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Overview of Course Contents

Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
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Reminder

* Project Midterm Report Grades & Feedback Released
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(Recap) Prompting

Prompt: initial user input/instructions given to the model to guide text generation

Example (sentiment analysis):

P(pos1t1veEThe sentiment of the sentence ‘‘I like Jackie Chan" is:i) orompt

P(negatlveEThe sentiment of the sentence ‘‘I like Jackie Chan" is:)

Example (question answering):

Prompting: directly use trained LMs to generate text given user prompts (no fine-

tuning)
For good prompting performance, we need instruction-tuning (later lectures)

Example source: https://web.stanford.edu/~jurafsky/slp3/10.pdf 4/54
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(Recap) Prompt Engineering

* Some LMs (especially small ones) can be sensitive to specific formats of prompts

*  Multiple prompts can make sense for the same task, but the resulting model
performance might differ

Py(a) = Itwas ___. a Py(a)= Just___! || a

P3(a) = a. Allin all, it was ____. - e Model predicts the masked word

Py(a) = a || In summary, the restaurant is ____.

Prompt templates for BERT sentiment classification

* Prompt engineering: designing and refining prompts to achieve desired outcomes
from LMs (e.g., manually tune on a validation set)

* Aguide on prompt engineering: https://www.promptingguide.ai/

Figure source: https://aclanthology.org/2021.eacl-main.20.pdf 5/54
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(Recap) Prompt Tuning

Prompt tuning: instead of manually testing the prompt design, consider prompt
tokens as learnable model parameters (“soft prompts”)

Optimize a small amount of prompt token embeddings while keeping the LM frozen

Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning") (Ours) (e.g. GPT-3)
e hY e ra ™
Pre-trained Model Pre-trained Model Pre-trained Model
& Tunable & # Frozen & % Frozen %
A J A .
O I I [Bald] [TTTTT] [Elel= [ TTTT1T1]
Input Text Tunable Soft  Input Text Engineered  Input Text
Prompt Prompt

Prompt tuning is a parameter efficient fine-tuning (PEFT) method

Figure source: https://www.googblogs.com/guiding-frozen-language-models-with-learned-soft-prompts/
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(Recap) Parameter Efficient Fine-tuning (PEFT)

*  Fine-tuning all model parameters is expensive

Pretrained weight W € ]RdXd
(can represent any module) 0

Fine-tuned weight  W* = Wy + AW, AW e R%¥*4

* Can we update only a small number of model parameters on fine-tuning data?

7/54
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(Recap) Parameter Efficient Fine-tuning: LORA

* Assume the parameter update is low-rank
. Overparameterization: large language models typically have many more parameters than
strictly necessary to fit the training data
. Empirical observation: parameter updates in neural networks tend to be low-rank in
practice

* Solution: approximate weight updates with low-rank factorization

hC——————
A TR
Pretr_amed w AW ~ BA, B¢ Rdxr’ Ac Rrxd’ r<d
Freeze pretrained weights Weights

A
W € Rdxd :

Low-rank approximation

xC——— 1]

LoRA: https://arxiv.org/pdf/2106.09685 8/54



https://arxiv.org/pdf/2106.09685

L]

il UNIVERSITYf VIRGINIA

(Recap) Large Language Models (LLMs)

* The field of LLMs is rapidly evolving!

. In 2018, BERT-large with 340 million parameters was considered large
. In 2019, GPT-2 with 1.5 billion parameters was considered very large
. In 2020, GPT-3 with 175 billion parameters set a new standard for “large”

* In 2025, how should we define LLMs?

e General definition:

. Transformer-decoder architecture (or variants) that can generate text
. Pretrained on vast and diverse general-domain corpora
. With (at least) billions of parameters

. General-purpose solvers for a wide range of NLP tasks and beyond

9/54
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(Recap) Decoding with LLMs

* Decoding: convert Transformer representations into natural language tokens

e Autoregressive decoding typically involves iterative sampling from LMs’ output
distributions, until an [EOS] token is generated

