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Overview of Course Contents

Week 9: Large Language Models (LLMs) & In-context Learning
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Reminder

* Assignment 4 Out (due 11/03 11:59pm)
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(Recap) Pretraining: Motivation

* Before pretraining became prevalent in NLP, most NLP models were trained from
scratch on downstream task data

e Data scarcity: many NLP tasks do not have large labeled datasets available (costly to
obtain)

* Poor generalization: models trained from scratch on specific tasks do not generalize
well to unseen data or other tasks

e Sensitivity to noise and randomness: models are more likely to learn spurious
correlations or be affected by annotation errors/randomness in training
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(Recap) Pretraining: Motivation

* There are abundant text data on the web, with rich information of linguistic features
and knowledge about the world

e Learning from these easy-to-obtain data greatly benefits various downstream tasks
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(Recap) Pretraining: Multi-Task Learning
* Inmy free time, | like to {run, banana} (Grammar)

* | wentto the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)

* The capital of Denmark is {Copenhagen, London} (World knowledge)

* | was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

* The word for “pretty” in Spanish is {bonita, hola} (Translation)
e 3+8+4={15, 11} (Math)

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8 2Gr20bc89LKimHLODIH-
uof9MOYFVd3FA4/edit#tslide=id.g28e2e9aa709 0 1 6/54
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(Recap) Pretraining: Self-Supervised Learning
* Pretraining is a form of self-supervised learning

*  Make a part of the input unknown to the model

* Use other parts of the input to reconstruct/predict the unknown part

(L
Mask/Corrupt ( *@:| Reconstruct

> 'L Pretrained Model 'J

Original data Corrupted data Original data

v

No Human Supervision Needed!
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(Recap) Pretraining + Fine-Tuning

*  Pretraining: trained with pretext tasks on large-scale text corpora

*  Fine-tuning (continue training): adjust the pretrained model’s parameters with fine-
tuning data

* Fine-tuning data can have different forms:
. Task-specific labeled data (e.g., sentiment classification, named entity recognition)
. (Multi-turn) dialogue data (i.e., instruction tuning)

Pretraining Data

Pretrained LM Fine-tuned LM

Figure source: https://web.stanford.edu/~jurafsky/slp3/7.pdf
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(Recap) Transformer for Pretraining

* Transformer is the common backbone architecture for language model pretraining

* Efficiency: Transformer processes all tokens in a sequence simultaneously — fast and
efficient to train, especially on large datasets

e  Scalability: Transformer architectures have shown impressive scaling properties, with
performance improving as model size and training data increase (more on this later!)

* Versatility: Transformer can be adapted for various tasks and modalities beyond just
text, including vision, audio, and other multimodal applications
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(Recap) Transformer Architectures

e Based on the type of self-attention, Transformer can be instantiated as
. Encoder: Bidirectional self-attention
. Decoder: Unidirectional self-attention
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(Recap) Applications of Transformer Architectures

* Encoder (e.g., BERT):
. Capture bidirectional context to learn each token representations
. Suitable for natural language understanding (NLU) tasks

* Decoder (modern large language models, e.g., GPT):
. Use prior context to predict the next token (conventional language modeling)
. Suitable for natural language generation (NLG) tasks
. Can also be used for NLU tasks by generating the class labels as tokens

NLU:
Text classification
Named entity recognition
Relation extraction
Sentiment analysis

NLG:
Text summarization
Machine translation
Dialogue system
Question answering
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(Recap) Decoder Pretraining

* Decoder architecture is the prominent choice in large language models
* Pretraining decoders is first introduced in GPT (generative pretraining) models

* Follow the standard language modeling (cross-entropy) objective

N
1
5(0) = N Zlogpe(wi\9€1,$2, e ,fEi—1)

=1
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(Recap) GPT Series

 GPT-1(2018): 12 layers, 117M parameters, trained in ~1 week
* GPT-2(2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3(2020): 96 layers, 175B parameters, trained in several months

Model ;
Parameter .
..
L 4
*
& ©® o ..

