original input to the output of a sublayer (e.g., attention/FFN)
y=—x + f(w) M1 hj Residual Pis

* Benefits
. Address the vanishing gradient problem
. Facilitate information flow across the network
. Help scale up model

Layer NormJ

i i+1

55/59

il UNIVERSITYo VIRGINIA

Language Model Head

* Language model head is added to the final layer

Usually apply the weight tying trick (share weights between input embeddings and the
output embeddings

Word probabilities 1 x |V|

Language Model Head [(Lo)] Softmax over vocabulary V
L
takes h™~p; and outputs a @ L Logits 1 x V|

distribution over vocabulary V

Unembedding layer

Unembedding layer dx |V|
[
L Dy O 1xd
Layer L ,———1 —————— bt .
Transformer ! |
Block —-“ —————— |‘ _______________
Cwt J (w2)

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf

i UNIVERSITY,VIRGINIA

Transformer Language Model: Overview

Token probabilities e y|V| Wi, 4
| |

| Sample token to
generate at position i+1

softmax (uubedieliatbodials

Language
Modeling

adlls
Head logits @ ',,‘
ﬁ
h

ol
L
i

Layer L layer norm

layer norm
L-1 L
h="

X5
h, = &,

Layer 2 layer norm

i

layer norm
Layer 1 layer norm

Input il
Encoding E

Input token A

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 57/59

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYs VIRGINIA

Transformer Language Model Training

Use cross-entropy loss to train Transformers for language modeling (like RNN LMs)

Next token long and thanks for all
Loss | log ylong| |—logyand | |— logytha.nks log yf0r| |—10g yan|
Language | + ’ Vs N
Modeli g" oot '°9’5 logits logits
(I3|e:uljng \U/ \U/ \U/ \\UJI
Stacked e ’*’z-'-:;:—‘:_/?f_i B —— ——
Transformer e
Blocks + %l%l%
//f,,‘:" —
x1 x2 x3 (x4] [x5)
Input S<(1] D < & D<[5
Encoding /_E /E\ /E\ /E\ /_E
I T f } '
Input tokens So Iong and thanks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/10.pdf 58/59

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Thank You!

Yu Meng
University of Virginia
yumeng5@virginia.edu

||

IVERSITY
7VIRGINIA

mailto:yumeng5@virginia.edu