_ of _ exp(uy - hi_1) exp(uy| - hi_1)
po(w|x1,x2,...,x;—1) = softmax(Uh;_,) = Vi , . v
A ‘V ¥... Zj lexp(uj hi—l) ZJ 1exp(uj hi—l)
Model parameters Unembedding matrix Hidden states at tokeni — 1
Word probabilities 1 x V|
Language Model Head [ ] Softmax over vocabulary V
takes hLN and outputs a @ Logits 1x|V|

distribution over vocabulary V -
Unembedding layer

UFET Unembedding layer dx |V|

LayerL ,---"-----"-F------—--—-—-—-—-—--L -~
Transformer !

g J. """"" %

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 10/54
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(Recap) Greedy Decoding

* Always pick the token with the highest probability estimated by the LM for every step

x; < argmax,,pg(w|x1, T, ..., T;—1)

* Pros:
. Simplicity: easy to implement and understand
. Deterministic: guarantee the same output given the same input
. Efficient: makes only one (simple) decision at each step w/o additional operations

* Cons:
. Suboptimal solutions: may not find the globally optimal sequence
. Lack of diversity: cannot produce multiple outputs given the same input
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(Recap) Top-k Sampling

* Motivation: Instead of choosing the single most probable word to generate, sample
from the top-k most likely tokens (candidates) — avoid generating low probability

tokens

* ks ahyperparameter (typically 5-10)
Compute the probability distribution only over the top-k tokens
exp(u1 ’ hi—l) eXp(utop-k : hi—l)
Z§=1 exp(Usop-; - Pi—1) E?=1 exp(Usop-; - Pi—1)

po(w|xi,z2,...,z;—1) = softmax(Uiop-thi—1) =

Sample from the top-k tokens x; ~ pg(w|x1, o, ... ,:Ei_l)

 With k = 1, top-k sampling is equivalent to greedy decoding

12/54
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(Recap) Nucleus (Top-p) sampling

* Top-k sampling does not account for the shape of the probability distribution
. For the next-token distribution of “the 46th US president Joe”, top-k sampling may consider

more tokens than necessary
. For the next-token distribution of “the spacecraft”, top-k sampling may consider fewer

tokens than necessary
* Nucleus sampling sets cutoff based on the top-p percent of the probability mass
e pisahyperparameter (typically 0.9)
* Top-p vocabulary is the smallest set of words such that
Z p(w|zi,x2,...,2;21) > p
WEViop-p

* Sample from the top-p vocabulary in a similar way as top-k sampling
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(Recap) Temperature Sampling

* Intuition comes from thermodynamics
. A system at a high temperature is flexible and can explore many possible states
. A system at a lower temperature is likely to explore a subset of lower energy (better) states

* Reshape the probability distribution by incorporating a temperature hyperparameter

exp(uy - hi—1/7) exp(uy| - hi—1/7)

po(w|x1,x2,...,2,—1) = softmax(Uh;_1/7) = [ N
SV exp(uy - iy /)T SV exp(uy - hisy /1)

e Witht — 0, temperature sampling approaches greedy decoding

7 =10.0

B [

Figure source: https://arxiv.org/pdf/1611.01144v5
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(Recap) Practical Considerations of Decoding Algorithms

* If aiming for simplicity and efficiency without diversity requirements, use greedy
decoding

* If multiple responses are required for the same input, use sampling-based decoding
Top-p is usually better than Top-k
Temperature sampling is commonly used
Top-p can be used together with temperature sampling

15/54
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(Recap) In-context Learning

* In-context learning is a type of few-shot learning
. User provides a few examples of input-output pairs in the prompt
. The model uses given examples to predict the output for new, similar inputs

*  First studied in the GPT-3 paper  Few-shot

° No model parameter upd ates In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure source: https://arxiv.org/pdf/2005.14165 16/54
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In-context Learning Demo

Prompt: Swap the second and the penultimate letter of the following word: pothyn
Swap the second and the penultimate letter of the following word: pothyn

N 1llama-3.3-70b-instruct

The word is "pothyn".
The second letter is "o" and the penultimate letter is "y" (the last letter is "n").

