
Yu Meng
University of Virginia

yumeng5@virginia.edu

LLM Agents

Nov 19, 2025

Slido: https://app.sli.do/event/rzAMNVhnNM58rKG74nFaZd

mailto:yumeng5@virginia.edu
https://app.sli.do/event/rzAMNVhnNM58rKG74nFaZd
https://app.sli.do/event/rzAMNVhnNM58rKG74nFaZd


Overview of Course Contents

• Week 1: Logistics & Overview

• Week 2: N-gram Language Models

• Week 3: Word Senses, Semantics & Classic Word Representations

• Week 4: Word Embeddings
• Week 5: Sequence Modeling & Recurrent Neural Networks (RNNs)

• Week 6: Language Modeling with Transformers

• Week 8: Transformer and Pretraining

• Week 9: Large Language Models (LLMs) & In-context Learning

• Week 10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
• Week 11: LLM Reasoning

• Week 12: Reinforcement Learning for Post-Training LLMs

• Week 13: LLM Alignment & Agents

• Week 15 (after Thanksgiving): Project Presentations 2/53



(Recap) The Evolution of GPT Models: ChatGPT

• GPT-1: decoder-only Transformer pretraining
• GPT-2: language model pretraining is multi-task learning
• GPT-3: scaling up & in-context learning

• ChatGPT: language model alignment

2018

GPT-3

2022

GPT-1
ChatGPT 
(GPT-3.5)

2019

GPT-2

2020

3/53



(Recap) Overview: Language Model Alignment

• Ensure language models behaviors are aligned with human values and intent for
general tasks/applications

• “HHH” criteria (Askell et al. 2021):
§ Helpful: Efficiently perform the task requested by the user
§ Honest: Give accurate information & express uncertainty
§ Harmless: Avoid offensive/discriminatory/biased outputs

Paper: https://arxiv.org/pdf/2112.00861 4/53

https://arxiv.org/pdf/2112.00861


(Recap) Language Model Alignment: Post-training

• Pretrained language models are not aligned
• Objective mismatch

§ Pretraining is to predict the next word in a sentence
§ Does not involve understanding human intent/values

• Training data bias
§ Text from the internet can contain biased, harmful, or misleading information
§ LMs don’t distinguish between good and bad behavior in training data

• (Over-)generalization issues
§ LMs’ generalization can lead to outputs that are inappropriate in specific contexts
§ Might not align with intended ethics/honesty standard

5/53



(Recap) Language Model Alignment Techniques

Figure source: https://openai.com/index/chatgpt/

Instruction Tuning 

Reinforcement 
Learning from 

Human Feedback 
(RLHF)

6/53

https://openai.com/index/chatgpt/


(Recap) Overview: Instruction Tuning

• Train an LM using a diverse set of tasks
§ Each task is framed as an instruction followed by an example of the desired output
§ The goal is to teach the model to follow specific instructions (human intent) effectively

• The resulting model can perform a variety of tasks zero-shot (w/o requiring in-context 
demonstrations)

• The instructions can also be in chat format – tuning an LM into a chatbot 

Pretrained (base) model

Instruction-tuned 
(post-trained) model

Models: https://huggingface.co/meta-llama 7/53

https://huggingface.co/meta-llama
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama


(Recap) Instruction Tuning: Introduction

• Setting: fine-tune LLMs with task-specific instructions on diverse tasks
• Goal: enable LLM to better understand user prompts and generalize to a wide range of 

(unseen) tasks zero-shot

Paper: https://arxiv.org/pdf/2109.01652 8/53

https://arxiv.org/pdf/2109.01652


(Recap) Instruction Tuning: Method

• Input: task description
• Output: expected response or solution to the task
• Train LLMs to generate response tokens given prompts

Paper: https://arxiv.org/pdf/2109.01652

Response Prompt

9/53

https://arxiv.org/pdf/2109.01652


(Recap) Instruction Tuning vs. Other Paradigms

• Task-specific fine-tuning does not
enable generalization across multiple
tasks

• In-context learning requires few-shot
demonstrations

• Instruction tuning enables zero-shot
cross task generalization

10/53



(Recap) Instruction Tuning vs. Pretraining

• Both instruction tuning and pretraining are multi-task learning paradigms
• Supervision

§ Pretraining: self-supervised learning (raw data w/o human annotation)
§ Instruction tuning: supervised learning (human annotated responses)

• Task format
§ Pretraining: tasks are implicit (predicting next tokens)
§ Instruction tuning: tasks are explicit (defined using natural language instructions)