(175B) ,*°

GPT-1 GPT-2 Lt
(OlB) (1.53)--‘- -‘--lllll
2018 2019 2020 2023

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are_unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 13/54
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(Recap) Encoder Pretraining: BERT

BERT pretrains encoder models with bidirectionality

Masked language modeling (MLM): With 15% words randomly masked, the model
learns bidirectional contextual information to predict the masked words

long thanks the

CE Loss

LM Head with Softmax

over Vocabulary

714 ) 734 zs 4 Z3) zg}

4 7
[ Bidirectional Transformer Encoder J

(@ IHEEAROE

[mask] and I [mask] I for all apricot fish
So ' long | and 'thanks I for all the fish

BERT: https://arxiv.org/pdf/1810.04805.pdf Figure source: https://web.stanford.edu/~jurafsky/slp3/10.pdf
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(Recap) Encoder Pretraining: BERT

* Next sentence prediction (NSP): the model is presented with pairs of sentences

* The model is trained to predict whether each pair consists of an actual pair of adjacent
sentences from the training corpus or a pair of unrelated sentences

e i {34 834 e

BERT: https://arxiv.org/pdf/1810.04805.pdf Figure source: https://web.stanford.edu/~jurafsky/slp3/10.pdf 15/54
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(Recap) BERT Fine-Tuning

*  Fine-tuning pretrained BERT models takes different forms depending on task types

*  Usually replace the LM head with a linear layer fine-tuned on task-specific data

Class Class
Label Label
* &
c [~ ~] - e ) ()
BERT BERT
s E, E, Ey I Elews) || E, | Ex Eisery | E/ Ev
~ i r ——r T T
[CLS] Tok 1 Tok 2 @m [ T;" W[ [SEP] ][ T:* ] [ T'ak ]
I \_'_1 I_'_l
l
Single Sentence Sentence 1 Sentence 2

Single sequence classification Sequence-pair classification
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(Recap) BERT vs. GPT on NLU tasks

*  BERT outperforms GPT-1 on a set of NLU tasks

* Encoders capture bidirectional contexts — build a richer understanding of the text by
looking at both preceding and following words

* Are encoder models still better than state-of-the-art (large) decoder models?
. LLMs can be as good as (if not better than) encoder models on NLU: Can ChatGPT
Understand Too?
. The sheer model size + massive amount of pretraining data compensate for LLMs’
unidirectional processing

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52:1 85.8 88.9 66.4 79.6

BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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Agenda

*  Prompting and Parameter Efficient Fine-tuning

18/54
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Prompting

Prompt: initial user input/instructions given to the model to guide text generation

Example (sentiment analysis):

P(pos1t1veEThe sentiment of the sentence ‘‘I like Jackie Chan" is:i) orompt

P(negatlveEThe sentiment of the sentence ‘‘I like Jackie Chan" is:)

Example (question answering):

Prompting: directly use trained LMs to generate text given user prompts (no fine-

tuning)
For good prompting performance, we need instruction-tuning (later lectures)

Example source: https://web.stanford.edu/~jurafsky/slp3/10.pdf 19/54
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Prompt Engineering

* Some LMs (especially small ones) can be sensitive to specific formats of prompts

*  Multiple prompts can make sense for the same task, but the resulting model
performance might differ

Py(a) = Itwas ___. a Py(a)= Just___! || a

P3(a) = a. Allin all, it was ____. - e Model predicts the masked word

Py(a) = a || In summary, the restaurant is ____.