Swapping them results in "pythno" and then "pythyn". Wrong generation only
iven the prompt
D¢ @ 8 promp

Figure source: https://Imarena.ai/ 17/54
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In-context Learning Demo

Prompt: Directly answer the last one (swapping the second and the penultimate letter of
the following words): tarehd -> thread, revir -> river, pothyn ->

Directly answer the last one (swapping the second and the penultimate letter of the following
words): tarehd - thread, revir = river, pothyn =

O l1llama-3.3-70b-instruct
Correctly learn from the

pothyn - python in-context examples

C B0 & 9P

Figure source: https://Imarena.ai/ 18/54
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In-context Learning Demo

Prompt: How many 'r' letters are there in the following word: "strawberry"

How many 'r' letters are there in the following word: "strawberry"

N 1llama-3.3-70b-instruct

There are 2 'r' letters in the word "strawberry".

Wrong generation only
C D ¢ @

given the prompt

Figure source: https://Imarena.ai/ 19/54
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In-context Learning Demo

Prompt: Count how many 'r' letters are there in the following words: "red": 1, "roar": 2,

"strawberry":
Count how many 'r' letters are there in the following words: "red": 1, "roar": 2, "strawberry":

Q 1llama-3.3-70b-instruct

Let's count the 'r’ letters in the word "strawberry™:
. s-no'r
.t-no'r
. r=1'r

.a-no'r

b-no'r Correctly learn from the
- DS in-context examples

1

2

3

4

5. w-no'r
6

7

8. r-1'r
9

. r-1'r

10. y-no'r'

There are 3 'r' letters in the word "strawberry".

06 @

Figure source: https://Imarena.ai/ 20/54
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Further Reading on In-context Learning

 An Explanation of In-context Learning as Implicit Bayesian Inference [Xie et al., 2021]

* Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? [Min
et al., 2022]

e What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
[Garg et al., 2022]

* What learning algorithm is in-context learning? Investigations with linear models
[Akyurek et al., 2023]

21/54


https://arxiv.org/pdf/2111.02080
https://arxiv.org/pdf/2111.02080
https://arxiv.org/pdf/2111.02080
https://arxiv.org/pdf/2111.02080
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2202.12837
https://arxiv.org/pdf/2208.01066
https://arxiv.org/pdf/2208.01066
https://arxiv.org/pdf/2208.01066
https://arxiv.org/pdf/2208.01066
https://arxiv.org/pdf/2211.15661
https://arxiv.org/pdf/2211.15661
https://arxiv.org/pdf/2211.15661

i UNIVERSITY,VIRGINIA

Agenda

* LLM Scaling Laws

22/54
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Scaling Up Pretraining Data

The Pile: 22 sub-datasets (> 800GB), a common choice for pretraining corpus
Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

ArXiv

PubMed Central

StackExchange !!
PMA
FreeLaw USPTO NIH |OpenWebText2 Wikipedia m. \

Figure source: https://arxiv.org/pdf/2101.00027
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Scaling Up Model Sizes
 GPT-1(2018): 12 layers, 117M parameters, trained in ~1 week

* GPT-2(2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3(2020): 96 layers, 175B parameters, trained in several months

Model ;
Parameter N
..
L 4
*
® © o .

(175B) ,*°

GPT-1 GPT-2 Lt
(OlB) (1.53)--‘- -‘--lllll
2018 2019 2020 2023

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are_unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 24/54
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Emergent Ability

* Larger models develop emergent abilities
. Skills or capabilities that were not explicitly learned but arise as a result of model capacity

. Larger models demonstrate surprising abilities in challenging tasks even when they were not

explicitly trained for them

* Emergent capabilities typically become noticeable only when the model size reaches a
certain threshold (cannot be predicted by small model’s performance)

Emergent Abilities of Large Language Models

Jason Wei!

Yi Tay!

