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Overview of Course Contents

Week 9: Large Language Models (LLMs) & In-context Learning
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Reminder

*  Midterm report due today 11:59pm! (guideline on Canvas)
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(Recap) Tokenization: Overview

Tokenization: splitting a string into a sequence of tokens

Simple approach: use whitespaces to segment the sequence

. One token = one word
. We have been using “tokens” and “words” interchangeably

However, segmentation using whitespaces is not the approach used in modern large
language models

Multiple models, each with different capabilities and price points. Prices can be viewed in
units of either per 1M or 1K tokens. You can think of tokens as pieces of words, where 1,000
tokens is about 750 words.
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(Recap) Limitation of Word-Based Segmentation

*  Qut-of-vocabulary (OOV) issues:
. Cannot handle words never seen in our training data
. Reserving an [UNK] token for unseen words is a remedy

*  Subword information:
. Loses subword information valuable for understanding word meaning and structure
. Example: “unhappiness” -> “un” + “happy” + “ness”

e Data sparsity and exploded vocabulary size:
. Require a large vocabulary (vocabulary size = number of unique words)
. The model sees fewer examples of each word (harder to generalize)
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(Recap) Single-Character Segmentation?

* How about segmenting sequences by character?
. No OQV issue
. Small vocabulary size

* Increased sequence length:
. Significantly increases the length of input sequences
. Transformer’s self-attention has quadratic complexity w.r.t. sequence length!

* Loss of word-level semantics:
. Characters alone often don't carry semantic meaning/linguistic patterns
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(Recap) Subword Tokenization

* Strike a balance between character-level and word-level tokenization
. Capture meaningful subword semantics
. Handle out-of-vocabulary words better
. Efficient sequence modeling

e Three common algorithms:
. Byte-Pair Encoding (BPE): Sennrich et al. (2016)
. WordPiece: Schuster and Nakajima (2012)
. SentencePiece: Kudo and Richardson (2018)

e Subword tokenization usually consists of two parts:

. A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens)
. A token segmenter that takes a raw sentence and tokenizes it according to that vocabulary
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(Recap) Byte-Pair Encoding (BPE) Overview

* BPE is the most commonly used tokenization algorithm in modern LLMs

* Intuition: start with a character-level vocabulary and iteratively merge the most
frequent pairs of tokens

* Initialization: let vocabulary be the set of all individual characters: {A, B, C, D, ..., a, b,
c,d, ...}

*  Frequency counting: count all adjacent symbol pairs (could be a single character or a
previously merged pair) in the training corpus

*  Pair merging: merge the most frequent pair of symbols (e.g. ‘t’, ‘h’ => “th”)

* Update corpus: replace all instances of the merged pair in the corpus with the new
token & update the frequency of pairs

* Repeat: repeat the process of counting, merging, and updating until a predefined
number of merges (or vocabulary size) is reached
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(Recap) BPE: Token Learner

Token learner of BPE

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V< all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k times

11, tr < Most frequent pair of adjacent tokens in C

tvew <1 + IR # make new token by concatenating

VeV +tyew # update the vocabulary

Replace each occurrence of 77, tg in C with #y.y # and update the corpus
return V

Figure source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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(Recap) BPE Example

Suppose we have the following corpus

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

Special “end-of-word” character

corpus ¥ (distinguish between subword units
5 low _~ vs. whole word)
2 lowest_
6 newer _
3 wider _
2 new_
vocabulary

_,d, e, i, 1, n, o, r, s, t, w

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 10/62
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(Recap) BPE: Counting & Merging

The adjacent symbol pair with the highest frequency is “er” (count = 9)

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 low _ Merge “er” 5 low _
2 lowest_ - 2 lowest_
6 newer. 6 newier!_
3 widleri_ 3 widleri_
2 new_ 2 new_
vocabulary » vocabulary ==

—y Wy By By Ly M, 0y Ty 8y Ty W _,d, e i, 1, n, o, r, s, t, w, er!