Prompt templates for BERT sentiment classification

* Prompt engineering: designing and refining prompts to achieve desired outcomes
from LMs (e.g., manually tune on a validation set)

* Aguide on prompt engineering: https://www.promptingguide.ai/

Figure source: https://aclanthology.org/2021.eacl-main.20.pdf 20/54
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Prompt Tuning

Prompt tuning: instead of manually testing the prompt design, consider prompt
tokens as learnable model parameters (“soft prompts”)

Optimize a small amount of prompt token embeddings while keeping the LM frozen

Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning") (Ours) (e.g. GPT-3)
Vs B Y e s ™
Pre-trained Model Pre-trained Model Pre-trained Model
@ Tunable & # Frozen #* % Frozen %
J . - P
O I I [Bald] [TTTTT] [Elel= [ TTTT1T1]
Input Text Tunable Soft  Input Text Engineered  Input Text
Prompt Prompt

Prompt tuning is a parameter efficient fine-tuning (PEFT) method

Figure source: https://www.googblogs.com/guiding-frozen-language-models-with-learned-soft-prompts/
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Parameter Efficient Fine-tuning (PEFT)

*  Fine-tuning all model parameters is expensive

Pretrained weight W € ]RdXd
(can represent any module) 0

Fine-tuned weight  W* = Wy + AW, AW e R%¥*4

* Can we update only a small number of model parameters on fine-tuning data?

22/54
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Parameter Efficient Fine-tuning: LoRA

* Assume the parameter update is low-rank
. Overparameterization: large language models typically have many more parameters than
strictly necessary to fit the training data
. Empirical observation: parameter updates in neural networks tend to be low-rank in
practice

* Solution: approximate weight updates with low-rank factorization

hC——————— 1
A 0 R
Pretr_amed w AW ~ BA, B¢ Rdw’ Ac Rrxd, r<d
Freeze pretrained weights Weights

A
W € Rdxd :

Low-rank approximation

xC——— 1]

LoRA: https://arxiv.org/pdf/2106.09685 23/54



https://arxiv.org/pdf/2106.09685

i UNIVERSITY,VIRGINIA

LoRA in Frontier Research

LoRA fine-tuning is effective for frontier LLM post-training (e.g., reinforcement learning)

LoRA Without Regret

John Schulman in collaboration with others at Thinking Machines

Sep 29, 2025

dxr rxk

Blog post: https://thinkingmachines.ai/blog/lora/ 24/54
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Further Reading on PEFT

* Parameter-Efficient Transfer Learning for NLP [Houlsby et al., 2019]

*  Prefix-Tuning: Optimizing Continuous Prompts for Generation [Li & Liang, 2021]

* The Power of Scale for Parameter-Efficient Prompt Tuning [Lester et al., 2021]

* GPT Understands, Too [Liu et al., 2021]
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Agenda

* Large Language Models (LLMs) for Text Generation
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Large Language Models (LLMs)

* The field of LLMs is rapidly evolving!

In 2018, BERT-large with 340 million parameters was considered large
In 2019, GPT-2 with 1.5 billion parameters was considered very large
In 2020, GPT-3 with 175 billion parameters set a new standard for “large”

* In 2025, how should we define LLMs?

e General definition:

Transformer-decoder architecture (or variants) that can generate text
Pretrained on vast and diverse general-domain corpora
With (at least) billions of parameters

General-purpose solvers for a wide range of NLP tasks and beyond
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Decoding with LLMs

* Decoding: convert Transformer representations into natural language tokens

e Autoregressive decoding typically involves iterative sampling from LMs’ output
distributions, until an [EOS] token is generated

_ of _ exp(uy - hi_1) exp(uy| - hi_1)
po(w|x1,x2,...,x;—1) = softmax(Uh;_,) = Vi , . v
A ‘V ¥... Zj lexp(uj hi—l) ZJ 1exp(uj hi—l)
Model parameters Unembedding matrix Hidden states at tokeni — 1
Word probabilities 1 x V|
Language Model Head [ ] Softmax over vocabulary V
takes hLN and outputs a @ Logits 1x|V|

distribution over vocabulary V -
Unembedding layer

UFET Unembedding layer dx |V|

LayerL ,---"-----"-F------—--—-—-—-—-—--L -~
Transformer !