Rishi Bommasani?
Colin Raffel®

Barret Zoph!
Sebastian Borgeaud *
Dani Yogatama*
Maarten Bosma!
Denny Zhou'
Donald Metzler!

Ed H. Chi!
Tatsunori Hashimoto?
Oriol Vinyals*

Percy Liang?

Jeff Dean’

William Fedus'

! Google Research 2Stanford University

jasonwei@google.com
yitay@google.com
nlprishi@stanford. edu
craffel@gmail.com
barretzoph@google.com
sborgeaud@deepmind.com
dyogatama@deepmind.com
bosma@google.com
dennyzhou@google.com
metzler@google.com
edchi@google.com
thashim@stanford. edu
vinyals@deepmind.com
pliang@stanford. edu
jeff@google.com

liamfedus@google.com

3UNC Chapel Hill *DeepMind

Paper: https://arxiv.org/pdf/2206.07682
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Experiment Setting

e Consider the few-shot in-context learning paradigm

* Consider an ability to be emergent when a model has random performance until a
certain scale, after which performance increases to well-above random

* Abilities to test
. Arithmetic: addition, subtraction, multiplication
. Transliteration
. Recover a word from its scrambled letters
. Persian question answering
. Question answering (truthfully)
. Grounded conceptual mappings
. Multi-task understanding (math, history, law, ...)
. Contextualized semantic understanding
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Performance vs. Model Scale
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Figure source: https://arxiv.org/pdf/2206.07682
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(D) Persian QA

10M 1B 100B

(H) Word in context
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100M 10B 1T

Models exhibit random
performance until a certain
scale, after which performance
significantly increases
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Scaling Laws of LLMs

* (Pretrained) LLM performance is mainly determined by 3 factors
. Model size: the number of parameters
. Dataset size: the amount of training data
. Compute: the amount of floating point operations (FLOPs) used for training

*  Scaling up LLMs involves scaling up the 3 factors
. Add more parameters (adding more layers or having more model dimensions or both)
. Add more data
. Train for more iterations

* Scaling laws: study the correlation between the cross-entropy language modeling loss
and the above three factors

* How to optimally allocate a fixed compute budget?
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Scaling Laws of LLMs

Performance has a power-law relationship with each of the three scale factors (model size,
dataset size, compute) when not bottlenecked by the other two

4.2
—— L=(N/8.8-10!3)70.076

—— L=(D/5.4-1013)700% | 5.6

3.9
4.8
: 4.0
S
.
%) 3.3 39
= 3
3.0
2.4
L = (Cmin/2.3-108)~0-050
2 . . . . 2.7 . . . . .
10 1077 1075 1073 107! 10! 108 109 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Paper: https://arxiv.org/pdf/2001.08361
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Scaling Model Parameters

* Language model loss vs. models with a limited number of parameters ()
. Only count non-embedding parameters
. Infinite compute: trained to convergence
. Infinite dataset: trained with sufficiently large datasets

* Performance depends strongly on scale, weakly on model shape (depth vs. width)

5.6 —— L=(N/8.8-103)70076
4.8
N\ N 4.0
L(N) = (Wc) . any~0.076, N,~88x10" -

' 2.4
Model parameters

(non-embedding)

10° 107 10°
Parameters
non-embedding 30/54



il UNIVERSITYs VIRGINIA

Scaling Dataset Size

* Language model loss vs. a limited dataset size (D)
. Infinite model size: sufficiently large model
. With appropriate early stopping: avoid overfitting to the training data

4.2
—— L=(D/5.4-10%3)70:09

3.9
D ap 3.6
L(D) = (ﬁ) s ap ~ 0095, DC ~ 5.4 X 1013 3.3

A

Dataset size
(# of tokens) 108 10°

Dataset Size
tokens 31/54
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Scaling Training Compute

e Language model loss vs. a limited amount of compute (C)
. Infinite dataset size: sufficiently large training corpus
. Optimal model size: can effectively learn the data and not excessively compute-consuming

5
C ac 4
L(C) = (—) , ac~0.050, C,~3.1x10°
¢ 3
A
: L = (Crin/2.3 - 108)0-050
Compute 2

i0o-® 107 105 103 10-! 10!