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 11/62
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(Recap) BPE: Counting & Merging

The adjacent symbol pair with the highest frequency is “er_” (count = 9)

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 low _ Merge “er ” 5 low _
2 lowest _ 2 lowest _
6 ne Wi-éi‘__;_i » 6 ne wi-er_i
3 wider | 3 widier_:
2 new_ 2 new_
vocabulary » vocabulary R :

_, d, e, i, 1, n, o, r, s, t, w, er

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 12/62
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(Recap) BPE: Counting & Merging

The adjacent symbol pair with the highest frequency is “ne” (count = 8)

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

corpus corpus
5 1 oOw __ Merge “ne” 5 1 oOw _
2 lowest_ 2 lowest _
=== ‘ ===
6 'neiwer_ 6 | new er_
(R I | -
3 wider_ 3 wider_
l'""': r"".
2 inew _ 2 ‘new _
[ S—— | -
vocabulary vocabulary R
. . 1 1
_,d,e,i,1,n,0, 1,5, t,w, er, er_ - _,d,e,i,1,n,0,1,s,t,w, er,er_J/ne i

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf 13/62
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(Recap) BPE: Counting & Merging

Continue the process to merge more adjacent symbols corpus
5 low _
low low low low low lowest lowest newer newer newer 2 lowest_
newer newer newer wider wider wider new new 6 newer_

3 wider_
2 new_

merge current vocabulary

(ne, w) _,d,e,i,1,n,0, 1, s, t,w, er, er__, ne, new

(1, o) _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, lo

(lo, w) —,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, 1o, low

(new, er_) _,d,e,i,1,n, 0,1, s, t,w, er, er_, ne, new, 1o, low, newer__

(low, ) _,d,e,i,1,n, 0, 1, s, t,w, er, er_, ne, new, 1o, low, newer__, low__

Example source: https://web.stanford.edu/~jurafsky/slp3/2.pdf
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(Recap) BPE: Token Segmenter

* Once we learn our vocabulary, we need a token segmenter to tokenize an unseen
sentence (from test set)

* Just run (greedily based on training data frequency) on the merge rules we have
learned from the training data on the test data

e Example:
. Assume the merge rules: [(e, r), (er, _), (n, e), (ne, w), (I, 0), (lo, w), (new, er_), (low, )]
. First merge all adjacent “er”, then all adjacent “er_”, then all adjacent “ne”...
. “newer_” from the test set will be tokenized as a whole word
. “lower_”" from the test set will be tokenized as “low” + “er_”

low low low low low lowest lowest hewer newer newer
newer newer newer wider wider wider new new

2

“lower_" is an unseen word from the training set
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(Recap) Transformer Block

* Modules in Transformer layers:

. Multi-head attention

. Layer normalization (LayerNorm)
. Feedforward network (FFN)

. Residual connection

h;

pa

Layer NormJ "

Residual Pis

-~ Stream

-

Feedforward

i+1

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 16/62



https://web.stanford.edu/~jurafsky/slp3/8.pdf

i UNIVERSITY,VIRGINIA

(Recap) Layer Normalization: Motivation

Proposed in Ba et al. (2016)

hi 1 h;
”3
@

Xi-1 X

The distribution of inputs to DNN can change during training — “internal covariate shift”

Slow down the training process: the model constantly adapts to changing distributions

Residual hive

_ -~ Stream

Feedforward

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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(Recap) Layer Normalization: Solution

* Normalize the input vector x
Calculate the mean & standard deviation over the input vector dimensions

1 & d
=2 2 (i
i=1 i=1

T —p

o
* Learn to scale and shift the normalized output with parameters

Sl.lr—‘

Apply normalization

T =

T — |

LayerNorm(x) = v
4

+

Learnable parameters
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(Recap) Feedforward Network (FFN)

FFN in Transformer is a 2-layer network (one hidden layer, two weight matrices)

FFN(wZ) = ReLU(wZW1)W2 hi-1 hi Residual hiv1

_ -~ Stream

<

Apply non-linear activation after the first layer

* Same weights applied to every token

Weights are different across different Transformer layers
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(Recap) Residual Connections