• Goal
§ Pretraining: teach LMs a wide range of linguistic patterns & general knowledge 
§ Instruction tuning: teach LMs to follow specific instructions and perform a variety of tasks

11/53



(Recap) FLAN: Collection of Instruction Tuning Datasets

62 datasets (12 task clusters) covering a wide range of understanding + generation tasks

Paper: https://arxiv.org/pdf/2109.01652 12/53

https://arxiv.org/pdf/2109.01652


(Recap) Generalization Improves with More Clusters

• Held out three clusters from instruction tuning: Commonsense, NLI, Closed-book QA
• More clusters and tasks used in instruction tuning => better generalization to unseen

clusters

w/ 137B Model

13/53



(Recap) Instruction Tuning with Different Model Sizes

• Instruction tuning can hurt small model (< 8B) generalization
• Instruction tuning substantially improves generalization for large models

14/53



(Recap) Chat-style Instruction Tuning

• Instruction tuning can also be used to build chatbots for multi-turn dialogue
• Instructions may not correspond strictly to one NLP task, but mimic a human-like 

dialogue

• Multi-turn instruction tuning training data example:

{"role": "user", "content": "What's the weather like today?"},
{"role": "assistant", "content": "It's sunny with a high of 75 degrees."},
{"role": "user", "content": "Great! What about tomorrow?"},
{"role": "assistant", "content": "Tomorrow will be partly cloudy with a high of 72 degrees."}

15/53



(Recap) Limitations of Instruction Tuning & Why RLHF

• Costly human annotations
§ Instruction tuning requires human annotators to write down the entire expected responses
§ RLHF only relies on preference labels (which response is better?)

• Open-ended generation
§ Open-ended creative generation (e.g., story writing) inherently has no single “right” answer
§ RLHF uses human feedback to determine which response is more creative/appealing

• Token-level learning
§ Instruction tuning applies the language modeling loss -> penalizes all token mistakes equally 

regardless of their impact on the overall quality of the output (e.g., a grammatical error 
might be less critical than a factual inaccuracy)

§ RLHF uses human feedback to prioritize the error types that are more important to correct

• Suboptimal human answers
§ Instruction tuning may learn the suboptimal patterns written by humans
§ Identifying a better answer from a few options is usually easier than writing an optimal

answer entirely
16/53



(Recap) Overview: RLHF

• Human feedback collection
§ Generate multiple responses using the model given the same prompt
§ Human evaluators rank responses of the model based on helpfulness/honesty/safety…

• Reward model training 
§ A reward model is trained on human feedback data to predict the quality of responses
§ Higher reward = more preferred by human evaluators 

• Policy optimization
§ Use reinforcement learning algorithms to further train the LM to maximize the reward 

predicted by the reward model
§ Encourage the model to produce outputs that align better with human preferences

Paper: https://arxiv.org/pdf/2203.02155 17/53

https://arxiv.org/pdf/2203.02155


(Recap) RLHF Illustration

Figure source: https://huggingface.co/blog/rlhf

Reward model
(scoring responses)

Policy model
(LLM being trained)

Reference model
(initial LLM checkpoint)

18/53

https://huggingface.co/blog/rlhf


(Recap) Preference Data Construction

• Goal of reward model: score the quality of LLM’s output based on human feedback
• Can we directly ask human annotators to assign a scalar score (e.g., 1-10) to a single

response?

Figure source: https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf

Different human evaluators
can be very inconsistent in
assigning absolute scores!

19/53

https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf


(Recap) Preference Data with Pairwise Comparisons

Humans are better at relative judgments than absolute ones

Preference data:
prompt preferred

(winning) response

dispreferred
(losing) response

Figure source: https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf 20/53

https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf
https://lm-class.org/lectures/14%20-%20post-training%20llms.pdf


Reward Model Setup

Goal: train a reward model to assign a higher reward to 𝒚! than 𝒚"

Apply a linear layer at the
last token representation
to learn a scalar output

21/53



Reward Model Training

Bradley-Terry pairwise comparison objective

reward of winning
response

reward of losing
response

22/53



Optimizing LLMs with the Reward Model

• The trained reward model serve as a proxy for human judgment (higher reward =
more preferred by humans)

• Maximize the reward of generated responses from the LLM (policy model)

• What if our reward model is imperfect?