Compute
PF-days, non-embedding

(# Peta-FLOP days)
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Optimal Model Size

Parameters (non-embedding)

107-

105_

103_

Given a specific amount of training compute C, what’s the optimal model size N(C)

that leads to minimal language modeling loss?

N(C) can be fit with a power-law wrt C

Additional compute needs to be used when model size is suboptimal

---- N=(1.3-10°)-C%/3 00/“
N=(1.6-10%)-C088 Read
’/
R
‘,“‘
s
%
*l’

-

107 1075 107 10

Compute (PF-days), non-embedding
0.73
N(Cmin) X (Cmin)

Excess Compute (C/Cetficient)

iy
<

W
v

w
o

.
3

N
o

Models between 0.6x and 2.2x the
optimal size can be trained with a
20% larger compute budget

100
Deviation from Optimal Model (N/Neficient)

10!
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Further Reading on Scaling LLMs

* Training Compute-Optimal Large Language Models [Hoffmann et al., 2022]

* Scaling Data-Constrained Language Models [Muennighoff et al., 2023]

 Are Emergent Abilities of Large Language Models a Mirage? [Schaeffer et al., 2023]
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Agenda

* Question Answering (QA)

35/54
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Introduction to Question Answering

* Question Answering (QA): build systems that can automatically answer questions
posed by humans in natural language

e Categorization by application domain: closed-domain vs. open-domain QA

* Closed-domain QA: answer questions within a specific domain
. Example: medical, legal, technical fields
. Models are trained on specialized knowledge to be highly accurate within their domain

* Open-domain QA: answer questions from any domain
. Typically rely on vast (external) knowledge sources like the web or large text corpora
. Most LLM applications consider open-domain QA settings
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Introduction to Question Answering

* Question Answering (QA): build systems that can automatically answer questions
posed by humans in natural language

e Categorization by modeling approach: extractive vs. abstractive QA

* Extractive QA: output a span of text extracted directly from a given context
. A natural language understanding task (reading comprehension)
. Example: context: “The human brain contains approximately 86 billion neurons” Q: “How
many neurons are in the human brain?” A: “86 billion”
. Can be done with encoder-only LMs (e.g., BERT)

* Abstractive QA: synthesize the answer in its own words (rephrasing/summarizing)
. Example: context: “Albert Einstein published his theory of special relativity which introduced
the famous equation E=mc?, which relates energy (E) to mass (m) and the speed of light (c)”
Q: “What did Einstein contribute to physics?” A: “Einstein made significant contributions to
the theory of special relativity which established the relationship between energy and mass”
. Need to use a generative LM (e.g., GPT)
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Introduction to Question Answering

* Question Answering (QA): build systems that can automatically answer questions
posed by humans in natural language

* Categorization by access to external source: closed-book vs. open-book QA

* Closed-book QA: answer questions without access to any external information
. Accuracy depends heavily on how well the training data covered the relevant information
. Similar to a human answering a question from memory without looking anything up

* Open-book QA: can access external knowledge source to answer the questions
. Typically using retrieval from reliable external sources that contain
. Similar to a human answering a question by looking it up in a book or online resource
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Agenda

e Parametric Knowledge in LMs
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Prompting LMs: Parametric Knowledge

* LMs have learned from a lot of facts in their pretraining data

* LMs can be directly prompted to generate answers to factoid questions (Closed-book
QA setting)

e Example:

* Since prompting LLMs only relies on the information stored within the parameters of
the model itself, this kind of knowledge is called parametric knowledge
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Language Model as Knowledge Bases

e Acquisition: LM’s knowledge is derived from the vast amount of pretraining data
* Access: information is accessed through natural language prompts
* Update/maintenance: re-training/fine-tuning the model with new data

* Pros:
. Handle a wide range of natural language queries with contextual understanding
. Generalize to unseen queries not seen during training

* Cons:

. May produce incorrect/outdated information
. Lack interpretability/transparency