Add the original input to the output of a sublayer (e.g., attention/FFN)

Benefits
Address the vanishing gradient problem
Facilitate information flow across the network

Help scale up model

y=xz+ f(x)

hi_1

h;

Residual Pis
-~ Stream

-
-

Feedforward

Layer Norm]

i+1
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(Recap) Language Model Head

* Language model head is added to the final layer

Usually apply the weight tying trick (share weights between input embeddings and the
output embeddings)

Word probabilities 1 x |V|

Language Model Head [ (Lo ) ] Softmax over vocabulary V
L
takes h™~p; and outputs a @ L Logits 1 x V|

distribution over vocabulary V

Unembedding layer

Unembedding layer dx |V|
[
L Dy O 1xd
Layer L ,———1 —————— bt .
Transformer ! |
Block —-“ —————— |‘ _______________
Cwt J (w2 )

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 21/62
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(Recap) Transformer Language Model: Overview

Token probabilities e y|V| Wi, 4
| | |

Sample token to
generate at position i+1

softmax .| 0 1 0

Language
Modeling

Head logits @ ',,‘
ﬁ
ht

Layer L layer norm

layer norm
L-1 L
h="

X5
h, = &,

Layer 2 layer norm

i

layer norm
Layer 1 layer norm

Input il
Encoding E

Input token A

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 22/62



https://web.stanford.edu/~jurafsky/slp3/8.pdf

il UNIVERSITYs VIRGINIA

(Recap) Transformer Language Model Training

Use cross-entropy loss to train Transformers for language modeling (like RNN LMs)

Next token long and  thanks for all
Loss | log ylong| I—log W | |— log ythanks 10g yfor| |_ log yall|
Language | + ’ a ™
Modeli g" logts '°9’5 logits logits
anéng \U/ \U/ \U/ \\UJI
. |: *:. = f *I \
Stacked 1 ’*’;;-'-%:‘—?T_E =
Transformer sae =
Blocks + %l%l%
Input o<1l % H<{3] 3 D<[5
Encoding /_ E y E \ y E \ / E \ /_E
| T f } '
Input tokens So Iong and thanks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 23/62
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Agenda

* Language Model Pretraining: Overview
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Pretraining: Motivation

* Before pretraining became prevalent in NLP, most NLP models were trained from
scratch on downstream task data

e Data scarcity: many NLP tasks do not have large labeled datasets available (costly to
obtain)

* Poor generalization: models trained from scratch on specific tasks do not generalize
well to unseen data or other tasks

e Sensitivity to noise and randomness: models are more likely to learn spurious
correlations or be affected by annotation errors/randomness in training



il UNIVERSITYo VIRGINIA

Pretraining: Motivation

* There are abundant text data on the web, with rich information of linguistic features
and knowledge about the world

e Learning from these easy-to-obtain data greatly benefits various downstream tasks

;*‘W \
Q

Wy arXiv @ reddit

WIKIPEDIA
The Free Encyclopedia

Che
New 1lork Gﬂlb = stackoverflow
Cimes
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Pretraining: Multi-Task Learning

In my free time, | like to {run, banana} (Grammar)
| went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)

The capital of Denmark is {Copenhagen, London} (World knowledge)

| was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

The word for “pretty” in Spanish is {bonita, hola} (Translation)
3+8+4={15, 11} (Math)

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8 2Gr20bc89LKimHLODIH-
uof9MOyYFVd3FA4/edit#tslide=id.g28e2e9aa709_0_1
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Pretraining: Self-Supervised Learning
* Pretraining is a form of self-supervised learning

*  Make a part of the input unknown to the model

* Use other parts of the input to reconstruct/predict the unknown part

(L
Mask/Corrupt ( *@:| Reconstruct

> 'L Pretrained Model 'J

Original data Corrupted data Original data

v

No Human Supervision Needed!
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Pretraining + Fine-Tuning

*  Pretraining: trained with pretext tasks on large-scale text corpora

*  Fine-tuning (continue training): adjust the pretrained model’s parameters with fine-
tuning data