LLM output
probability

reward of LLM
generated response

23/53



Issues with Naïve Optimization of Rewards

• Reward models are still only approximations of true human preferences
§ Can be noisy or incomplete (e.g., not well-generalized out-of-domain)

• Solely maximizing the reward leads to several issues
§ Exploiting reward model flaws: The LLM might learn to “hack” the reward model, finding 

ways to achieve high reward without actually possessing the desired behavior
§ Mode collapse: The LLM might converge to a narrow distribution of outputs that achieve 

high reward, but lack diversity and fail to generalize to different situations
§ Loss of pretrained knowledge: Over-optimization for the reward model can cause the LLM

to unlearn desirable properties in the initial pretrained model (e.g., grammar, factuality)

24/53



Regularized Reward Optimization

• Add a penalty for drifting too far from the initial SFT checkpoint

• Penalize cases where
• In expectation, it is known as the Kullback-Leibler (KL) divergence

Maximize reward
Prevent deviation from the

initial (SFT) model
hyperparameter

25/53



Optimization with Reinforcement Learning (RL) 

• Why reinforcement learning:
§ No supervised data available (only a reward model)
§ Encourage the model to explore new possibilities (generations) guided by the reward model

• Optimization: policy gradient methods
§ Optimize the policy (LLM) by adjusting the parameters in the direction that increases 

expected rewards

• REINFORCE (simplest policy gradient method):

step size policy model
(LLM)

action
(generating the

response)

state (user prompt +
conversation history)

cumulative reward

26/53



Overview: Direct Preference Optimization (DPO)

• Overall, the RLHF framework is very complicated
§ Need to first train a reward model
§ Need to do online sampling 
§ Performance is very sensitive to many hyperparameters

• Direct Preference Optimization (DPO): optimize LM parameters directly on preference 
data by solving a binary classification problem (without an explicit reward model)

Paper: https://arxiv.org/pdf/2305.18290 27/53

https://arxiv.org/pdf/2305.18290


Further Reading on RLHF

• RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [Dong
et al., 2023]

• Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for 
RLHF under KL-Constraint [Xiong et al., 2023]

• SLiC-HF: Sequence Likelihood Calibration with Human Feedback [Zhao et al., 2023]
• SimPO: Simple Preference Optimization with a Reference-Free Reward [Meng et al.,

2024]

28/53

https://arxiv.org/pdf/2304.06767
https://arxiv.org/pdf/2304.06767
https://arxiv.org/pdf/2312.11456v4
https://arxiv.org/pdf/2312.11456v4
https://arxiv.org/pdf/2312.11456v4
https://arxiv.org/pdf/2312.11456v4
https://arxiv.org/pdf/2312.11456v4
https://arxiv.org/pdf/2305.10425
https://arxiv.org/pdf/2305.10425
https://arxiv.org/pdf/2305.10425
https://arxiv.org/pdf/2305.10425
https://arxiv.org/pdf/2405.14734
https://arxiv.org/pdf/2405.14734
https://arxiv.org/pdf/2405.14734
https://arxiv.org/pdf/2405.14734


Agenda

• LLM Agent Overview
• Multimodal LLMs
• Tool Usages

• Code Assistant

29/53



Overview: Language Agents

• Language agents: systems that interact with users using natural language as an 
interface to execute real-world tasks

• LLMs serve as the foundation for language agents
§ Natural language understanding: comprehend and interpret user input in text
§ Natural language generation: generate coherent & appropriate responses/actions
§ Reasoning: enable multi-step reasoning or problem-solving/decision-making

• Examples:
§ Virtual assistants: understand user commands and carry out tasks (e.g., setting reminders, 

playing music, controlling smart home devices)
§ Code agents: assist developers by generating code snippets, suggesting improvements, and 

explaining how certain pieces of code work
§ Business operations: break down high-level goals (e.g., “create a marketing campaign”), 

search and synthesize information, and execute steps autonomously (e.g., interacting with 
external API/tools)

30/53



Claude 3.5: Computer Use

Figure source: https://www.anthropic.com/news/3-5-models-and-computer-use 31/53

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use


WebShop: Language Agents for Online Shopping

Figure source: https://webshop-pnlp.github.io/ 32/53

https://webshop-pnlp.github.io/
https://webshop-pnlp.github.io/
https://webshop-pnlp.github.io/


Agenda

• LLM Agent Overview
• Multimodal LLMs
• Tool Usages

• Code Assistant

33/53



Overview: Multimodal LLMs

• Process and understand multiple types of data (e.g., text, images, audio, and video)
• More comprehensive and contextually rich understanding & generation
• Multimodal input processing (common): 