“Dante was born in [MASK].”
> A VY »

Neural LM

— #
Memory Access Florence

Paper: https://arxiv.org/pdf/1909.01066
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(Real) Knowledge Bases

* Acquisition: manually constructed by human annotators
* Access: information is accessed through queries in specific formats
* Update/maintenance: adding/modifying/deleting entries (incrementally) by humans

. Pros:
. Precise & verifiable

* Cons:
. Not able to handle natural language
. Require massive human efforts to construct & maintain

Memory Query Answer

(DANTE, born-in, X)
Y

KG DANTE =~ e Symbolic = F'LORENCE
Memory Access

born-in

Knowledge Graph

FLORENCE

Paper: https://arxiv.org/pdf/1909.01066
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Feedforward Parameters in Transformer

* FFNin Transformer is a 2-layer network (one hidden layer, two weight matrices)

FFN(mz) = ReLU(a:@Wl)Wg hiq hi Residual hivq
-~ Stream

-

*  FFN constitutes ~2/3 of the total parameters of Transformer

Layer Norm

Layer Norm)

Xj-1 X X1

Figure source: https://web.stanford.edu/~jurafsky/slp3/8.pdf 43/54
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Feedforward Parameters Are Neural Memories

Viewing FFN as key-value memories

max(z,0)

‘ ‘mi € Rdl

Y=

FEN(z;) = ReLU(x; K)V

S —10.

Rectified linear unit
(ReLU)

SS
~
\\
~

K c Rd1><d2 V c Rd2><d1

=5 0 5 10
z

key vectors (column vectors in K) act as value vectors (row vectors in V) represent
pattern detectors over the input sequence distributions over the output vocabulary

FEN(z;) = » ReLU(x; - kj)gfvj

j=1 weights of value vectors
Paper: https://arxiv.org/pdf/2012.14913
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Memory Keys Correspond to Input Patterns

Each individual key vector corresponds to a specific pattern over the input prefix

Key

| Pattern

| Example trigger prefixes

1
k449

Ends with “substitutes”
(shallow)

At the meeting, Elton said that “for artistic reasons there could be no substitutes
In German service, they were used as substitutes
Two weeks later, he came off the substitutes

6
k2546

Military, ends with
“base”’| “bases”
(shallow + semantic)

On 1 April the SRSG authorised the SADF to leave their bases
Aircraft from all four carriers attacked the Australian base
Bombers flying missions to Rabaul and other Japanese bases

10
k3997

a “part of” relation
(semantic)

In June 2012 she was named as one of the team that competed
He was also a part of the Indian delegation
Toy Story is also among the top ten in the BFI list of the 50 films you should

13
k3989

Ends with a time
range (semantic)

Worldwide, most tornadoes occur in the late afternoon, between 3 pm and 7
Weekend tolls are in effect from 7:00 pm Friday until
The building is open to the public seven days a week, from 11:00 am to

16
k1935

TV shows (semantic)

Time shifting viewing added 57 percent to the episode’s
The first season set that the episode was included in was as part of the
From the original NBC daytime version , archived

Paper: https://arxiv.org/pdf/2012.14913
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Memory Values Correspond to Output Tokens

Each value vector (roughly) matches a predicted token distribution

Value Prediction Trigger example

Voo each But when bees and wasps resemble each

vis,  played Her first role was in Vijay Lalwani’s psychological thriller Karthik Calling
Karthik, where Padukone was cast as the supportive girlfriend of a depressed
man (played

Vaeo1  extratropical — Most of the winter precipitation is the result of synoptic scale, low pressure
weather systems (large scale storms such as extratropical

vas,  part Comet served only briefly with the fleet, owing in large part

Vagro  line Sailing from Lorient in October 1805 with one ship of the line

Vil Jail On May 11, 2011, four days after scoring 6 touchdowns for the Slaughter, Grady

was sentenced to twenty days in jail

Paper: https://arxiv.org/pdf/2012.14913
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Memory Aggregation