* Fine-tuning data can have different forms:
. Task-specific labeled data (e.g., sentiment classification, named entity recognition)
. (Multi-turn) dialogue data (i.e., instruction tuning)

Pretraining Data

Pretrained LM Fine-tuned LM

Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf
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Transformer for Pretraining

* Transformer is the common backbone architecture for language model pretraining

* Efficiency: Transformer processes all tokens in a sequence simultaneously — fast and
efficient to train, especially on large datasets

e  Scalability: Transformer architectures have shown impressive scaling properties, with
performance improving as model size and training data increase (more on this later!)

* Versatility: Transformer can be adapted for various tasks and modalities beyond just
text, including vision, audio, and other multimodal applications
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Agenda

Pretraining for Different Transformer Architectures
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Transformer Architectures

e Based on the type of self-attention, Transformer can be instantiated as

. Encoder: Bidirectional self-attention
. Decoder: Unidirectional self-attention
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Applications of Transformer Architectures

* Encoder (e.g., BERT):
. Capture bidirectional context to learn each token representations
. Suitable for natural language understanding (NLU) tasks

* Decoder (modern large language models, e.g., GPT):
. Use prior context to predict the next token (conventional language modeling)
. Suitable for natural language generation (NLG) tasks
. Can also be used for NLU tasks by generating the class labels as tokens

NLU:
Text classification
Named entity recognition
Relation extraction
Sentiment analysis

NLG:
Text summarization
Machine translation
Dialogue system
Question answering
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Decoder Pretraining

* Decoder architecture is the prominent choice in large language models
* Pretraining decoders is first introduced in GPT (generative pretraining) models

* Follow the standard language modeling (cross-entropy) objective

N
1
L£(0) = N Zlogpe(%\l'l,iﬁ% ey Ti—1)

=1
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GPT Series

 GPT-1(2018): 12 layers, 117M parameters, trained in ~1 week
* GPT-2(2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3(2020): 96 layers, 175B parameters, trained in several months

Model ;
Parameter .
..
L 4
*
& ©® o ..

(175B) ,*°

GPT-1 GPT-2 et
(OlB) (1.53)--‘- -‘--lllll
2018 2019 2020 2023

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are_unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 35/62
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Llama Series
 Llama-1(2023/02): 7B/13B/33B/65B

 Llama-2 (2023/07): 7B/13B/70B
 Llama-3 (3.1 & 3.2) (2024/07): 1B/3B/8B/70B/405B w/ multi-modality

2.2
—— LLaMA 7B

2.1 —— LLaMA 13B
0 2.0 —— LLaMA 33B
9 Lo —— LLaMA 65B
o™ Larger models learn
.% 1.8 pretraining data better
= 1.7

1.61

1.5

0 200 400 600 800 1000 1200 1400
Billion of tokens
Papers: (Llama-1) https://arxiv.org/pdf/2302.13971

(Llama-2) https://arxiv.org/pdf/2307.09288
(Llama-3) https://arxiv.org/pdf/2407.21783 36/62
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Further Reading on Decoder LMs

 Mistral 7B [Jiang et al., 2023]
e Qwen Technical Report [Bai et al., 2023]
*  GPT-4 Technical Report [OpenAl, 2023]

* Gemma: Open Models Based on Gemini Research and Technology [Gemma Team,
2024]
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Encoder Pretraining: BERT

BERT pretrains encoder models with bidirectionality

Masked language modeling (MLM): With 15% words randomly masked, the model
learns bidirectional contextual information to predict the masked words

long thanks the

CE Loss

LM Head with Softmax

over Vocabulary

714 ) 734 zs 4 Z3) zg}

4 7
[ Bidirectional Transformer Encoder J

(@ IHEEAROE

[mask] and I [mask] I for all apricot fish
So ' long | and 'thanks I for all the fish

BERT: https://arxiv.org/pdf/1810.04805.pdf Figure source: https://web.stanford.edu/~jurafsky/slp3/10.pdf
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Encoder Pretraining: BERT