§ Accept and process different types of input data
§ Examples: understanding the content of an image, transcribing and interpreting speech, 

analyzing video content, or integrating information from sensor data

• Multimodal output generation (less common):
§ Generate output in various modalities 
§ Examples: creating realistic images from text descriptions, translating speech to text, or 

generating music according to user descriptions

34/53



Overview: Multimodal Architecture

• Architecture:
§ Require modality-specific architectures (e.g., vision/audio/video encoders)
§ Usually LLMs serve as the strong base

• Multimodal fusion: fuse information from different modalities
§ Early fusion: Combine raw input data from different modalities before processing
§ Late fusion: Process each modality separately and then combine the representations later

Figure source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9548039

Early fusion Late fusion

35/53

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9548039


Overview: Multimodal Datasets

Training datasets need to contain paired examples of different modalities => teach the 
model the relationships between different types of data

Figure source: https://arxiv.org/pdf/2304.08485 36/53

https://arxiv.org/pdf/2304.08485


Visual Instruction Tuning

• Goal: fine-tune a multimodal LLM to learn to follow instructions for tasks that involve 
both visual and textual information

• LLaVA (Large Language and Vision Assistant): combine a pretrained vision encoder 
(e.g., CLIP) with a large language model (e.g., Llama) for visual instruction tuning

Paper: https://arxiv.org/pdf/2304.08485 37/53

https://arxiv.org/pdf/2304.08485


LLaVA: Architecture

• Learn a projection matrix (𝑾) to convert imagine representations (𝒁#) to text
embeddings (𝑯#)

• Concatenate visual tokens (𝑯#) with text tokens (𝑯$) as input to the model

Adopted in latest
multimodal Llama models

38/53



LLaVA: Results

39/53



Agenda

• LLM Agent Overview
• Multimodal LLMs
• Tool Usages

• Code Assistant

40/53



Tool Usages with LLMs

• Motivation: many task execution requires accessing & using external tools (e.g.,
calculator, calendar, search engines)

• Toolformer: train LMs to use various tools and automatically decide when and how to 
use which tool

Paper: https://arxiv.org/pdf/2302.04761 41/53

https://arxiv.org/pdf/2302.04761


Types of Tools Considered

Question answering system

Calculator

Machine translation

Wikipedia search

Automatically decide when & which tool to use during text generation

42/53



Tool Learning via In-context Learning

• Provide example API calls in context
• LLMs learn to generate API calls for new data

In-context examples

Generate API calls for new data
43/53



Filtering API Calls

• Some API calls are beneficial for the LLM to execute the task, while others are not
• Helpful API calls typically reduce the loss for generating future tokens

• Filter out API calls which do not reduce the loss 

Final
generation

Not performing the API call

API call does not help 
reduce the loss 44/53



Tool Usage Ability vs. Model Scale

Larger models more effectively learn how to appropriately use tools

Wikipedia search Calculator Question answering
45/53



Agenda

• LLM Agent Overview
• Multimodal LLMs
• Tool Usages

• Code Assistant

46/53



LLMs as Code Assistants

https://www.cursor.com/https://github.com/features/copilot
47/53

https://www.cursor.com/
https://github.com/features/copilot


Code Infilling

• Motivation: code is seldom written in a single left-to-right pass and is instead 
repeatedly edited and refined

• Need train an LLM to perform both left-to-right code generation and editing (masking 
and infilling)

Paper: https://arxiv.org/pdf/2204.05999 48/53

https://arxiv.org/pdf/2204.05999


InCoder Training: Causal Masking 

• Sample several spans of code in training documents
• Move these spans to the end of the document, with their original location denoted by 

special mask tokens

• LLM is trained to produce these entire masked documents => learn to generate
insertion text conditioned on bidirectional context

49/53



InCoder Inference: Code Editing

Various types of code editing: insert mask tokens at desired locations and use the model 
to generate content to be inserted

50/53



Code Agent Evaluation: SWE-Bench

• Collect task instances from real-world Python repositories by connecting GitHub issues 
to merged pull request solutions that resolve related test

• Provided with the issue text and a codebase snapshot, LLMs generate a patch that is 
evaluated against real tests

Paper: https://arxiv.org/pdf/2310.06770 51/53

https://arxiv.org/pdf/2310.06770


Latest Progress (As of 11/19/25) on SWE-Bench

Figure source: https://www.swebench.com/ 52/53

https://www.swebench.com/
https://www.swebench.com/


Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