*  “Active” memories (memory vectors with non-zero coefficients) are typically sparse

* The residual connection sequentially refines token prediction from layer to layer

100

1.0 ¢ ¢ ¢ ¢ +
o b ! J
¢
g 80 08 ¥4 ‘ !
5 T LI T ! ‘
o
; EVORERLE IR0
9 60 . 206 ¢ N R
Q N
2 I 2 b bt !
£ 40 204 ¢ 3 4
. + ¢ < N S
o ‘ k5
2 20 ++ +% ; 0.2‘[‘[ J- 11143 !
. 0.0 l -ll!!!!
1234567 80910111213141516 12345678 910111213141516
layer layer
Fraction of active memory Output token probability is
units across layers gradually refined across layers

Paper: https://arxiv.org/pdf/2012.14913 47/54
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Further Reading on LLM Parametric Knowledge

e  How Much Knowledge Can You Pack Into the Parameters of a Language Model?
[Roberts et al., 2020]

*  Extracting Training Data from Large Language Models [Carlini et al., 2021]

* Locating and Editing Factual Associations in GPT [Meng et al., 2022]
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Agenda

*  Hallucination
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Hallucination

* Hallucination: LM generates information that is factually incorrect, misleading, or
fabricated, even though it may sound plausible or convincing

*  Why does hallucination happen?

Limited knowledge: LLMs are trained on finite datasets, which don’t have access to all
possible information; when asked about topics outside their training data, they may
generate plausible-sounding but incorrect responses

Overgeneralization: LLMs may apply patterns they’ve learned from one context to another
where they don’t apply, leading to incorrect conclusions

Lack of common sense: While LLMs can process and generate human-like text, they often
lack the ability to apply commonsense reasoning to their outputs
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Hallucination Examples

(Limited knowledge) Q: “What were the main features of the iPhone 15 Pro Max?”
LLM (trained before 2023): “The iPhone 15 Pro Max features a revolutionary
holographic display, quantum computing chip, and telepathic user interface.”

(Overgeneralization) Q: “How do you form the past tense in Japanese?”
LLM: “In Japanese, you typically add '-ed' to the end of verbs to form the past tense,
just like in English.” (incorrect)

(Lack of common sense) Q: “How many tennis balls can fit in a typical smartphone?”
LLM: “Approximately 15-20 tennis balls can fit in a typical smartphone, depending on
the model and screen size.”

what's your knowledge cutoff date?

(&) My knowledge cutoff date is October 2023. This means | don't have information on events or
developments that have occurred after that time. How can | assist you with your question?

Knowledge cutoff date of GPT40
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Concerns About Hallucination
BAKER_DONELSON

Home > Publications > The Perils of Legal Hallucinations and the Need for Al Training for Your In-House Legal Team!

PUBLICATIONS

The Perils of Legal Hallucinations and the Need for Al Training for Your In-

House Legal Team!
June 30, 2025

SHARE

@WOO@®

Generative Al is rewriting how lawyers work at record speed, but is also quietly flooding Courts with phantom
citations and invented case law along the way. In recent months, a number of judges across the country have
sanctioned attorneys for submitting briefs laced with fictitious case law conjured by generative Al tools like
ChatGPT. These so-called "hallucinations" aren't just embarrassing, they can constitute professional
misconduct, jeopardize your company's interests, and damage the credibility of the legal profession in an
already skeptical courtroom environment. In fact, since mid-2023, more than 120 cases of AI-driven legal
"hallucinations" have been identified, with at least 58 occurring so far in 2025.

Figure source: https://www.bakerdonelson.com/the-perils-of-legal-hallucinations-
and-the-need-for-ai-training-for-your-in-house-legal-team
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Further Reading on Hallucination

* LLM Lies: Hallucinations are not Bugs, but Features as Adversarial Examples [Yao et al.,

2023]

 Towards Mitigating Hallucination in Large Language Models via Self-Reflection [Ji et al.,
2023]

* Hallucination is Inevitable: An Innate Limitation of Large Language Models [Xu et al.,
2024]
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