* Next sentence prediction (NSP): the model is presented with pairs of sentences

* The model is trained to predict whether each pair consists of an actual pair of adjacent
sentences from the training corpus or a pair of unrelated sentences

e i {34 834 e

BERT: https://arxiv.org/pdf/1810.04805.pdf Figure source: https://web.stanford.edu/~jurafsky/slp3/10.pdf 39/62
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BERT Fine-Tuning

*  Fine-tuning pretrained BERT models takes different forms depending on task types

*  Usually replace the LM head with a linear layer fine-tuned on task-specific data

Class Class

Label Label
* &
c n L m L e ) (]
BERT BERT
E[CLS] E, E, Ey IEICLSI E, | Ey E[SEP]| E/ Ey
~ i r ——r T T
o 1ot |12 | =) - (e (%)
I \_'_1 \_'_l
l
Single Sentence Sentence 1 Sentence 2

Single sequence classification Sequence-pair classification
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BERT vs. GPT on NLU tasks

*  BERT outperforms GPT-1 on a set of NLU tasks

* Encoders capture bidirectional contexts — build a richer understanding of the text by
looking at both preceding and following words

* Are encoder models still better than state-of-the-art (large) decoder models?
. LLMs can be as good as (if not better than) encoder models on NLU: Can ChatGPT
Understand Too?
. The sheer model size + massive amount of pretraining data compensate for LLMs’
unidirectional processing

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52:1 85.8 88.9 66.4 79.6

BERTLArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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BERT Variant I: RoBERTa

* Pretrain the model for longer, with bigger batches over more data
e Pretrain on longer sequences

* Dynamically change the masking patterns applied to the training data in each epoch

SQuAD

Model data bsz steps (v1.1/2.0)

MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT arcE

with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7

RoBERTa: https://arxiv.org/pdf/1907.11692.pdf
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BERT Variant Ill: ELECTRA

* Use a small MLM model as an auxiliary generator (discarded after pretraining)

e  Pretrain the main model as a discriminator

*  The small auxiliary MLM and the main discriminator are jointly trained

* The main model’s pretraining task becomes more and more challenging in pretraining

* Major benefits: sample efficiency + learning curriculum

sample
the —> [MASK] —> --> the —> —> original
chef — chef — Gen_erator chef — Discriminator —> original
cooked —> [MASK] —>{ (typically a |[-> ate —> (ELECTRA) —> replaced
the —» the —»| small MLM) the — —> original
meal —> meal —> meal —> —> original

ELECTRA: https://arxiv.org/pdf/2003.10555.pdf
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ELECTRA Performance

ELECTRA pretraining incurs lower computation costs compared to MLM

Better downstream task performance

Model Train FLOPs Params CoLA SST MRPC STS QQP MNLI QNLI RTE Avg.
BERT 1.9e20 (0.27x) 335M 60.6 932 88.0 90.0 913 86.6 923 704 84.0
RoBERTa-100K  6.4e20 (0.90x) 356M 66.1 956 914 922 920 893 940 827 879
RoBERTa-500K  3.2e21 (4.5x) 356M 68.0 964 909  92.1 922 90.2 947 86.6 88.9
XLNet 3.9e21 (54x) 360M 69.0 97.0 90.8 922 923 90.8 949 859 89.1
BERT (ours) 7.1e20 (1x) 335M  67.0 959 89.1 912 915 896 935 795 872
ELECTRA-400K 7.1e20 (1x) 335M 693 96.0 90.6 92.1 924 90.5 945 86.8 89.0
ELECTRA-1.75M 3.1e21 (4.4x) 335M 69.1 969 90.8 92.6 924 909 95.0 88.0 89.5
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Further Reading on Encoder LMs

 XLNet: Generalized Autoregressive Pretraining for Language Understanding [Yang et
al., 2019]

e ALBERT: A Lite BERT for Self-supervised Learning of Language Representations [Lan et
al., 2020]