g J. """""" %

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf
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Greedy Decoding

* Always pick the token with the highest probability estimated by the LM for every step

x; < argmax,,pg(w|x1, T, ..., T;—1)

* Pros:
. Simplicity: easy to implement and understand
. Deterministic: guarantee the same output given the same input
. Efficient: makes only one (simple) decision at each step w/o additional operations

* Cons:
. Suboptimal solutions: may not find the globally optimal sequence
. Lack of diversity: cannot produce multiple outputs given the same input
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Top-k Sampling

* Motivation: Instead of choosing the single most probable word to generate, sample
from the top-k most likely tokens (candidates) — avoid generating low probability

tokens

* ks ahyperparameter (typically 5-10)
Compute the probability distribution only over the top-k tokens
exp(u1 ’ hi—l) eXp(utop-k : hi—l)
Z§=1 exp(Usop-; - Pi—1) E?=1 exp(Usop-; - Pi—1)

po(w|xi,z2,...,z;—1) = softmax(Uiop-thi—1) =

Sample from the top-k tokens x; ~ pg(w|x1, o, ... ,:Ei_l)

 With k = 1, top-k sampling is equivalent to greedy decoding
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Nucleus (Top-p) sampling

* Top-k sampling does not account for the shape of the probability distribution
. For the next-token distribution of “the 46th US president Joe”, top-k sampling may consider

more tokens than necessary
. For the next-token distribution of “the spacecraft”, top-k sampling may consider fewer

tokens than necessary
* Nucleus sampling sets cutoff based on the top-p percent of the probability mass
e pisahyperparameter (typically 0.9)
* Top-p vocabulary is the smallest set of words such that
Z p(w|zi,x2,...,2;21) > p
WEViop-p

* Sample from the top-p vocabulary in a similar way as top-k sampling



il UNIVERSITYo VIRGINIA

Temperature Sampling

* Intuition comes from thermodynamics
. A system at a high temperature is flexible and can explore many possible states
. A system at a lower temperature is likely to explore a subset of lower energy (better) states

* Reshape the probability distribution by incorporating a temperature hyperparameter

exp(uy - hi—1/7) exp(uy| - hi—1/7)

po(w|x1,x2,...,2,—1) = softmax(Uh;_1/7) = [ N
SV exp(uy - iy /)T SV exp(uy - hisy /1)

e Witht — 0, temperature sampling approaches greedy decoding

7 =10.0

B [

Figure source: https://arxiv.org/pdf/1611.01144v5
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Practical Considerations of Decoding Algorithms

* If aiming for simplicity and efficiency without diversity requirements, use greedy
decoding

* If multiple responses are required for the same input, use sampling-based decoding
Top-p is usually better than Top-k
Temperature sampling is commonly used
Top-p can be used together with temperature sampling

33/54



i UNIVERSITY,VIRGINIA

Agenda

* |In-context Learning
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In-context Learning

* In-context learning is a type of few-shot learning
. User provides a few examples of input-output pairs in the prompt
. The model uses given examples to predict the output for new, similar inputs

*  First studied in the GPT-3 paper  Few-shot

° No model parameter upd ates In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure source: https://arxiv.org/pdf/2005.14165 35/54
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In-context Learning Demo

Prompt: Swap the second and the penultimate letter of the following word: pothyn
Swap the second and the penultimate letter of the following word: pothyn

N 1llama-3.3-70b-instruct

The word is "pothyn".
The second letter is "o" and the penultimate letter is "y" (the last letter is "n").

Swapping them results in "pythno" and then "pythyn". Wrong generation only
iven the prompt
© ¢ P & promp

Figure source: https://Imarena.ai/ 36/54
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In-context Learning Demo

Prompt: Directly answer the last one (swapping the second and the penultimate letter of
the following words): tarehd -> thread, revir -> river, pothyn ->

Directly answer the last one (swapping the second and the penultimate letter of the following
words): tarehd - thread, revir = river, pothyn =

O l1llama-3.3-70b-instruct
Correctly learn from the

pothyn - python in-context examples

C B0 & 9P

Figure source: https://Imarena.ai/ 37/54
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In-context Learning Demo

Prompt: How many 'r' letters are there in the following word: "strawberry"

How many 'r' letters are there in the following word: "strawberry"

N 1llama-3.3-70b-instruct

There are 2 'r' letters in the word "strawberry".

Wrong generation only
C D ¢ @

given the prompt

Figure source: https://Imarena.ai/ 38/54
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In-context Learning Demo

Prompt: Count how many 'r' letters are there in the following words: "red": 1, "roar": 2,

"strawberry":
Count how many 'r' letters are there in the following words: "red": 1, "roar": 2, "strawberry":

Q 1llama-3.3-70b-instruct

Let's count the 'r’ letters in the word "strawberry™:
. s-no'r
.t-no'r
. r=1'r

.a-no'r

b-no'r Correctly learn from the
- DS in-context examples

1

2

3

4

5. w-no'r
6

7

8. r-1'r
9

. r-1'r

10. y-no'r'

There are 3 'r' letters in the word "strawberry".

06 @

Figure source: https://Imarena.ai/ 39/54
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Further Reading on In-context Learning

 An Explanation of In-context Learning as Implicit Bayesian Inference [Xie et al., 2021]

* Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? [Min
et al., 2022]

e What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
[Garg et al., 2022]

* What learning algorithm is in-context learning? Investigations with linear models
[Akyurek et al., 2023]
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Agenda

e Scaling Up LLMs
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Scaling Up Pretraining Data

The Pile: 22 sub-datasets (> 800GB), a common choice for pretraining corpus
Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

ArXiv

PubMed Central

StackExchange !!
PMA
FreeLaw USPTO NIH |OpenWebText2 Wikipedia m. \

Figure source: https://arxiv.org/pdf/2101.00027
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Scaling Up Model Sizes
 GPT-1(2018): 12 layers, 117M parameters, trained in ~1 week

* GPT-2(2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3(2020): 96 layers, 175B parameters, trained in several months

Model ;
Parameter N
..
L 4
*
® © o .

(175B) ,*°

GPT-1 GPT-2 Lt
(OlB) (1.53)--‘- -‘--lllll
2018 2019 2020 2023

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are_unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 43/54
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Emergent Ability

* Larger models develop emergent abilities
. Skills or capabilities that were not explicitly learned but arise as a result of model capacity

. Larger models demonstrate surprising abilities in challenging tasks even when they were not

explicitly trained for them

* Emergent capabilities typically become noticeable only when the model size reaches a
certain threshold (cannot be predicted by small model’s performance)

Emergent Abilities of Large Language Models

Jason Wei!

Yi Tay!

Rishi Bommasani?
Colin Raffel®

Barret Zoph!
Sebastian Borgeaud *
Dani Yogatama*
Maarten Bosma!
Denny Zhou'
Donald Metzler!
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Percy Liang?
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William Fedus'

! Google Research 2Stanford University

jasonwei@google.com
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bosma@google.com
dennyzhou@google.com
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jeff@google.com

liamfedus@google.com

3UNC Chapel Hill *DeepMind

Paper: https://arxiv.org/pdf/2206.07682
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Experiment Setting

e Consider the few-shot in-context learning paradigm

* Consider an ability to be emergent when a model has random performance until a
certain scale, after which performance increases to well-above random

* Abilities to test
. Arithmetic: addition, subtraction, multiplication
. Transliteration
. Recover a word from its scrambled letters
. Persian question answering
. Question answering (truthfully)
. Grounded conceptual mappings
. Multi-task understanding (math, history, law, ...)
. Contextualized semantic understanding
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Performance vs. Model Scale
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Figure source: https://arxiv.org/pdf/2206.07682
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Models exhibit random
performance until a certain
scale, after which performance
significantly increases
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Scaling Laws of LLMs