 DeBERTa: Decoding-enhanced BERT with Disentangled Attention [He et al., 2020]

e COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining
[Meng et al. 2021]
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Agenda

Prompting and Parameter Efficient Fine-tuning
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Prompting

Prompt: initial user input/instructions given to the model to guide text generation

Example (sentiment analysis):

P(pos1t1veEThe sentiment of the sentence ‘‘I like Jackie Chan" is:i) orompt

P(negatlveEThe sentiment of the sentence ‘‘I like Jackie Chan" is:)

Example (question answering):

Prompting: directly use trained LMs to generate text given user prompts (no fine-

tuning)
For good prompting performance, we need instruction-tuning (later lectures)

Example source: https://web.stanford.edu/~jurafsky/slp3/10.pdf 47/62
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Prompt Engineering

* Some LMs (especially small ones) can be sensitive to specific formats of prompts

*  Multiple prompts can make sense for the same task, but the resulting model
performance might differ

Py(a) = Itwas ___. a Py(a)= Just___! || a

P3(a) = a. Allin all, it was ____. - e Model predicts the masked word

Py(a) = a || In summary, the restaurant is ____.

Prompt templates for BERT sentiment classification

* Prompt engineering: designing and refining prompts to achieve desired outcomes
from LMs (e.g., manually tune on a validation set)

* Aguide on prompt engineering: https://www.promptingguide.ai/

Figure source: https://aclanthology.org/2021.eacl-main.20.pdf 48/62
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Prompt Tuning

Prompt tuning: instead of manually testing the prompt design, consider prompt
tokens as learnable model parameters (“soft prompts”)

Optimize a small amount of prompt token embeddings while keeping the LM frozen

Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning") (Ours) (e.g. GPT-3)
Vs B Y e s ™
Pre-trained Model Pre-trained Model Pre-trained Model
@ Tunable & # Frozen #* % Frozen %
J . - P
O I I [Bald] [TTTTT] [Elel= [ TTTT1T1]
Input Text Tunable Soft  Input Text Engineered  Input Text
Prompt Prompt

Prompt tuning is a parameter efficient fine-tuning (PEFT) method

Figure source: https://www.googblogs.com/guiding-frozen-language-models-with-learned-soft-prompts/
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Parameter Efficient Fine-tuning (PEFT)

*  Fine-tuning all model parameters is expensive

Pretrained weight W € ]RdXd
(can represent any module) 0

Fine-tuned weight  W* = Wy + AW, AW e R%¥*4

* Can we update only a small number of model parameters on fine-tuning data?
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Parameter Efficient Fine-tuning: LoRA

* Assume the parameter update is low-rank
. Overparameterization: large language models typically have many more parameters than
strictly necessary to fit the training data
. Empirical observation: parameter updates in neural networks tend to be low-rank in
practice

* Solution: approximate weight updates with low-rank factorization

hC——————— 1
A 0 R
Pretr_amed w AW ~ BA, B¢ Rdw’ Ac Rrxd, r<d
Freeze pretrained weights Weights

A
W € Rdxd :

Low-rank approximation

xC——— 1]

LoRA: https://arxiv.org/pdf/2106.09685 51/62
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LoRA in Frontier Research

LoRA fine-tuning is effective for frontier LLM post-training (e.g., reinforcement learning)

LoRA Without Regret

John Schulman in collaboration with others at Thinking Machines

Sep 29, 2025

dxr rxk

Blog post: https://thinkingmachines.ai/blog/lora/ 52/62
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Further Reading on PEFT

* Parameter-Efficient Transfer Learning for NLP [Houlsby et al., 2019]

*  Prefix-Tuning: Optimizing Continuous Prompts for Generation [Li & Liang, 2021]

* The Power of Scale for Parameter-Efficient Prompt Tuning [Lester et al., 2021]

* GPT Understands, Too [Liu et al., 2021]
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Agenda

* Large Language Models (LLMs) for Text Generation
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Large Language Models (LLMs)

* The field of LLMs is rapidly evolving!

In 2018, BERT-large with 340 million parameters was considered large
In 2019, GPT-2 with 1.5 billion parameters was considered very large
In 2020, GPT-3 with 175 billion parameters set a new standard for “large”

* In 2025, how should we define LLMs?

e General definition:

Transformer-decoder architecture (or variants) that can generate text
Pretrained on vast and diverse general-domain corpora
With (at least) billions of parameters

General-purpose solvers for a wide range of NLP tasks and beyond
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Decoding with LLMs

* Decoding: convert Transformer representations into natural language tokens

e Autoregressive decoding typically involves iterative sampling from LMs’ output
distributions, until an [EOS] token is generated

_ of _ exp(uy - hi_1) exp(uy| - hi_1)
po(w|x1,x2,...,x;—1) = softmax(Uh;_,) = Vi , . v
A ‘V ¥... Zj lexp(uj hi—l) ZJ 1exp(uj hi—l)
Model parameters Unembedding matrix Hidden states at tokeni — 1
Word probabilities 1 x V|
Language Model Head [ ] Softmax over vocabulary V
takes hLN and outputs a @ Logits 1x|V|

distribution over vocabulary V -
Unembedding layer

UFET Unembedding layer dx |V|

LayerL ,---"-----"-F------—--—-—-—-—-—--L -~
Transformer !

g J. """""" %

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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Greedy Decoding

* Always pick the token with the highest probability estimated by the LM for every step

x; < argmax,,pg(w|x1, T, ..., T;—1)

* Pros:
. Simplicity: easy to implement and understand
. Deterministic: guarantee the same output given the same input
. Efficient: makes only one (simple) decision at each step w/o additional operations

* Cons:
. Suboptimal solutions: may not find the globally optimal sequence
. Lack of diversity: cannot produce multiple outputs given the same input
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Top-k Sampling

* Motivation: Instead of choosing the single most probable word to generate, sample
from the top-k most likely tokens (candidates) — avoid generating low probability

tokens

* ks ahyperparameter (typically 5-10)
Compute the probability distribution only over the top-k tokens
exp(u1 ’ hi—l) eXp(utop-k : hi—l)
Z§=1 exp(Usop-; - Pi—1) E?=1 exp(Usop-; - Pi—1)

po(w|xi,z2,...,z;—1) = softmax(Uiop-thi—1) =

Sample from the top-k tokens x; ~ pg(w|x1, o, ... ,:Ei_l)

 With k = 1, top-k sampling is equivalent to greedy decoding
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Nucleus (Top-p) sampling

* Top-k sampling does not account for the shape of the probability distribution
. For the next-token distribution of “the 46th US president Joe”, top-k sampling may consider

more tokens than necessary
. For the next-token distribution of “the spacecraft”, top-k sampling may consider fewer

tokens than necessary
* Nucleus sampling sets cutoff based on the top-p percent of the probability mass
e pisahyperparameter (typically 0.9)
* Top-p vocabulary is the smallest set of words such that
Z p(w|zi,x2,...,2;21) > p
WEViop-p

* Sample from the top-p vocabulary in a similar way as top-k sampling
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Temperature Sampling

* Intuition comes from thermodynamics
. A system at a high temperature is flexible and can explore many possible states
. A system at a lower temperature is likely to explore a subset of lower energy (better) states

* Reshape the probability distribution by incorporating a temperature hyperparameter

exp(uy - hi—1/7) exp(uy| - hi—1/7)

po(w|x1,x2,...,2,—1) = softmax(Uh;_1/7) = [ N
SV exp(uy - iy /)T SV exp(uy - hisy /1)

e Witht — 0, temperature sampling approaches greedy decoding

7 =10.0

B [

Figure source: https://arxiv.org/pdf/1611.01144v5
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Practical Considerations of Decoding Algorithms

* If aiming for simplicity and efficiency without diversity requirements, use greedy
decoding

* If multiple responses are required for the same input, use sampling-based decoding
Top-p is usually better than Top-k
Temperature sampling is commonly used
Top-p can be used together with temperature sampling
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