* (Pretrained) LLM performance is mainly determined by 3 factors
. Model size: the number of parameters
. Dataset size: the amount of training data
. Compute: the amount of floating point operations (FLOPs) used for training

*  Scaling up LLMs involves scaling up the 3 factors
. Add more parameters (adding more layers or having more model dimensions or both)
. Add more data
. Train for more iterations

* Scaling laws: study the correlation between the cross-entropy language modeling loss
and the above three factors

* How to optimally allocate a fixed compute budget?
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Scaling Laws of LLMs

Performance has a power-law relationship with each of the three scale factors (model size,
dataset size, compute) when not bottlenecked by the other two

4.2
—— L=(N/8.8-10!3)70.076

—— L=(D/5.4-1013)700% | 5.6

3.9
4.8
: 4.0
S
.
%) 3.3 39
= 3
3.0
2.4
L = (Cmin/2.3-108)~0-050
2 . . . . 2.7 . . . . .
10 1077 1075 1073 107! 10! 108 109 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Paper: https://arxiv.org/pdf/2001.08361
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Scaling Model Parameters

* Language model loss vs. models with a limited number of parameters ()
. Only count non-embedding parameters
. Infinite compute: trained to convergence
. Infinite dataset: trained with sufficiently large datasets

* Performance depends strongly on scale, weakly on model shape (depth vs. width)

5.6 —— L=(N/8.8-103)70076
4.8
N\ N 4.0
L(N) = (Wc) . any~0.076, N,~88x10" -

' 2.4
Model parameters

(non-embedding)

10° 107 10°
Parameters
non-embedding 49/54



il UNIVERSITYs VIRGINIA

Scaling Dataset Size

* Language model loss vs. a limited dataset size (D)
. Infinite model size: sufficiently large model
. With appropriate early stopping: avoid overfitting to the training data

4.2
—— L=(D/5.4-10%3)70:09

3.9
D ap 3.6
L(D) = (ﬁ) s ap ~ 0095, DC ~ 5.4 X 1013 3.3

A

Dataset size
(# of tokens) 108 10°

Dataset Size
tokens 50/54
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Scaling Training Compute

e Language model loss vs. a limited amount of compute (C)
. Infinite dataset size: sufficiently large training corpus
. Optimal model size: can effectively learn the data and not excessively compute-consuming

5
C ac 4
L(C) = (—) , ac~0.050, C,~3.1x10°
¢ 3
A
: L = (Crin/2.3 - 108)0-050
Compute 2

i0o-® 107 105 103 10-! 10!

Compute
PF-days, non-embedding

(# Peta-FLOP days)
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Optimal Model Size

Parameters (non-embedding)

107-
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103_

Given a specific amount of training compute C, what’s the optimal model size N(C)

that leads to minimal language modeling loss?

N(C) can be fit with a power-law wrt C

Additional compute needs to be used when model size is suboptimal

---- N=(1.3-10°)-C%/3 00/“
N=(1.6-10%)-C088 Read
’/
R
‘,“‘
s
%
*l’

-

107 1075 107 10

Compute (PF-days), non-embedding
0.73
N(Cmin) X (Cmin)

Excess Compute (C/Cetficient)

iy
<

W
v

w
o

.
3

N
o

Models between 0.6x and 2.2x the
optimal size can be trained with a
20% larger compute budget

100
Deviation from Optimal Model (N/Neficient)

10!



i UNIVERSITY,VIRGINIA

Further Reading on Scaling LLMs

* Training Compute-Optimal Large Language Models [Hoffmann et al., 2022]

* Scaling Data-Constrained Language Models [Muennighoff et al., 2023]

 Are Emergent Abilities of Large Language Models a Mirage? [Schaeffer et al., 2023]
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